summaryrefslogtreecommitdiff
path: root/_modules/networkx/classes/multigraph.html
blob: 12e61e50a372a91d4e4a77c9a0212131576c80bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.classes.multigraph &#8212; NetworkX 3.0rc2.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script>
    <script src="../../../_static/jquery.js"></script>
    <script src="../../../_static/underscore.js"></script>
    <script src="../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../_static/doctools.js"></script>
    <script src="../../../_static/sphinx_highlight.js"></script>
    <script src="../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/classes/multigraph';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/classes/multigraph.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.0rc2.dev0 documentation"
          href="../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../genindex.html" />
    <link rel="search" title="Search" href="../../../search.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en">
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.classes.multigraph</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;Base class for MultiGraph.&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">copy</span> <span class="kn">import</span> <span class="n">deepcopy</span>
<span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">cached_property</span>

<span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>
<span class="kn">import</span> <span class="nn">networkx.convert</span> <span class="k">as</span> <span class="nn">convert</span>
<span class="kn">from</span> <span class="nn">networkx</span> <span class="kn">import</span> <span class="n">NetworkXError</span>
<span class="kn">from</span> <span class="nn">networkx.classes.coreviews</span> <span class="kn">import</span> <span class="n">MultiAdjacencyView</span>
<span class="kn">from</span> <span class="nn">networkx.classes.graph</span> <span class="kn">import</span> <span class="n">Graph</span>
<span class="kn">from</span> <span class="nn">networkx.classes.reportviews</span> <span class="kn">import</span> <span class="n">MultiDegreeView</span><span class="p">,</span> <span class="n">MultiEdgeView</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;MultiGraph&quot;</span><span class="p">]</span>


<div class="viewcode-block" id="MultiGraph"><a class="viewcode-back" href="../../../reference/classes/multigraph.html#networkx.MultiGraph">[docs]</a><span class="k">class</span> <span class="nc">MultiGraph</span><span class="p">(</span><span class="n">Graph</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    An undirected graph class that can store multiedges.</span>

<span class="sd">    Multiedges are multiple edges between two nodes.  Each edge</span>
<span class="sd">    can hold optional data or attributes.</span>

<span class="sd">    A MultiGraph holds undirected edges.  Self loops are allowed.</span>

<span class="sd">    Nodes can be arbitrary (hashable) Python objects with optional</span>
<span class="sd">    key/value attributes. By convention `None` is not used as a node.</span>

<span class="sd">    Edges are represented as links between nodes with optional</span>
<span class="sd">    key/value attributes, in a MultiGraph each edge has a key to</span>
<span class="sd">    distinguish between multiple edges that have the same source and</span>
<span class="sd">    destination nodes.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    incoming_graph_data : input graph (optional, default: None)</span>
<span class="sd">        Data to initialize graph. If None (default) an empty</span>
<span class="sd">        graph is created.  The data can be any format that is supported</span>
<span class="sd">        by the to_networkx_graph() function, currently including edge list,</span>
<span class="sd">        dict of dicts, dict of lists, NetworkX graph, 2D NumPy array,</span>
<span class="sd">        SciPy sparse array, or PyGraphviz graph.</span>

<span class="sd">    multigraph_input : bool or None (default None)</span>
<span class="sd">        Note: Only used when `incoming_graph_data` is a dict.</span>
<span class="sd">        If True, `incoming_graph_data` is assumed to be a</span>
<span class="sd">        dict-of-dict-of-dict-of-dict structure keyed by</span>
<span class="sd">        node to neighbor to edge keys to edge data for multi-edges.</span>
<span class="sd">        A NetworkXError is raised if this is not the case.</span>
<span class="sd">        If False, :func:`to_networkx_graph` is used to try to determine</span>
<span class="sd">        the dict&#39;s graph data structure as either a dict-of-dict-of-dict</span>
<span class="sd">        keyed by node to neighbor to edge data, or a dict-of-iterable</span>
<span class="sd">        keyed by node to neighbors.</span>
<span class="sd">        If None, the treatment for True is tried, but if it fails,</span>
<span class="sd">        the treatment for False is tried.</span>

<span class="sd">    attr : keyword arguments, optional (default= no attributes)</span>
<span class="sd">        Attributes to add to graph as key=value pairs.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    Graph</span>
<span class="sd">    DiGraph</span>
<span class="sd">    MultiDiGraph</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    Create an empty graph structure (a &quot;null graph&quot;) with no nodes and</span>
<span class="sd">    no edges.</span>

<span class="sd">    &gt;&gt;&gt; G = nx.MultiGraph()</span>

<span class="sd">    G can be grown in several ways.</span>

<span class="sd">    **Nodes:**</span>

<span class="sd">    Add one node at a time:</span>

<span class="sd">    &gt;&gt;&gt; G.add_node(1)</span>

<span class="sd">    Add the nodes from any container (a list, dict, set or</span>
<span class="sd">    even the lines from a file or the nodes from another graph).</span>

<span class="sd">    &gt;&gt;&gt; G.add_nodes_from([2, 3])</span>
<span class="sd">    &gt;&gt;&gt; G.add_nodes_from(range(100, 110))</span>
<span class="sd">    &gt;&gt;&gt; H = nx.path_graph(10)</span>
<span class="sd">    &gt;&gt;&gt; G.add_nodes_from(H)</span>

<span class="sd">    In addition to strings and integers any hashable Python object</span>
<span class="sd">    (except None) can represent a node, e.g. a customized node object,</span>
<span class="sd">    or even another Graph.</span>

<span class="sd">    &gt;&gt;&gt; G.add_node(H)</span>

<span class="sd">    **Edges:**</span>

<span class="sd">    G can also be grown by adding edges.</span>

<span class="sd">    Add one edge,</span>

<span class="sd">    &gt;&gt;&gt; key = G.add_edge(1, 2)</span>

<span class="sd">    a list of edges,</span>

<span class="sd">    &gt;&gt;&gt; keys = G.add_edges_from([(1, 2), (1, 3)])</span>

<span class="sd">    or a collection of edges,</span>

<span class="sd">    &gt;&gt;&gt; keys = G.add_edges_from(H.edges)</span>

<span class="sd">    If some edges connect nodes not yet in the graph, the nodes</span>
<span class="sd">    are added automatically.  If an edge already exists, an additional</span>
<span class="sd">    edge is created and stored using a key to identify the edge.</span>
<span class="sd">    By default the key is the lowest unused integer.</span>

<span class="sd">    &gt;&gt;&gt; keys = G.add_edges_from([(4, 5, {&quot;route&quot;: 28}), (4, 5, {&quot;route&quot;: 37})])</span>
<span class="sd">    &gt;&gt;&gt; G[4]</span>
<span class="sd">    AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {&#39;route&#39;: 28}, 2: {&#39;route&#39;: 37}}})</span>

<span class="sd">    **Attributes:**</span>

<span class="sd">    Each graph, node, and edge can hold key/value attribute pairs</span>
<span class="sd">    in an associated attribute dictionary (the keys must be hashable).</span>
<span class="sd">    By default these are empty, but can be added or changed using</span>
<span class="sd">    add_edge, add_node or direct manipulation of the attribute</span>
<span class="sd">    dictionaries named graph, node and edge respectively.</span>

<span class="sd">    &gt;&gt;&gt; G = nx.MultiGraph(day=&quot;Friday&quot;)</span>
<span class="sd">    &gt;&gt;&gt; G.graph</span>
<span class="sd">    {&#39;day&#39;: &#39;Friday&#39;}</span>

<span class="sd">    Add node attributes using add_node(), add_nodes_from() or G.nodes</span>

<span class="sd">    &gt;&gt;&gt; G.add_node(1, time=&quot;5pm&quot;)</span>
<span class="sd">    &gt;&gt;&gt; G.add_nodes_from([3], time=&quot;2pm&quot;)</span>
<span class="sd">    &gt;&gt;&gt; G.nodes[1]</span>
<span class="sd">    {&#39;time&#39;: &#39;5pm&#39;}</span>
<span class="sd">    &gt;&gt;&gt; G.nodes[1][&quot;room&quot;] = 714</span>
<span class="sd">    &gt;&gt;&gt; del G.nodes[1][&quot;room&quot;]  # remove attribute</span>
<span class="sd">    &gt;&gt;&gt; list(G.nodes(data=True))</span>
<span class="sd">    [(1, {&#39;time&#39;: &#39;5pm&#39;}), (3, {&#39;time&#39;: &#39;2pm&#39;})]</span>

