summaryrefslogtreecommitdiff
path: root/networkx/algorithms/centrality/betweenness.py
blob: dd478dcd2dada43436b178e30048915f3a5e1d77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"""Betweenness centrality measures."""
from heapq import heappush, heappop
from itertools import count
import warnings

from networkx.utils import py_random_state
from networkx.utils.decorators import not_implemented_for

__all__ = ["betweenness_centrality", "edge_betweenness_centrality", "edge_betweenness"]


@py_random_state(5)
@not_implemented_for("multigraph")
def betweenness_centrality(
    G, k=None, normalized=True, weight=None, endpoints=False, seed=None
):
    r"""Compute the shortest-path betweenness centrality for nodes.

    Betweenness centrality of a node $v$ is the sum of the
    fraction of all-pairs shortest paths that pass through $v$

    .. math::

       c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}

    where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
    shortest $(s, t)$-paths,  and $\sigma(s, t|v)$ is the number of
    those paths  passing through some  node $v$ other than $s, t$.
    If $s = t$, $\sigma(s, t) = 1$, and if $v \in {s, t}$,
    $\sigma(s, t|v) = 0$ [2]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    k : int, optional (default=None)
      If k is not None use k node samples to estimate betweenness.
      The value of k <= n where n is the number of nodes in the graph.
      Higher values give better approximation.

    normalized : bool, optional
      If True the betweenness values are normalized by `2/((n-1)(n-2))`
      for graphs, and `1/((n-1)(n-2))` for directed graphs where `n`
      is the number of nodes in G.

    weight : None or string, optional (default=None)
      If None, all edge weights are considered equal.
      Otherwise holds the name of the edge attribute used as weight.
      Weights are used to calculate weighted shortest paths, so they are
      interpreted as distances.

    endpoints : bool, optional
      If True include the endpoints in the shortest path counts.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
        Note that this is only used if k is not None.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.

    See Also
    --------
    edge_betweenness_centrality
    load_centrality

    Notes
    -----
    The algorithm is from Ulrik Brandes [1]_.
    See [4]_ for the original first published version and [2]_ for details on
    algorithms for variations and related metrics.

    For approximate betweenness calculations set k=#samples to use
    k nodes ("pivots") to estimate the betweenness values. For an estimate
    of the number of pivots needed see [3]_.

    For weighted graphs the edge weights must be greater than zero.
    Zero edge weights can produce an infinite number of equal length
    paths between pairs of nodes.

    The total number of paths between source and target is counted
    differently for directed and undirected graphs. Directed paths
    are easy to count. Undirected paths are tricky: should a path
    from "u" to "v" count as 1 undirected path or as 2 directed paths?

    For betweenness_centrality we report the number of undirected
    paths when G is undirected.

    For betweenness_centrality_subset the reporting is different.
    If the source and target subsets are the same, then we want
    to count undirected paths. But if the source and target subsets
    differ -- for example, if sources is {0} and targets is {1},
    then we are only counting the paths in one direction. They are
    undirected paths but we are counting them in a directed way.
    To count them as undirected paths, each should count as half a path.

    References
    ----------
    .. [1] Ulrik Brandes:
       A Faster Algorithm for Betweenness Centrality.
       Journal of Mathematical Sociology 25(2):163-177, 2001.
       https://doi.org/10.1080/0022250X.2001.9990249
    .. [2] Ulrik Brandes:
       On Variants of Shortest-Path Betweenness
       Centrality and their Generic Computation.
       Social Networks 30(2):136-145, 2008.
       https://doi.org/10.1016/j.socnet.2007.11.001
    .. [3] Ulrik Brandes and Christian Pich:
       Centrality Estimation in Large Networks.
       International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007.
       https://dx.doi.org/10.1142/S0218127407018403
    .. [4] Linton C. Freeman:
       A set of measures of centrality based on betweenness.
       Sociometry 40: 35–41, 1977
       https://doi.org/10.2307/3033543
    """
    betweenness = dict.fromkeys(G, 0.0)  # b[v]=0 for v in G
    if k is None:
        nodes = G
    else:
        nodes = seed.sample(list(G.nodes()), k)
    for s in nodes:
        # single source shortest paths
        if weight is None:  # use BFS
            S, P, sigma, _ = _single_source_shortest_path_basic(G, s)
        else:  # use Dijkstra's algorithm
            S, P, sigma, _ = _single_source_dijkstra_path_basic(G, s, weight)
        # accumulation
        if endpoints:
            betweenness, delta = _accumulate_endpoints(betweenness, S, P, sigma, s)
        else:
            betweenness, delta = _accumulate_basic(betweenness, S, P, sigma, s)
    # rescaling
    betweenness = _rescale(
        betweenness,
        len(G),
        normalized=normalized,
        directed=G.is_directed(),
        k=k,
        endpoints=endpoints,
    )
    return betweenness


