summaryrefslogtreecommitdiff
path: root/networkx/algorithms/centrality/tests/test_eigenvector_centrality.py
blob: 133f4ffdf9d96c29d626cf797f83ac422f1626b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import math
import pytest

np = pytest.importorskip("numpy")
pytest.importorskip("scipy")


import networkx as nx
from networkx.testing import almost_equal


class TestEigenvectorCentrality:
    def test_K5(self):
        """Eigenvector centrality: K5"""
        G = nx.complete_graph(5)
        b = nx.eigenvector_centrality(G)
        v = math.sqrt(1 / 5.0)
        b_answer = dict.fromkeys(G, v)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])
        nstart = {n: 1 for n in G}
        b = nx.eigenvector_centrality(G, nstart=nstart)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

        b = nx.eigenvector_centrality_numpy(G)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_P3(self):
        """Eigenvector centrality: P3"""
        G = nx.path_graph(3)
        b_answer = {0: 0.5, 1: 0.7071, 2: 0.5}
        b = nx.eigenvector_centrality_numpy(G)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=4)
        b = nx.eigenvector_centrality(G)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=4)

    def test_P3_unweighted(self):
        """Eigenvector centrality: P3"""
        G = nx.path_graph(3)
        b_answer = {0: 0.5, 1: 0.7071, 2: 0.5}
        b = nx.eigenvector_centrality_numpy(G, weight=None)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=4)

    def test_maxiter(self):
        with pytest.raises(nx.PowerIterationFailedConvergence):
            G = nx.path_graph(3)
            b = nx.eigenvector_centrality(G, max_iter=0)


class TestEigenvectorCentralityDirected:
    @classmethod
    def setup_class(cls):
        G = nx.DiGraph()

        edges = [
            (1, 2),
            (1, 3),
            (2, 4),
            (3, 2),
            (3, 5),
            (4, 2),
            (4, 5),
            (4, 6),
            (5, 6),
            (5, 7),
            (5, 8),
            (6, 8),
            (7, 1),
            (7, 5),
            (7, 8),
            (8, 6),
            (8, 7),
        ]

        G.add_edges_from(edges, weight=2.0)
        cls.G = G.reverse()
        cls.G.evc = [
            0.25368793,
            0.19576478,
            0.32817092,
            0.40430835,
            0.48199885,
            0.15724483,
            0.51346196,
            0.32475403,
        ]

        H = nx.DiGraph()

        edges = [
            (1, 2),
            (1, 3),
            (2, 4),
            (3, 2),
            (3, 5),
            (4, 2),
            (4, 5),
            (4, 6),
            (5, 6),
            (5, 7),
            (5, 8),
            (6, 8),
            (7, 1),
            (7, 5),
            (7, 8),
            (8, 6),
            (8, 7),
        ]

        G.add_edges_from(edges)
        cls.H = G.reverse()
        cls.H.evc = [
            0.25368793,
            0.19576478,
            0.32817092,
            0.40430835,
            0.48199885,
            0.15724483,
            0.51346196,
            0.32475403,
        ]

    def test_eigenvector_centrality_weighted(self):
        G = self.G
        p = nx.eigenvector_centrality(G)
        for (a, b) in zip(list(p.values()), self.G.evc):
            assert almost_equal(a, b, places=4)

    def test_eigenvector_centrality_weighted_numpy(self):
        G = self.G
        p = nx.eigenvector_centrality_numpy(G)
        for (a, b) in zip(list(p.values()), self.G.evc):
            assert almost_equal(a, b)

    def test_eigenvector_centrality_unweighted(self):
        G = self.H
        p = nx.eigenvector_centrality(G)
        for (a, b) in zip(list(p.values()), self.G.evc):
            assert almost_equal(a, b, places=4)

    def test_eigenvector_centrality_unweighted_numpy(self):
        G = self.H
        p = nx.eigenvector_centrality_numpy(G)
        for (a, b) in zip(list(p.values()), self.G.evc):
            assert almost_equal(a, b)


class TestEigenvectorCentralityExceptions:
    def test_multigraph(self):
        with pytest.raises(nx.NetworkXException):
            e = nx.eigenvector_centrality(nx.MultiGraph())

    def test_multigraph_numpy(self):
        with pytest.raises(nx.NetworkXException):
            e = nx.eigenvector_centrality_numpy(nx.MultiGraph())

    def test_empty(self):
        with pytest.raises(nx.NetworkXException):
            e = nx.eigenvector_centrality(nx.Graph())

    def test_empty_numpy(self):
        with pytest.raises(nx.NetworkXException):
            e = nx.eigenvector_centrality_numpy(nx.Graph())