<span class="sd">    Add edge attributes using add_edge(), add_edges_from(), subscript</span>
<span class="sd">    notation, or G.edges.</span>

<span class="sd">    &gt;&gt;&gt; key = G.add_edge(1, 2, weight=4.7)</span>
<span class="sd">    &gt;&gt;&gt; keys = G.add_edges_from([(3, 4), (4, 5)], color=&quot;red&quot;)</span>
<span class="sd">    &gt;&gt;&gt; keys = G.add_edges_from([(1, 2, {&quot;color&quot;: &quot;blue&quot;}), (2, 3, {&quot;weight&quot;: 8})])</span>
<span class="sd">    &gt;&gt;&gt; G[1][2][0][&quot;weight&quot;] = 4.7</span>
<span class="sd">    &gt;&gt;&gt; G.edges[1, 2, 0][&quot;weight&quot;] = 4</span>

<span class="sd">    Warning: we protect the graph data structure by making `G.edges[1,</span>
<span class="sd">    2, 0]` a read-only dict-like structure. However, you can assign to</span>
<span class="sd">    attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets</span>
<span class="sd">    to add/change data attributes: `G.edges[1, 2, 0][&#39;weight&#39;] = 4`.</span>

<span class="sd">    **Shortcuts:**</span>

<span class="sd">    Many common graph features allow python syntax to speed reporting.</span>

<span class="sd">    &gt;&gt;&gt; 1 in G  # check if node in graph</span>
<span class="sd">    True</span>
<span class="sd">    &gt;&gt;&gt; [n for n in G if n &lt; 3]  # iterate through nodes</span>
<span class="sd">    [1, 2]</span>
<span class="sd">    &gt;&gt;&gt; len(G)  # number of nodes in graph</span>
<span class="sd">    5</span>
<span class="sd">    &gt;&gt;&gt; G[1]  # adjacency dict-like view mapping neighbor -&gt; edge key -&gt; edge attributes</span>
<span class="sd">    AdjacencyView({2: {0: {&#39;weight&#39;: 4}, 1: {&#39;color&#39;: &#39;blue&#39;}}})</span>

<span class="sd">    Often the best way to traverse all edges of a graph is via the neighbors.</span>
<span class="sd">    The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`.</span>

<span class="sd">    &gt;&gt;&gt; for n, nbrsdict in G.adjacency():</span>
<span class="sd">    ...     for nbr, keydict in nbrsdict.items():</span>
<span class="sd">    ...         for key, eattr in keydict.items():</span>
<span class="sd">    ...             if &quot;weight&quot; in eattr:</span>
<span class="sd">    ...                 # Do something useful with the edges</span>
<span class="sd">    ...                 pass</span>

<span class="sd">    But the edges() method is often more convenient:</span>

<span class="sd">    &gt;&gt;&gt; for u, v, keys, weight in G.edges(data=&quot;weight&quot;, keys=True):</span>
<span class="sd">    ...     if weight is not None:</span>
<span class="sd">    ...         # Do something useful with the edges</span>
<span class="sd">    ...         pass</span>

<span class="sd">    **Reporting:**</span>

<span class="sd">    Simple graph information is obtained using methods and object-attributes.</span>
<span class="sd">    Reporting usually provides views instead of containers to reduce memory</span>
<span class="sd">    usage. The views update as the graph is updated similarly to dict-views.</span>
<span class="sd">    The objects `nodes`, `edges` and `adj` provide access to data attributes</span>
<span class="sd">    via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration</span>
<span class="sd">    (e.g. `nodes.items()`, `nodes.data(&#39;color&#39;)`,</span>
<span class="sd">    `nodes.data(&#39;color&#39;, default=&#39;blue&#39;)` and similarly for `edges`)</span>
<span class="sd">    Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.</span>

<span class="sd">    For details on these and other miscellaneous methods, see below.</span>

<span class="sd">    **Subclasses (Advanced):**</span>

<span class="sd">    The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.</span>
<span class="sd">    The outer dict (node_dict) holds adjacency information keyed by node.</span>
<span class="sd">    The next dict (adjlist_dict) represents the adjacency information</span>
<span class="sd">    and holds edge_key dicts keyed by neighbor. The edge_key dict holds</span>
<span class="sd">    each edge_attr dict keyed by edge key. The inner dict</span>
<span class="sd">    (edge_attr_dict) represents the edge data and holds edge attribute</span>
<span class="sd">    values keyed by attribute names.</span>

<span class="sd">    Each of these four dicts in the dict-of-dict-of-dict-of-dict</span>
<span class="sd">    structure can be replaced by a user defined dict-like object.</span>
<span class="sd">    In general, the dict-like features should be maintained but</span>
<span class="sd">    extra features can be added. To replace one of the dicts create</span>
<span class="sd">    a new graph class by changing the class(!) variable holding the</span>
<span class="sd">    factory for that dict-like structure. The variable names are</span>
<span class="sd">    node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,</span>
<span class="sd">    adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory</span>
<span class="sd">    and graph_attr_dict_factory.</span>

<span class="sd">    node_dict_factory : function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the dict containing node</span>
<span class="sd">        attributes, keyed by node id.</span>
<span class="sd">        It should require no arguments and return a dict-like object</span>

<span class="sd">    node_attr_dict_factory: function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the node attribute</span>
<span class="sd">        dict which holds attribute values keyed by attribute name.</span>
<span class="sd">        It should require no arguments and return a dict-like object</span>

<span class="sd">    adjlist_outer_dict_factory : function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the outer-most dict</span>
<span class="sd">        in the data structure that holds adjacency info keyed by node.</span>
<span class="sd">        It should require no arguments and return a dict-like object.</span>

<span class="sd">    adjlist_inner_dict_factory : function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the adjacency list</span>
<span class="sd">        dict which holds multiedge key dicts keyed by neighbor.</span>
<span class="sd">        It should require no arguments and return a dict-like object.</span>

<span class="sd">    edge_key_dict_factory : function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the edge key dict</span>
<span class="sd">        which holds edge data keyed by edge key.</span>
<span class="sd">        It should require no arguments and return a dict-like object.</span>

<span class="sd">    edge_attr_dict_factory : function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the edge attribute</span>
<span class="sd">        dict which holds attribute values keyed by attribute name.</span>
<span class="sd">        It should require no arguments and return a dict-like object.</span>

<span class="sd">    graph_attr_dict_factory : function, (default: dict)</span>
<span class="sd">        Factory function to be used to create the graph attribute</span>
<span class="sd">        dict which holds attribute values keyed by attribute name.</span>
<span class="sd">        It should require no arguments and return a dict-like object.</span>

<span class="sd">    Typically, if your extension doesn&#39;t impact the data structure all</span>
<span class="sd">    methods will inherited without issue except: `to_directed/to_undirected`.</span>
<span class="sd">    By default these methods create a DiGraph/Graph class and you probably</span>
<span class="sd">    want them to create your extension of a DiGraph/Graph. To facilitate</span>
<span class="sd">    this we define two class variables that you can set in your subclass.</span>

<span class="sd">    to_directed_class : callable, (default: DiGraph or MultiDiGraph)</span>
<span class="sd">        Class to create a new graph structure in the `to_directed` method.</span>
<span class="sd">        If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.</span>

<span class="sd">    to_undirected_class : callable, (default: Graph or MultiGraph)</span>
<span class="sd">        Class to create a new graph structure in the `to_undirected` method.</span>
<span class="sd">        If `None`, a NetworkX class (Graph or MultiGraph) is used.</span>

<span class="sd">    **Subclassing Example**</span>

<span class="sd">    Create a low memory graph class that effectively disallows edge</span>
<span class="sd">    attributes by using a single attribute dict for all edges.</span>
<span class="sd">    This reduces the memory used, but you lose edge attributes.</span>

<span class="sd">    &gt;&gt;&gt; class ThinGraph(nx.Graph):</span>
<span class="sd">    ...     all_edge_dict = {&quot;weight&quot;: 1}</span>
<span class="sd">    ...</span>
<span class="sd">    ...     def single_edge_dict(self):</span>
<span class="sd">    ...         return self.all_edge_dict</span>
<span class="sd">    ...</span>
<span class="sd">    ...     edge_attr_dict_factory = single_edge_dict</span>
<span class="sd">    &gt;&gt;&gt; G = ThinGraph()</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(2, 1)</span>
<span class="sd">    &gt;&gt;&gt; G[2][1]</span>
<span class="sd">    {&#39;weight&#39;: 1}</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(2, 2)</span>
<span class="sd">    &gt;&gt;&gt; G[2][1] is G[2][2]</span>
<span class="sd">    True</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="c1"># node_dict_factory = dict    # already assigned in Graph</span>
    <span class="c1"># adjlist_outer_dict_factory = dict</span>
    <span class="c1"># adjlist_inner_dict_factory = dict</span>
    <span class="n">edge_key_dict_factory</span> <span class="o">=</span> <span class="nb">dict</span>
    <span class="c1"># edge_attr_dict_factory = dict</span>