@py_random_state(4)
def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None):
    r"""Compute betweenness centrality for edges.

    Betweenness centrality of an edge $e$ is the sum of the
    fraction of all-pairs shortest paths that pass through $e$

    .. math::

       c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}

    where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
    shortest $(s, t)$-paths, and $\sigma(s, t|e)$ is the number of
    those paths passing through edge $e$ [2]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    k : int, optional (default=None)
      If k is not None use k node samples to estimate betweenness.
      The value of k <= n where n is the number of nodes in the graph.
      Higher values give better approximation.

    normalized : bool, optional
      If True the betweenness values are normalized by $2/(n(n-1))$
      for graphs, and $1/(n(n-1))$ for directed graphs where $n$
      is the number of nodes in G.

    weight : None or string, optional (default=None)
      If None, all edge weights are considered equal.
      Otherwise holds the name of the edge attribute used as weight.
      Weights are used to calculate weighted shortest paths, so they are
      interpreted as distances.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
        Note that this is only used if k is not None.

    Returns
    -------
    edges : dictionary
       Dictionary of edges with betweenness centrality as the value.

    See Also
    --------
    betweenness_centrality
    edge_load

    Notes
    -----
    The algorithm is from Ulrik Brandes [1]_.

    For weighted graphs the edge weights must be greater than zero.
    Zero edge weights can produce an infinite number of equal length
    paths between pairs of nodes.

    References
    ----------
    .. [1]  A Faster Algorithm for Betweenness Centrality. Ulrik Brandes,
       Journal of Mathematical Sociology 25(2):163-177, 2001.
       https://doi.org/10.1080/0022250X.2001.9990249
    .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness
       Centrality and their Generic Computation.
       Social Networks 30(2):136-145, 2008.
       https://doi.org/10.1016/j.socnet.2007.11.001
    """
    betweenness = dict.fromkeys(G, 0.0)  # b[v]=0 for v in G
    # b[e]=0 for e in G.edges()
    betweenness.update(dict.fromkeys(G.edges(), 0.0))
    if k is None:
        nodes = G
    else:
        nodes = seed.sample(G.nodes(), k)
    for s in nodes:
        # single source shortest paths
        if weight is None:  # use BFS
            S, P, sigma, _ = _single_source_shortest_path_basic(G, s)
        else:  # use Dijkstra's algorithm
            S, P, sigma, _ = _single_source_dijkstra_path_basic(G, s, weight)
        # accumulation
        betweenness = _accumulate_edges(betweenness, S, P, sigma, s)
    # rescaling
    for n in G:  # remove nodes to only return edges
        del betweenness[n]
    betweenness = _rescale_e(
        betweenness, len(G), normalized=normalized, directed=G.is_directed()
    )
    return betweenness


# obsolete name
def edge_betweenness(G, k=None, normalized=True, weight=None, seed=None):
    warnings.warn(
        "edge_betweeness is replaced by edge_betweenness_centrality", DeprecationWarning
    )
    return edge_betweenness_centrality(G, k, normalized, weight, seed)