    <span class="k">def</span> <span class="nf">to_directed_class</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns the class to use for empty directed copies.</span>

<span class="sd">        If you subclass the base classes, use this to designate</span>
<span class="sd">        what directed class to use for `to_directed()` copies.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">MultiDiGraph</span>

    <span class="k">def</span> <span class="nf">to_undirected_class</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns the class to use for empty undirected copies.</span>

<span class="sd">        If you subclass the base classes, use this to designate</span>
<span class="sd">        what directed class to use for `to_directed()` copies.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="n">MultiGraph</span>

<div class="viewcode-block" id="MultiGraph.__init__"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.__init__.html#networkx.MultiGraph.__init__">[docs]</a>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">incoming_graph_data</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">multigraph_input</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">attr</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Initialize a graph with edges, name, or graph attributes.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        incoming_graph_data : input graph</span>
<span class="sd">            Data to initialize graph.  If incoming_graph_data=None (default)</span>
<span class="sd">            an empty graph is created.  The data can be an edge list, or any</span>
<span class="sd">            NetworkX graph object.  If the corresponding optional Python</span>
<span class="sd">            packages are installed the data can also be a 2D NumPy array, a</span>
<span class="sd">            SciPy sparse array, or a PyGraphviz graph.</span>

<span class="sd">        multigraph_input : bool or None (default None)</span>
<span class="sd">            Note: Only used when `incoming_graph_data` is a dict.</span>
<span class="sd">            If True, `incoming_graph_data` is assumed to be a</span>
<span class="sd">            dict-of-dict-of-dict-of-dict structure keyed by</span>
<span class="sd">            node to neighbor to edge keys to edge data for multi-edges.</span>
<span class="sd">            A NetworkXError is raised if this is not the case.</span>
<span class="sd">            If False, :func:`to_networkx_graph` is used to try to determine</span>
<span class="sd">            the dict&#39;s graph data structure as either a dict-of-dict-of-dict</span>
<span class="sd">            keyed by node to neighbor to edge data, or a dict-of-iterable</span>
<span class="sd">            keyed by node to neighbors.</span>
<span class="sd">            If None, the treatment for True is tried, but if it fails,</span>
<span class="sd">            the treatment for False is tried.</span>

<span class="sd">        attr : keyword arguments, optional (default= no attributes)</span>
<span class="sd">            Attributes to add to graph as key=value pairs.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        convert</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph(name=&quot;my graph&quot;)</span>
<span class="sd">        &gt;&gt;&gt; e = [(1, 2), (1, 2), (2, 3), (3, 4)]  # list of edges</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph(e)</span>

<span class="sd">        Arbitrary graph attribute pairs (key=value) may be assigned</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph(e, day=&quot;Friday&quot;)</span>
<span class="sd">        &gt;&gt;&gt; G.graph</span>
<span class="sd">        {&#39;day&#39;: &#39;Friday&#39;}</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># multigraph_input can be None/True/False. So check &quot;is not False&quot;</span>
        <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">incoming_graph_data</span><span class="p">,</span> <span class="nb">dict</span><span class="p">)</span> <span class="ow">and</span> <span class="n">multigraph_input</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">False</span><span class="p">:</span>
            <span class="n">Graph</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="n">convert</span><span class="o">.</span><span class="n">from_dict_of_dicts</span><span class="p">(</span>
                    <span class="n">incoming_graph_data</span><span class="p">,</span> <span class="n">create_using</span><span class="o">=</span><span class="bp">self</span><span class="p">,</span> <span class="n">multigraph_input</span><span class="o">=</span><span class="kc">True</span>
                <span class="p">)</span>
                <span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">attr</span><span class="p">)</span>
            <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">multigraph_input</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
                    <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span>
                        <span class="sa">f</span><span class="s2">&quot;converting multigraph_input raised:</span><span class="se">\n</span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">err</span><span class="p">)</span><span class="si">}</span><span class="s2">: </span><span class="si">{</span><span class="n">err</span><span class="si">}</span><span class="s2">&quot;</span>
                    <span class="p">)</span>
                <span class="n">Graph</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">incoming_graph_data</span><span class="p">,</span> <span class="o">**</span><span class="n">attr</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">Graph</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">incoming_graph_data</span><span class="p">,</span> <span class="o">**</span><span class="n">attr</span><span class="p">)</span></div>

    <span class="nd">@cached_property</span>
    <span class="k">def</span> <span class="nf">adj</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Graph adjacency object holding the neighbors of each node.</span>

<span class="sd">        This object is a read-only dict-like structure with node keys</span>
<span class="sd">        and neighbor-dict values.  The neighbor-dict is keyed by neighbor</span>
<span class="sd">        to the edgekey-data-dict.  So `G.adj[3][2][0][&#39;color&#39;] = &#39;blue&#39;` sets</span>
<span class="sd">        the color of the edge `(3, 2, 0)` to `&quot;blue&quot;`.</span>

<span class="sd">        Iterating over G.adj behaves like a dict. Useful idioms include</span>
<span class="sd">        `for nbr, edgesdict in G.adj[n].items():`.</span>

<span class="sd">        The neighbor information is also provided by subscripting the graph.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; e = [(1, 2), (1, 2), (1, 3), (3, 4)]  # list of edges</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph(e)</span>
<span class="sd">        &gt;&gt;&gt; G.edges[1, 2, 0][&quot;weight&quot;] = 3</span>
<span class="sd">        &gt;&gt;&gt; result = set()</span>
<span class="sd">        &gt;&gt;&gt; for edgekey, data in G[1][2].items():</span>
<span class="sd">        ...     result.add(data.get(&#39;weight&#39;, 1))</span>
<span class="sd">        &gt;&gt;&gt; result</span>
<span class="sd">        {1, 3}</span>

<span class="sd">        For directed graphs, `G.adj` holds outgoing (successor) info.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="n">MultiAdjacencyView</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">)</span>

<div class="viewcode-block" id="MultiGraph.new_edge_key"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.new_edge_key.html#networkx.MultiGraph.new_edge_key">[docs]</a>    <span class="k">def</span> <span class="nf">new_edge_key</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns an unused key for edges between nodes `u` and `v`.</span>

<span class="sd">        The nodes `u` and `v` do not need to be already in the graph.</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        In the standard MultiGraph class the new key is the number of existing</span>
<span class="sd">        edges between `u` and `v` (increased if necessary to ensure unused).</span>
<span class="sd">        The first edge will have key 0, then 1, etc. If an edge is removed</span>
<span class="sd">        further new_edge_keys may not be in this order.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        u, v : nodes</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        key : int</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">keydict</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
        <span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="n">key</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">keydict</span><span class="p">)</span>
        <span class="k">while</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">keydict</span><span class="p">:</span>
            <span class="n">key</span> <span class="o">+=</span> <span class="mi">1</span>
        <span class="k">return</span> <span class="n">key</span></div>

<div class="viewcode-block" id="MultiGraph.add_edge"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.add_edge.html#networkx.MultiGraph.add_edge">[docs]</a>    <span class="k">def</span> <span class="nf">add_edge</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u_for_edge</span><span class="p">,</span> <span class="n">v_for_edge</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">attr</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Add an edge between u and v.</span>

<span class="sd">        The nodes u and v will be automatically added if they are</span>
<span class="sd">        not already in the graph.</span>

<span class="sd">        Edge attributes can be specified with keywords or by directly</span>
<span class="sd">        accessing the edge&#39;s attribute dictionary. See examples below.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        u_for_edge, v_for_edge : nodes</span>
<span class="sd">            Nodes can be, for example, strings or numbers.</span>
<span class="sd">            Nodes must be hashable (and not None) Python objects.</span>
<span class="sd">        key : hashable identifier, optional (default=lowest unused integer)</span>
<span class="sd">            Used to distinguish multiedges between a pair of nodes.</span>
<span class="sd">        attr : keyword arguments, optional</span>
<span class="sd">            Edge data (or labels or objects) can be assigned using</span>
<span class="sd">            keyword arguments.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        The edge key assigned to the edge.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        add_edges_from : add a collection of edges</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        To replace/update edge data, use the optional key argument</span>
<span class="sd">        to identify a unique edge.  Otherwise a new edge will be created.</span>

<span class="sd">        NetworkX algorithms designed for weighted graphs cannot use</span>
<span class="sd">        multigraphs directly because it is not clear how to handle</span>
<span class="sd">        multiedge weights.  Convert to Graph using edge attribute</span>
<span class="sd">        &#39;weight&#39; to enable weighted graph algorithms.</span>

<span class="sd">        Default keys are generated using the method `new_edge_key()`.</span>
<span class="sd">        This method can be overridden by subclassing the base class and</span>
<span class="sd">        providing a custom `new_edge_key()` method.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        The following each add an additional edge e=(1, 2) to graph G:</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; e = (1, 2)</span>
<span class="sd">        &gt;&gt;&gt; ekey = G.add_edge(1, 2)  # explicit two-node form</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(*e)  # single edge as tuple of two nodes</span>
<span class="sd">        1</span>
<span class="sd">        &gt;&gt;&gt; G.add_edges_from([(1, 2)])  # add edges from iterable container</span>
<span class="sd">        [2]</span>

<span class="sd">        Associate data to edges using keywords:</span>

<span class="sd">        &gt;&gt;&gt; ekey = G.add_edge(1, 2, weight=3)</span>
<span class="sd">        &gt;&gt;&gt; ekey = G.add_edge(1, 2, key=0, weight=4)  # update data for key=0</span>
<span class="sd">        &gt;&gt;&gt; ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)</span>

<span class="sd">        For non-string attribute keys, use subscript notation.</span>

<span class="sd">        &gt;&gt;&gt; ekey = G.add_edge(1, 2)</span>
<span class="sd">        &gt;&gt;&gt; G[1][2][0].update({0: 5})</span>
<span class="sd">        &gt;&gt;&gt; G.edges[1, 2, 0].update({0: 5})</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">u_for_edge</span><span class="p">,</span> <span class="n">v_for_edge</span>
        <span class="c1"># add nodes</span>
        <span class="k">if</span> <span class="n">u</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">u</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;None cannot be a node&quot;</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">adjlist_inner_dict_factory</span><span class="p">()</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_node</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">node_attr_dict_factory</span><span class="p">()</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">v</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;None cannot be a node&quot;</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">adjlist_inner_dict_factory</span><span class="p">()</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_node</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">node_attr_dict_factory</span><span class="p">()</span>
        <span class="k">if</span> <span class="n">key</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">new_edge_key</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">]:</span>
            <span class="n">keydict</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
            <span class="n">datadict</span> <span class="o">=</span> <span class="n">keydict</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">edge_attr_dict_factory</span><span class="p">())</span>
            <span class="n">datadict</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">attr</span><span class="p">)</span>
            <span class="n">keydict</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">datadict</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># selfloops work this way without special treatment</span>
            <span class="n">datadict</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">edge_attr_dict_factory</span><span class="p">()</span>
            <span class="n">datadict</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">attr</span><span class="p">)</span>
            <span class="n">keydict</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">edge_key_dict_factory</span><span class="p">()</span>
            <span class="n">keydict</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">datadict</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">keydict</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">v</span><span class="p">][</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="n">keydict</span>
        <span class="k">return</span> <span class="n">key</span></div>

<div class="viewcode-block" id="MultiGraph.add_edges_from"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.add_edges_from.html#networkx.MultiGraph.add_edges_from">[docs]</a>    <span class="k">def</span> <span class="nf">add_edges_from</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ebunch_to_add</span><span class="p">,</span> <span class="o">**</span><span class="n">attr</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Add all the edges in ebunch_to_add.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        ebunch_to_add : container of edges</span>
<span class="sd">            Each edge given in the container will be added to the</span>
<span class="sd">            graph. The edges can be:</span>

<span class="sd">                - 2-tuples (u, v) or</span>
<span class="sd">                - 3-tuples (u, v, d) for an edge data dict d, or</span>
<span class="sd">                - 3-tuples (u, v, k) for not iterable key k, or</span>
<span class="sd">                - 4-tuples (u, v, k, d) for an edge with data and key k</span>

<span class="sd">        attr : keyword arguments, optional</span>
<span class="sd">            Edge data (or labels or objects) can be assigned using</span>
<span class="sd">            keyword arguments.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        A list of edge keys assigned to the edges in `ebunch`.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        add_edge : add a single edge</span>
<span class="sd">        add_weighted_edges_from : convenient way to add weighted edges</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        Adding the same edge twice has no effect but any edge data</span>
<span class="sd">        will be updated when each duplicate edge is added.</span>

<span class="sd">        Edge attributes specified in an ebunch take precedence over</span>
<span class="sd">        attributes specified via keyword arguments.</span>

<span class="sd">        Default keys are generated using the method ``new_edge_key()``.</span>
<span class="sd">        This method can be overridden by subclassing the base class and</span>
<span class="sd">        providing a custom ``new_edge_key()`` method.</span>

<span class="sd">        When adding edges from an iterator over the graph you are changing,</span>
<span class="sd">        a `RuntimeError` can be raised with message:</span>
<span class="sd">        `RuntimeError: dictionary changed size during iteration`. This</span>
<span class="sd">        happens when the graph&#39;s underlying dictionary is modified during</span>
<span class="sd">        iteration. To avoid this error, evaluate the iterator into a separate</span>
<span class="sd">        object, e.g. by using `list(iterator_of_edges)`, and pass this</span>
<span class="sd">        object to `G.add_edges_from`.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc</span>
<span class="sd">        &gt;&gt;&gt; G.add_edges_from([(0, 1), (1, 2)])  # using a list of edge tuples</span>
<span class="sd">        &gt;&gt;&gt; e = zip(range(0, 3), range(1, 4))</span>
<span class="sd">        &gt;&gt;&gt; G.add_edges_from(e)  # Add the path graph 0-1-2-3</span>

<span class="sd">        Associate data to edges</span>

<span class="sd">        &gt;&gt;&gt; G.add_edges_from([(1, 2), (2, 3)], weight=3)</span>
<span class="sd">        &gt;&gt;&gt; G.add_edges_from([(3, 4), (1, 4)], label=&quot;WN2898&quot;)</span>

<span class="sd">        Evaluate an iterator over a graph if using it to modify the same graph</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)])</span>
<span class="sd">        &gt;&gt;&gt; # Grow graph by one new node, adding edges to all existing nodes.</span>
<span class="sd">        &gt;&gt;&gt; # wrong way - will raise RuntimeError</span>
<span class="sd">        &gt;&gt;&gt; # G.add_edges_from(((5, n) for n in G.nodes))</span>
<span class="sd">        &gt;&gt;&gt; # right way - note that there will be no self-edge for node 5</span>
<span class="sd">        &gt;&gt;&gt; assigned_keys = G.add_edges_from(list((5, n) for n in G.nodes))</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">keylist</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">ebunch_to_add</span><span class="p">:</span>
            <span class="n">ne</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">ne</span> <span class="o">==</span> <span class="mi">4</span><span class="p">:</span>
                <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">dd</span> <span class="o">=</span> <span class="n">e</span>
            <span class="k">elif</span> <span class="n">ne</span> <span class="o">==</span> <span class="mi">3</span><span class="p">:</span>
                <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">dd</span> <span class="o">=</span> <span class="n">e</span>
                <span class="n">key</span> <span class="o">=</span> <span class="kc">None</span>
            <span class="k">elif</span> <span class="n">ne</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
                <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">e</span>
                <span class="n">dd</span> <span class="o">=</span> <span class="p">{}</span>
                <span class="n">key</span> <span class="o">=</span> <span class="kc">None</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Edge tuple </span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2"> must be a 2-tuple, 3-tuple or 4-tuple.&quot;</span>
                <span class="k">raise</span> <span class="n">NetworkXError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span>
            <span class="n">ddd</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">ddd</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">attr</span><span class="p">)</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="n">ddd</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">dd</span><span class="p">)</span>
            <span class="k">except</span> <span class="p">(</span><span class="ne">TypeError</span><span class="p">,</span> <span class="ne">ValueError</span><span class="p">):</span>
                <span class="k">if</span> <span class="n">ne</span> <span class="o">!=</span> <span class="mi">3</span><span class="p">:</span>
                    <span class="k">raise</span>
                <span class="n">key</span> <span class="o">=</span> <span class="n">dd</span>  <span class="c1"># ne == 3 with 3rd value not dict, must be a key</span>
            <span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="p">)</span>
            <span class="bp">self</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][</span><span class="n">key</span><span class="p">]</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">ddd</span><span class="p">)</span>
            <span class="n">keylist</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">keylist</span></div>