# helpers for betweenness centrality


def _single_source_shortest_path_basic(G, s):
    S = []
    P = {}
    for v in G:
        P[v] = []
    sigma = dict.fromkeys(G, 0.0)  # sigma[v]=0 for v in G
    D = {}
    sigma[s] = 1.0
    D[s] = 0
    Q = [s]
    while Q:  # use BFS to find shortest paths
        v = Q.pop(0)
        S.append(v)
        Dv = D[v]
        sigmav = sigma[v]
        for w in G[v]:
            if w not in D:
                Q.append(w)
                D[w] = Dv + 1
            if D[w] == Dv + 1:  # this is a shortest path, count paths
                sigma[w] += sigmav
                P[w].append(v)  # predecessors
    return S, P, sigma, D


def _single_source_dijkstra_path_basic(G, s, weight):
    # modified from Eppstein
    S = []
    P = {}
    for v in G:
        P[v] = []
    sigma = dict.fromkeys(G, 0.0)  # sigma[v]=0 for v in G
    D = {}
    sigma[s] = 1.0
    push = heappush
    pop = heappop
    seen = {s: 0}
    c = count()
    Q = []  # use Q as heap with (distance,node id) tuples
    push(Q, (0, next(c), s, s))
    while Q:
        (dist, _, pred, v) = pop(Q)
        if v in D:
            continue  # already searched this node.
        sigma[v] += sigma[pred]  # count paths
        S.append(v)
        D[v] = dist
        for w, edgedata in G[v].items():
            vw_dist = dist + edgedata.get(weight, 1)
            if w not in D and (w not in seen or vw_dist < seen[w]):
                seen[w] = vw_dist
                push(Q, (vw_dist, next(c), v, w))
                sigma[w] = 0.0
                P[w] = [v]
            elif vw_dist == seen[w]:  # handle equal paths
                sigma[w] += sigma[v]
                P[w].append(v)
    return S, P, sigma, D


def _accumulate_basic(betweenness, S, P, sigma, s):
    delta = dict.fromkeys(S, 0)
    while S:
        w = S.pop()
        coeff = (1 + delta[w]) / sigma[w]
        for v in P[w]:
            delta[v] += sigma[v] * coeff
        if w != s:
            betweenness[w] += delta[w]
    return betweenness, delta


def _accumulate_endpoints(betweenness, S, P, sigma, s):
    betweenness[s] += len(S) - 1
    delta = dict.fromkeys(S, 0)
    while S:
        w = S.pop()
        coeff = (1 + delta[w]) / sigma[w]
        for v in P[w]:
            delta[v] += sigma[v] * coeff
        if w != s:
            betweenness[w] += delta[w] + 1
    return betweenness, delta


def _accumulate_edges(betweenness, S, P, sigma, s):
    delta = dict.fromkeys(S, 0)
    while S:
        w = S.pop()
        coeff = (1 + delta[w]) / sigma[w]
        for v in P[w]:
            c = sigma[v] * coeff
            if (v, w) not in betweenness:
                betweenness[(w, v)] += c
            else:
                betweenness[(v, w)] += c
            delta[v] += c
        if w != s:
            betweenness[w] += delta[w]
    return betweenness


def _rescale(betweenness, n, normalized, directed=False, k=None, endpoints=False):
    if normalized:
        if endpoints:
            if n < 2:
                scale = None  # no normalization
            else:
                # Scale factor should include endpoint nodes
                scale = 1 / (n * (n - 1))
        elif n <= 2:
            scale = None  # no normalization b=0 for all nodes
        else:
            scale = 1 / ((n - 1) * (n - 2))
    else:  # rescale by 2 for undirected graphs
        if not directed:
            scale = 0.5
        else:
            scale = None
    if scale is not None:
        if k is not None:
            scale = scale * n / k
        for v in betweenness:
            betweenness[v] *= scale
    return betweenness


def _rescale_e(betweenness, n, normalized, directed=False, k=None):
    if normalized:
        if n <= 1:
            scale = None  # no normalization b=0 for all nodes
        else:
            scale = 1 / (n * (n - 1))
    else:  # rescale by 2 for undirected graphs
        if not directed:
            scale = 0.5
        else:
            scale = None
    if scale is not None:
        if k is not None:
            scale = scale * n / k
        for v in betweenness:
            betweenness[v] *= scale
    return betweenness