<div class="viewcode-block" id="MultiGraph.remove_edge"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.remove_edge.html#networkx.MultiGraph.remove_edge">[docs]</a>    <span class="k">def</span> <span class="nf">remove_edge</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Remove an edge between u and v.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        u, v : nodes</span>
<span class="sd">            Remove an edge between nodes u and v.</span>
<span class="sd">        key : hashable identifier, optional (default=None)</span>
<span class="sd">            Used to distinguish multiple edges between a pair of nodes.</span>
<span class="sd">            If None, remove a single edge between u and v. If there are</span>
<span class="sd">            multiple edges, removes the last edge added in terms of</span>
<span class="sd">            insertion order.</span>

<span class="sd">        Raises</span>
<span class="sd">        ------</span>
<span class="sd">        NetworkXError</span>
<span class="sd">            If there is not an edge between u and v, or</span>
<span class="sd">            if there is no edge with the specified key.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        remove_edges_from : remove a collection of edges</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; nx.add_path(G, [0, 1, 2, 3])</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edge(0, 1)</span>
<span class="sd">        &gt;&gt;&gt; e = (1, 2)</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edge(*e)  # unpacks e from an edge tuple</span>

<span class="sd">        For multiple edges</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()  # or MultiDiGraph, etc</span>
<span class="sd">        &gt;&gt;&gt; G.add_edges_from([(1, 2), (1, 2), (1, 2)])  # key_list returned</span>
<span class="sd">        [0, 1, 2]</span>

<span class="sd">        When ``key=None`` (the default), edges are removed in the opposite</span>
<span class="sd">        order that they were added:</span>

<span class="sd">        &gt;&gt;&gt; G.remove_edge(1, 2)</span>
<span class="sd">        &gt;&gt;&gt; G.edges(keys=True)</span>
<span class="sd">        MultiEdgeView([(1, 2, 0), (1, 2, 1)])</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edge(2, 1)  # edges are not directed</span>
<span class="sd">        &gt;&gt;&gt; G.edges(keys=True)</span>
<span class="sd">        MultiEdgeView([(1, 2, 0)])</span>

<span class="sd">        For edges with keys</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(1, 2, key=&quot;first&quot;)</span>
<span class="sd">        &#39;first&#39;</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(1, 2, key=&quot;second&quot;)</span>
<span class="sd">        &#39;second&#39;</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edge(1, 2, key=&quot;first&quot;)</span>
<span class="sd">        &gt;&gt;&gt; G.edges(keys=True)</span>
<span class="sd">        MultiEdgeView([(1, 2, &#39;second&#39;)])</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">d</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
        <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">NetworkXError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;The edge </span><span class="si">{</span><span class="n">u</span><span class="si">}</span><span class="s2">-</span><span class="si">{</span><span class="n">v</span><span class="si">}</span><span class="s2"> is not in the graph.&quot;</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span>
        <span class="c1"># remove the edge with specified data</span>
        <span class="k">if</span> <span class="n">key</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">d</span><span class="o">.</span><span class="n">popitem</span><span class="p">()</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="k">del</span> <span class="n">d</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
            <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
                <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;The edge </span><span class="si">{</span><span class="n">u</span><span class="si">}</span><span class="s2">-</span><span class="si">{</span><span class="n">v</span><span class="si">}</span><span class="s2"> with key </span><span class="si">{</span><span class="n">key</span><span class="si">}</span><span class="s2"> is not in the graph.&quot;</span>
                <span class="k">raise</span> <span class="n">NetworkXError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span>
        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">d</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="c1"># remove the key entries if last edge</span>
            <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
            <span class="k">if</span> <span class="n">u</span> <span class="o">!=</span> <span class="n">v</span><span class="p">:</span>  <span class="c1"># check for selfloop</span>
                <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">v</span><span class="p">][</span><span class="n">u</span><span class="p">]</span></div>

<div class="viewcode-block" id="MultiGraph.remove_edges_from"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.remove_edges_from.html#networkx.MultiGraph.remove_edges_from">[docs]</a>    <span class="k">def</span> <span class="nf">remove_edges_from</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ebunch</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Remove all edges specified in ebunch.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        ebunch: list or container of edge tuples</span>
<span class="sd">            Each edge given in the list or container will be removed</span>
<span class="sd">            from the graph. The edges can be:</span>

<span class="sd">                - 2-tuples (u, v) A single edge between u and v is removed.</span>
<span class="sd">                - 3-tuples (u, v, key) The edge identified by key is removed.</span>
<span class="sd">                - 4-tuples (u, v, key, data) where data is ignored.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        remove_edge : remove a single edge</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        Will fail silently if an edge in ebunch is not in the graph.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc</span>
<span class="sd">        &gt;&gt;&gt; ebunch = [(1, 2), (2, 3)]</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edges_from(ebunch)</span>

<span class="sd">        Removing multiple copies of edges</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)])</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edges_from([(1, 2), (2, 1)])  # edges aren&#39;t directed</span>
<span class="sd">        &gt;&gt;&gt; list(G.edges())</span>
<span class="sd">        [(1, 2)]</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edges_from([(1, 2), (1, 2)])  # silently ignore extra copy</span>
<span class="sd">        &gt;&gt;&gt; list(G.edges)  # now empty graph</span>
<span class="sd">        []</span>

<span class="sd">        When the edge is a 2-tuple ``(u, v)`` but there are multiple edges between</span>
<span class="sd">        u and v in the graph, the most recent edge (in terms of insertion</span>
<span class="sd">        order) is removed.</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; for key in (&quot;x&quot;, &quot;y&quot;, &quot;a&quot;):</span>
<span class="sd">        ...     k = G.add_edge(0, 1, key=key)</span>
<span class="sd">        &gt;&gt;&gt; G.edges(keys=True)</span>
<span class="sd">        MultiEdgeView([(0, 1, &#39;x&#39;), (0, 1, &#39;y&#39;), (0, 1, &#39;a&#39;)])</span>
<span class="sd">        &gt;&gt;&gt; G.remove_edges_from([(0, 1)])</span>
<span class="sd">        &gt;&gt;&gt; G.edges(keys=True)</span>
<span class="sd">        MultiEdgeView([(0, 1, &#39;x&#39;), (0, 1, &#39;y&#39;)])</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">ebunch</span><span class="p">:</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="bp">self</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="o">*</span><span class="n">e</span><span class="p">[:</span><span class="mi">3</span><span class="p">])</span>
            <span class="k">except</span> <span class="n">NetworkXError</span><span class="p">:</span>
                <span class="k">pass</span></div>

<div class="viewcode-block" id="MultiGraph.has_edge"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.has_edge.html#networkx.MultiGraph.has_edge">[docs]</a>    <span class="k">def</span> <span class="nf">has_edge</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns True if the graph has an edge between nodes u and v.</span>

<span class="sd">        This is the same as `v in G[u] or key in G[u][v]`</span>
<span class="sd">        without KeyError exceptions.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        u, v : nodes</span>
<span class="sd">            Nodes can be, for example, strings or numbers.</span>

<span class="sd">        key : hashable identifier, optional (default=None)</span>
<span class="sd">            If specified return True only if the edge with</span>
<span class="sd">            key is found.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        edge_ind : bool</span>
<span class="sd">            True if edge is in the graph, False otherwise.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        Can be called either using two nodes u, v, an edge tuple (u, v),</span>
<span class="sd">        or an edge tuple (u, v, key).</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()  # or MultiDiGraph</span>
<span class="sd">        &gt;&gt;&gt; nx.add_path(G, [0, 1, 2, 3])</span>
<span class="sd">        &gt;&gt;&gt; G.has_edge(0, 1)  # using two nodes</span>
<span class="sd">        True</span>
<span class="sd">        &gt;&gt;&gt; e = (0, 1)</span>
<span class="sd">        &gt;&gt;&gt; G.has_edge(*e)  #  e is a 2-tuple (u, v)</span>
<span class="sd">        True</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(0, 1, key=&quot;a&quot;)</span>
<span class="sd">        &#39;a&#39;</span>
<span class="sd">        &gt;&gt;&gt; G.has_edge(0, 1, key=&quot;a&quot;)  # specify key</span>
<span class="sd">        True</span>
<span class="sd">        &gt;&gt;&gt; G.has_edge(1, 0, key=&quot;a&quot;)  # edges aren&#39;t directed</span>
<span class="sd">        True</span>
<span class="sd">        &gt;&gt;&gt; e = (0, 1, &quot;a&quot;)</span>
<span class="sd">        &gt;&gt;&gt; G.has_edge(*e)  # e is a 3-tuple (u, v, &#39;a&#39;)</span>
<span class="sd">        True</span>

<span class="sd">        The following syntax are equivalent:</span>

<span class="sd">        &gt;&gt;&gt; G.has_edge(0, 1)</span>
<span class="sd">        True</span>
<span class="sd">        &gt;&gt;&gt; 1 in G[0]  # though this gives :exc:`KeyError` if 0 not in G</span>
<span class="sd">        True</span>
<span class="sd">        &gt;&gt;&gt; 0 in G[1]  # other order; also gives :exc:`KeyError` if 0 not in G</span>
<span class="sd">        True</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">key</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">return</span> <span class="n">v</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="k">return</span> <span class="n">key</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
        <span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
            <span class="k">return</span> <span class="kc">False</span></div>

    <span class="nd">@cached_property</span>
    <span class="k">def</span> <span class="nf">edges</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns an iterator over the edges.</span>

<span class="sd">        edges(self, nbunch=None, data=False, keys=False, default=None)</span>

<span class="sd">        The MultiEdgeView provides set-like operations on the edge-tuples</span>
<span class="sd">        as well as edge attribute lookup. When called, it also provides</span>
<span class="sd">        an EdgeDataView object which allows control of access to edge</span>
<span class="sd">        attributes (but does not provide set-like operations).</span>
<span class="sd">        Hence, ``G.edges[u, v, k][&#39;color&#39;]`` provides the value of the color</span>
<span class="sd">        attribute for the edge from ``u`` to ``v`` with key ``k`` while</span>
<span class="sd">        ``for (u, v, k, c) in G.edges(data=&#39;color&#39;, keys=True, default=&quot;red&quot;):``</span>
<span class="sd">        iterates through all the edges yielding the color attribute with</span>
<span class="sd">        default `&#39;red&#39;` if no color attribute exists.</span>

<span class="sd">        Edges are returned as tuples with optional data and keys</span>
<span class="sd">        in the order (node, neighbor, key, data). If ``keys=True`` is not</span>
<span class="sd">        provided, the tuples will just be (node, neighbor, data), but</span>
<span class="sd">        multiple tuples with the same node and neighbor will be generated</span>
<span class="sd">        when multiple edges exist between two nodes.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        nbunch : single node, container, or all nodes (default= all nodes)</span>
<span class="sd">            The view will only report edges from these nodes.</span>
<span class="sd">        data : string or bool, optional (default=False)</span>
<span class="sd">            The edge attribute returned in 3-tuple (u, v, ddict[data]).</span>
<span class="sd">            If True, return edge attribute dict in 3-tuple (u, v, ddict).</span>
<span class="sd">            If False, return 2-tuple (u, v).</span>
<span class="sd">        keys : bool, optional (default=False)</span>
<span class="sd">            If True, return edge keys with each edge, creating (u, v, k)</span>
<span class="sd">            tuples or (u, v, k, d) tuples if data is also requested.</span>
<span class="sd">        default : value, optional (default=None)</span>
<span class="sd">            Value used for edges that don&#39;t have the requested attribute.</span>
<span class="sd">            Only relevant if data is not True or False.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        edges : MultiEdgeView</span>
<span class="sd">            A view of edge attributes, usually it iterates over (u, v)</span>
<span class="sd">            (u, v, k) or (u, v, k, d) tuples of edges, but can also be</span>
<span class="sd">            used for attribute lookup as ``edges[u, v, k][&#39;foo&#39;]``.</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        Nodes in nbunch that are not in the graph will be (quietly) ignored.</span>
<span class="sd">        For directed graphs this returns the out-edges.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; nx.add_path(G, [0, 1, 2])</span>
<span class="sd">        &gt;&gt;&gt; key = G.add_edge(2, 3, weight=5)</span>
<span class="sd">        &gt;&gt;&gt; key2 = G.add_edge(2, 1, weight=2)  # multi-edge</span>
<span class="sd">        &gt;&gt;&gt; [e for e in G.edges()]</span>
<span class="sd">        [(0, 1), (1, 2), (1, 2), (2, 3)]</span>
<span class="sd">        &gt;&gt;&gt; G.edges.data()  # default data is {} (empty dict)</span>
<span class="sd">        MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (1, 2, {&#39;weight&#39;: 2}), (2, 3, {&#39;weight&#39;: 5})])</span>
<span class="sd">        &gt;&gt;&gt; G.edges.data(&quot;weight&quot;, default=1)</span>
<span class="sd">        MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (1, 2, 2), (2, 3, 5)])</span>
<span class="sd">        &gt;&gt;&gt; G.edges(keys=True)  # default keys are integers</span>
<span class="sd">        MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)])</span>
<span class="sd">        &gt;&gt;&gt; G.edges.data(keys=True)</span>
<span class="sd">        MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {&#39;weight&#39;: 2}), (2, 3, 0, {&#39;weight&#39;: 5})])</span>
<span class="sd">        &gt;&gt;&gt; G.edges.data(&quot;weight&quot;, default=1, keys=True)</span>
<span class="sd">        MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 2), (2, 3, 0, 5)])</span>
<span class="sd">        &gt;&gt;&gt; G.edges([0, 3])  # Note ordering of tuples from listed sources</span>
<span class="sd">        MultiEdgeDataView([(0, 1), (3, 2)])</span>
<span class="sd">        &gt;&gt;&gt; G.edges([0, 3, 2, 1])  # Note ordering of tuples</span>
<span class="sd">        MultiEdgeDataView([(0, 1), (3, 2), (2, 1), (2, 1)])</span>
<span class="sd">        &gt;&gt;&gt; G.edges(0)</span>
<span class="sd">        MultiEdgeDataView([(0, 1)])</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="n">MultiEdgeView</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>

<div class="viewcode-block" id="MultiGraph.get_edge_data"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.get_edge_data.html#networkx.MultiGraph.get_edge_data">[docs]</a>    <span class="k">def</span> <span class="nf">get_edge_data</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns the attribute dictionary associated with edge (u, v,</span>
<span class="sd">        key).</span>

<span class="sd">        If a key is not provided, returns a dictionary mapping edge keys</span>
<span class="sd">        to attribute dictionaries for each edge between u and v.</span>

<span class="sd">        This is identical to `G[u][v][key]` except the default is returned</span>
<span class="sd">        instead of an exception is the edge doesn&#39;t exist.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        u, v : nodes</span>

<span class="sd">        default :  any Python object (default=None)</span>
<span class="sd">            Value to return if the specific edge (u, v, key) is not</span>
<span class="sd">            found, OR if there are no edges between u and v and no key</span>
<span class="sd">            is specified.</span>

<span class="sd">        key : hashable identifier, optional (default=None)</span>
<span class="sd">            Return data only for the edge with specified key, as an</span>
<span class="sd">            attribute dictionary (rather than a dictionary mapping keys</span>
<span class="sd">            to attribute dictionaries).</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        edge_dict : dictionary</span>
<span class="sd">            The edge attribute dictionary, OR a dictionary mapping edge</span>
<span class="sd">            keys to attribute dictionaries for each of those edges if no</span>
<span class="sd">            specific key is provided (even if there&#39;s only one edge</span>
<span class="sd">            between u and v).</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()  # or MultiDiGraph</span>
<span class="sd">        &gt;&gt;&gt; key = G.add_edge(0, 1, key=&quot;a&quot;, weight=7)</span>
<span class="sd">        &gt;&gt;&gt; G[0][1][&quot;a&quot;]  # key=&#39;a&#39;</span>
<span class="sd">        {&#39;weight&#39;: 7}</span>
<span class="sd">        &gt;&gt;&gt; G.edges[0, 1, &quot;a&quot;]  # key=&#39;a&#39;</span>
<span class="sd">        {&#39;weight&#39;: 7}</span>

<span class="sd">        Warning: we protect the graph data structure by making</span>
<span class="sd">        `G.edges` and `G[1][2]` read-only dict-like structures.</span>
<span class="sd">        However, you can assign values to attributes in e.g.</span>
<span class="sd">        `G.edges[1, 2, &#39;a&#39;]` or `G[1][2][&#39;a&#39;]` using an additional</span>
<span class="sd">        bracket as shown next. You need to specify all edge info</span>
<span class="sd">        to assign to the edge data associated with an edge.</span>

<span class="sd">        &gt;&gt;&gt; G[0][1][&quot;a&quot;][&quot;weight&quot;] = 10</span>
<span class="sd">        &gt;&gt;&gt; G.edges[0, 1, &quot;a&quot;][&quot;weight&quot;] = 10</span>
<span class="sd">        &gt;&gt;&gt; G[0][1][&quot;a&quot;][&quot;weight&quot;]</span>
<span class="sd">        10</span>
<span class="sd">        &gt;&gt;&gt; G.edges[1, 0, &quot;a&quot;][&quot;weight&quot;]</span>
<span class="sd">        10</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()  # or MultiDiGraph</span>
<span class="sd">        &gt;&gt;&gt; nx.add_path(G, [0, 1, 2, 3])</span>
<span class="sd">        &gt;&gt;&gt; G.edges[0, 1, 0][&quot;weight&quot;] = 5</span>
<span class="sd">        &gt;&gt;&gt; G.get_edge_data(0, 1)</span>
<span class="sd">        {0: {&#39;weight&#39;: 5}}</span>
<span class="sd">        &gt;&gt;&gt; e = (0, 1)</span>
<span class="sd">        &gt;&gt;&gt; G.get_edge_data(*e)  # tuple form</span>
<span class="sd">        {0: {&#39;weight&#39;: 5}}</span>
<span class="sd">        &gt;&gt;&gt; G.get_edge_data(3, 0)  # edge not in graph, returns None</span>
<span class="sd">        &gt;&gt;&gt; G.get_edge_data(3, 0, default=0)  # edge not in graph, return default</span>
<span class="sd">        0</span>
<span class="sd">        &gt;&gt;&gt; G.get_edge_data(1, 0, 0)  # specific key gives back</span>
<span class="sd">        {&#39;weight&#39;: 5}</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">key</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][</span><span class="n">key</span><span class="p">]</span>
        <span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">default</span></div>

    <span class="nd">@cached_property</span>
    <span class="k">def</span> <span class="nf">degree</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;A DegreeView for the Graph as G.degree or G.degree().</span>

<span class="sd">        The node degree is the number of edges adjacent to the node.</span>
<span class="sd">        The weighted node degree is the sum of the edge weights for</span>
<span class="sd">        edges incident to that node.</span>

<span class="sd">        This object provides an iterator for (node, degree) as well as</span>
<span class="sd">        lookup for the degree for a single node.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        nbunch : single node, container, or all nodes (default= all nodes)</span>
<span class="sd">            The view will only report edges incident to these nodes.</span>

<span class="sd">        weight : string or None, optional (default=None)</span>
<span class="sd">           The name of an edge attribute that holds the numerical value used</span>
<span class="sd">           as a weight.  If None, then each edge has weight 1.</span>
<span class="sd">           The degree is the sum of the edge weights adjacent to the node.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        MultiDegreeView or int</span>
<span class="sd">            If multiple nodes are requested (the default), returns a `MultiDegreeView`</span>
<span class="sd">            mapping nodes to their degree.</span>
<span class="sd">            If a single node is requested, returns the degree of the node as an integer.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc</span>
<span class="sd">        &gt;&gt;&gt; nx.add_path(G, [0, 1, 2, 3])</span>
<span class="sd">        &gt;&gt;&gt; G.degree(0)  # node 0 with degree 1</span>
<span class="sd">        1</span>
<span class="sd">        &gt;&gt;&gt; list(G.degree([0, 1]))</span>
<span class="sd">        [(0, 1), (1, 2)]</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="n">MultiDegreeView</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">is_multigraph</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns True if graph is a multigraph, False otherwise.&quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="kc">True</span>

    <span class="k">def</span> <span class="nf">is_directed</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns True if graph is directed, False otherwise.&quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="kc">False</span>

<div class="viewcode-block" id="MultiGraph.copy"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.copy.html#networkx.MultiGraph.copy">[docs]</a>    <span class="k">def</span> <span class="nf">copy</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">as_view</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns a copy of the graph.</span>

<span class="sd">        The copy method by default returns an independent shallow copy</span>
<span class="sd">        of the graph and attributes. That is, if an attribute is a</span>
<span class="sd">        container, that container is shared by the original an the copy.</span>
<span class="sd">        Use Python&#39;s `copy.deepcopy` for new containers.</span>

<span class="sd">        If `as_view` is True then a view is returned instead of a copy.</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        All copies reproduce the graph structure, but data attributes</span>
<span class="sd">        may be handled in different ways. There are four types of copies</span>
<span class="sd">        of a graph that people might want.</span>

<span class="sd">        Deepcopy -- A &quot;deepcopy&quot; copies the graph structure as well as</span>
<span class="sd">        all data attributes and any objects they might contain.</span>
<span class="sd">        The entire graph object is new so that changes in the copy</span>
<span class="sd">        do not affect the original object. (see Python&#39;s copy.deepcopy)</span>

<span class="sd">        Data Reference (Shallow) -- For a shallow copy the graph structure</span>
<span class="sd">        is copied but the edge, node and graph attribute dicts are</span>
<span class="sd">        references to those in the original graph. This saves</span>
<span class="sd">        time and memory but could cause confusion if you change an attribute</span>
<span class="sd">        in one graph and it changes the attribute in the other.</span>
<span class="sd">        NetworkX does not provide this level of shallow copy.</span>

<span class="sd">        Independent Shallow -- This copy creates new independent attribute</span>
<span class="sd">        dicts and then does a shallow copy of the attributes. That is, any</span>
<span class="sd">        attributes that are containers are shared between the new graph</span>
<span class="sd">        and the original. This is exactly what `dict.copy()` provides.</span>
<span class="sd">        You can obtain this style copy using:</span>

<span class="sd">            &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">            &gt;&gt;&gt; H = G.copy()</span>
<span class="sd">            &gt;&gt;&gt; H = G.copy(as_view=False)</span>
<span class="sd">            &gt;&gt;&gt; H = nx.Graph(G)</span>
<span class="sd">            &gt;&gt;&gt; H = G.__class__(G)</span>

<span class="sd">        Fresh Data -- For fresh data, the graph structure is copied while</span>
<span class="sd">        new empty data attribute dicts are created. The resulting graph</span>
<span class="sd">        is independent of the original and it has no edge, node or graph</span>
<span class="sd">        attributes. Fresh copies are not enabled. Instead use:</span>

<span class="sd">            &gt;&gt;&gt; H = G.__class__()</span>
<span class="sd">            &gt;&gt;&gt; H.add_nodes_from(G)</span>
<span class="sd">            &gt;&gt;&gt; H.add_edges_from(G.edges)</span>

<span class="sd">        View -- Inspired by dict-views, graph-views act like read-only</span>
<span class="sd">        versions of the original graph, providing a copy of the original</span>
<span class="sd">        structure without requiring any memory for copying the information.</span>

<span class="sd">        See the Python copy module for more information on shallow</span>
<span class="sd">        and deep copies, https://docs.python.org/3/library/copy.html.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        as_view : bool, optional (default=False)</span>
<span class="sd">            If True, the returned graph-view provides a read-only view</span>
<span class="sd">            of the original graph without actually copying any data.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        G : Graph</span>
<span class="sd">            A copy of the graph.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        to_directed: return a directed copy of the graph.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc</span>
<span class="sd">        &gt;&gt;&gt; H = G.copy()</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="n">as_view</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">graphviews</span><span class="o">.</span><span class="n">generic_graph_view</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">G</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="p">()</span>
        <span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">)</span>
        <span class="n">G</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">d</span><span class="o">.</span><span class="n">copy</span><span class="p">())</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_node</span><span class="o">.</span><span class="n">items</span><span class="p">())</span>
        <span class="n">G</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span>
            <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">datadict</span><span class="o">.</span><span class="n">copy</span><span class="p">())</span>
            <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">nbrs</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">keydict</span> <span class="ow">in</span> <span class="n">nbrs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">datadict</span> <span class="ow">in</span> <span class="n">keydict</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
        <span class="p">)</span>
        <span class="k">return</span> <span class="n">G</span></div>

<div class="viewcode-block" id="MultiGraph.to_directed"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.to_directed.html#networkx.MultiGraph.to_directed">[docs]</a>    <span class="k">def</span> <span class="nf">to_directed</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">as_view</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns a directed representation of the graph.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        G : MultiDiGraph</span>
<span class="sd">            A directed graph with the same name, same nodes, and with</span>
<span class="sd">            each edge (u, v, k, data) replaced by two directed edges</span>
<span class="sd">            (u, v, k, data) and (v, u, k, data).</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        This returns a &quot;deepcopy&quot; of the edge, node, and</span>
<span class="sd">        graph attributes which attempts to completely copy</span>
<span class="sd">        all of the data and references.</span>

<span class="sd">        This is in contrast to the similar D=MultiDiGraph(G) which</span>
<span class="sd">        returns a shallow copy of the data.</span>

<span class="sd">        See the Python copy module for more information on shallow</span>
<span class="sd">        and deep copies, https://docs.python.org/3/library/copy.html.</span>

<span class="sd">        Warning: If you have subclassed MultiGraph to use dict-like objects</span>
<span class="sd">        in the data structure, those changes do not transfer to the</span>
<span class="sd">        MultiDiGraph created by this method.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(0, 1)</span>
<span class="sd">        0</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(0, 1)</span>
<span class="sd">        1</span>
<span class="sd">        &gt;&gt;&gt; H = G.to_directed()</span>
<span class="sd">        &gt;&gt;&gt; list(H.edges)</span>
<span class="sd">        [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)]</span>

<span class="sd">        If already directed, return a (deep) copy</span>

<span class="sd">        &gt;&gt;&gt; G = nx.MultiDiGraph()</span>
<span class="sd">        &gt;&gt;&gt; G.add_edge(0, 1)</span>
<span class="sd">        0</span>
<span class="sd">        &gt;&gt;&gt; H = G.to_directed()</span>
<span class="sd">        &gt;&gt;&gt; list(H.edges)</span>
<span class="sd">        [(0, 1, 0)]</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">graph_class</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_directed_class</span><span class="p">()</span>
        <span class="k">if</span> <span class="n">as_view</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">graphviews</span><span class="o">.</span><span class="n">generic_graph_view</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">graph_class</span><span class="p">)</span>
        <span class="c1"># deepcopy when not a view</span>
        <span class="n">G</span> <span class="o">=</span> <span class="n">graph_class</span><span class="p">()</span>
        <span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">deepcopy</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">))</span>
        <span class="n">G</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">d</span><span class="p">))</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_node</span><span class="o">.</span><span class="n">items</span><span class="p">())</span>
        <span class="n">G</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span>
            <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">datadict</span><span class="p">))</span>
            <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">nbrs</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">adj</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">keydict</span> <span class="ow">in</span> <span class="n">nbrs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">datadict</span> <span class="ow">in</span> <span class="n">keydict</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
        <span class="p">)</span>
        <span class="k">return</span> <span class="n">G</span></div>

<div class="viewcode-block" id="MultiGraph.to_undirected"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.to_undirected.html#networkx.MultiGraph.to_undirected">[docs]</a>    <span class="k">def</span> <span class="nf">to_undirected</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">as_view</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns an undirected copy of the graph.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        G : Graph/MultiGraph</span>
<span class="sd">            A deepcopy of the graph.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        copy, add_edge, add_edges_from</span>

<span class="sd">        Notes</span>
<span class="sd">        -----</span>
<span class="sd">        This returns a &quot;deepcopy&quot; of the edge, node, and</span>
<span class="sd">        graph attributes which attempts to completely copy</span>
<span class="sd">        all of the data and references.</span>

<span class="sd">        This is in contrast to the similar `G = nx.MultiGraph(D)`</span>
<span class="sd">        which returns a shallow copy of the data.</span>

<span class="sd">        See the Python copy module for more information on shallow</span>
<span class="sd">        and deep copies, https://docs.python.org/3/library/copy.html.</span>

<span class="sd">        Warning: If you have subclassed MultiGraph to use dict-like</span>
<span class="sd">        objects in the data structure, those changes do not transfer</span>
<span class="sd">        to the MultiGraph created by this method.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        &gt;&gt;&gt; G = nx.MultiGraph([(0, 1), (0, 1), (1, 2)])</span>
<span class="sd">        &gt;&gt;&gt; H = G.to_directed()</span>
<span class="sd">        &gt;&gt;&gt; list(H.edges)</span>
<span class="sd">        [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2, 0), (2, 1, 0)]</span>
<span class="sd">        &gt;&gt;&gt; G2 = H.to_undirected()</span>
<span class="sd">        &gt;&gt;&gt; list(G2.edges)</span>
<span class="sd">        [(0, 1, 0), (0, 1, 1), (1, 2, 0)]</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">graph_class</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_undirected_class</span><span class="p">()</span>
        <span class="k">if</span> <span class="n">as_view</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">graphviews</span><span class="o">.</span><span class="n">generic_graph_view</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">graph_class</span><span class="p">)</span>
        <span class="c1"># deepcopy when not a view</span>
        <span class="n">G</span> <span class="o">=</span> <span class="n">graph_class</span><span class="p">()</span>
        <span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">deepcopy</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">graph</span><span class="p">))</span>
        <span class="n">G</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">d</span><span class="p">))</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_node</span><span class="o">.</span><span class="n">items</span><span class="p">())</span>
        <span class="n">G</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span>
            <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">datadict</span><span class="p">))</span>
            <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">nbrs</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">keydict</span> <span class="ow">in</span> <span class="n">nbrs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">datadict</span> <span class="ow">in</span> <span class="n">keydict</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
        <span class="p">)</span>
        <span class="k">return</span> <span class="n">G</span></div>

<div class="viewcode-block" id="MultiGraph.number_of_edges"><a class="viewcode-back" href="../../../reference/classes/generated/networkx.MultiGraph.number_of_edges.html#networkx.MultiGraph.number_of_edges">[docs]</a>    <span class="k">def</span> <span class="nf">number_of_edges</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">v</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns the number of edges between two nodes.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        u, v : nodes, optional (Gefault=all edges)</span>
<span class="sd">            If u and v are specified, return the number of edges between</span>
<span class="sd">            u and v. Otherwise return the total number of all edges.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        nedges : int</span>
<span class="sd">            The number of edges in the graph.  If nodes `u` and `v` are</span>
<span class="sd">            specified return the number of edges between those nodes. If</span>
<span class="sd">            the graph is directed, this only returns the number of edges</span>
<span class="sd">            from `u` to `v`.</span>

<span class="sd">        See Also</span>
<span class="sd">        --------</span>
<span class="sd">        size</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        For undirected multigraphs, this method counts the total number</span>
<span class="sd">        of edges in the graph::</span>

<span class="sd">            &gt;&gt;&gt; G = nx.MultiGraph()</span>
<span class="sd">            &gt;&gt;&gt; G.add_edges_from([(0, 1), (0, 1), (1, 2)])</span>
<span class="sd">            [0, 1, 0]</span>
<span class="sd">            &gt;&gt;&gt; G.number_of_edges()</span>
<span class="sd">            3</span>

<span class="sd">        If you specify two nodes, this counts the total number of edges</span>
<span class="sd">        joining the two nodes::</span>

<span class="sd">            &gt;&gt;&gt; G.number_of_edges(0, 1)</span>
<span class="sd">            2</span>

<span class="sd">        For directed multigraphs, this method can count the total number</span>
<span class="sd">        of directed edges from `u` to `v`::</span>

<span class="sd">            &gt;&gt;&gt; G = nx.MultiDiGraph()</span>
<span class="sd">            &gt;&gt;&gt; G.add_edges_from([(0, 1), (0, 1), (1, 0)])</span>
<span class="sd">            [0, 1, 0]</span>
<span class="sd">            &gt;&gt;&gt; G.number_of_edges(0, 1)</span>
<span class="sd">            2</span>
<span class="sd">            &gt;&gt;&gt; G.number_of_edges(1, 0)</span>
<span class="sd">            1</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="n">u</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">edgedata</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_adj</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span>
        <span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
            <span class="k">return</span> <span class="mi">0</span>  <span class="c1"># no such edge</span>
        <span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="n">edgedata</span><span class="p">)</span></div></div>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<div id="searchbox"></div>
</div>

<div class="toc-item">
  
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2023, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>