summaryrefslogtreecommitdiff
path: root/_modules/networkx/algorithms/tree/mst.html
blob: 2ac894cfe41895d051c3adf4dfa75999e3590eec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.algorithms.tree.mst &#8212; NetworkX 3.0rc2.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
    <script src="../../../../_static/jquery.js"></script>
    <script src="../../../../_static/underscore.js"></script>
    <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../../_static/doctools.js"></script>
    <script src="../../../../_static/sphinx_highlight.js"></script>
    <script src="../../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/algorithms/tree/mst';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/algorithms/tree/mst.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.0rc2.dev0 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en">
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.algorithms.tree.mst</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Algorithms for calculating min/max spanning trees/forests.</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">dataclasses</span> <span class="kn">import</span> <span class="n">dataclass</span><span class="p">,</span> <span class="n">field</span>
<span class="kn">from</span> <span class="nn">enum</span> <span class="kn">import</span> <span class="n">Enum</span>
<span class="kn">from</span> <span class="nn">heapq</span> <span class="kn">import</span> <span class="n">heappop</span><span class="p">,</span> <span class="n">heappush</span>
<span class="kn">from</span> <span class="nn">itertools</span> <span class="kn">import</span> <span class="n">count</span>
<span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">isnan</span>
<span class="kn">from</span> <span class="nn">operator</span> <span class="kn">import</span> <span class="n">itemgetter</span>
<span class="kn">from</span> <span class="nn">queue</span> <span class="kn">import</span> <span class="n">PriorityQueue</span>

<span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>
<span class="kn">from</span> <span class="nn">networkx.utils</span> <span class="kn">import</span> <span class="n">UnionFind</span><span class="p">,</span> <span class="n">not_implemented_for</span><span class="p">,</span> <span class="n">py_random_state</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
    <span class="s2">&quot;minimum_spanning_edges&quot;</span><span class="p">,</span>
    <span class="s2">&quot;maximum_spanning_edges&quot;</span><span class="p">,</span>
    <span class="s2">&quot;minimum_spanning_tree&quot;</span><span class="p">,</span>
    <span class="s2">&quot;maximum_spanning_tree&quot;</span><span class="p">,</span>
    <span class="s2">&quot;random_spanning_tree&quot;</span><span class="p">,</span>
    <span class="s2">&quot;partition_spanning_tree&quot;</span><span class="p">,</span>
    <span class="s2">&quot;EdgePartition&quot;</span><span class="p">,</span>
    <span class="s2">&quot;SpanningTreeIterator&quot;</span><span class="p">,</span>
<span class="p">]</span>


<span class="k">class</span> <span class="nc">EdgePartition</span><span class="p">(</span><span class="n">Enum</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    An enum to store the state of an edge partition. The enum is written to the</span>
<span class="sd">    edges of a graph before being pasted to `kruskal_mst_edges`. Options are:</span>

<span class="sd">    - EdgePartition.OPEN</span>
<span class="sd">    - EdgePartition.INCLUDED</span>
<span class="sd">    - EdgePartition.EXCLUDED</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="n">OPEN</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="n">INCLUDED</span> <span class="o">=</span> <span class="mi">1</span>
    <span class="n">EXCLUDED</span> <span class="o">=</span> <span class="mi">2</span>


<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">boruvka_mst_edges</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">minimum</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Iterate over edges of a Borůvka&#39;s algorithm min/max spanning tree.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX Graph</span>
<span class="sd">        The edges of `G` must have distinct weights,</span>
<span class="sd">        otherwise the edges may not form a tree.</span>

<span class="sd">    minimum : bool (default: True)</span>
<span class="sd">        Find the minimum (True) or maximum (False) spanning tree.</span>

<span class="sd">    weight : string (default: &#39;weight&#39;)</span>
<span class="sd">        The name of the edge attribute holding the edge weights.</span>

<span class="sd">    keys : bool (default: True)</span>
<span class="sd">        This argument is ignored since this function is not</span>
<span class="sd">        implemented for multigraphs; it exists only for consistency</span>
<span class="sd">        with the other minimum spanning tree functions.</span>

<span class="sd">    data : bool (default: True)</span>
<span class="sd">        Flag for whether to yield edge attribute dicts.</span>
<span class="sd">        If True, yield edges `(u, v, d)`, where `d` is the attribute dict.</span>
<span class="sd">        If False, yield edges `(u, v)`.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c1"># Initialize a forest, assuming initially that it is the discrete</span>
    <span class="c1"># partition of the nodes of the graph.</span>
    <span class="n">forest</span> <span class="o">=</span> <span class="n">UnionFind</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">best_edge</span><span class="p">(</span><span class="n">component</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;Returns the optimum (minimum or maximum) edge on the edge</span>
<span class="sd">        boundary of the given set of nodes.</span>

<span class="sd">        A return value of ``None`` indicates an empty boundary.</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">sign</span> <span class="o">=</span> <span class="mi">1</span> <span class="k">if</span> <span class="n">minimum</span> <span class="k">else</span> <span class="o">-</span><span class="mi">1</span>
        <span class="n">minwt</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s2">&quot;inf&quot;</span><span class="p">)</span>
        <span class="n">boundary</span> <span class="o">=</span> <span class="kc">None</span>
        <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">edge_boundary</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">component</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
            <span class="n">wt</span> <span class="o">=</span> <span class="n">e</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">sign</span>
            <span class="k">if</span> <span class="n">isnan</span><span class="p">(</span><span class="n">wt</span><span class="p">):</span>
                <span class="k">if</span> <span class="n">ignore_nan</span><span class="p">:</span>
                    <span class="k">continue</span>
                <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;NaN found as an edge weight. Edge </span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2">&quot;</span>
                <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">wt</span> <span class="o">&lt;</span> <span class="n">minwt</span><span class="p">:</span>
                <span class="n">minwt</span> <span class="o">=</span> <span class="n">wt</span>
                <span class="n">boundary</span> <span class="o">=</span> <span class="n">e</span>
        <span class="k">return</span> <span class="n">boundary</span>

    <span class="c1"># Determine the optimum edge in the edge boundary of each component</span>
    <span class="c1"># in the forest.</span>
    <span class="n">best_edges</span> <span class="o">=</span> <span class="p">(</span><span class="n">best_edge</span><span class="p">(</span><span class="n">component</span><span class="p">)</span> <span class="k">for</span> <span class="n">component</span> <span class="ow">in</span> <span class="n">forest</span><span class="o">.</span><span class="n">to_sets</span><span class="p">())</span>
    <span class="n">best_edges</span> <span class="o">=</span> <span class="p">[</span><span class="n">edge</span> <span class="k">for</span> <span class="n">edge</span> <span class="ow">in</span> <span class="n">best_edges</span> <span class="k">if</span> <span class="n">edge</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">]</span>
    <span class="c1"># If each entry was ``None``, that means the graph was disconnected,</span>
    <span class="c1"># so we are done generating the forest.</span>
    <span class="k">while</span> <span class="n">best_edges</span><span class="p">:</span>
        <span class="c1"># Determine the optimum edge in the edge boundary of each</span>
        <span class="c1"># component in the forest.</span>
        <span class="c1">#</span>
        <span class="c1"># This must be a sequence, not an iterator. In this list, the</span>
        <span class="c1"># same edge may appear twice, in different orientations (but</span>
        <span class="c1"># that&#39;s okay, since a union operation will be called on the</span>
        <span class="c1"># endpoints the first time it is seen, but not the second time).</span>
        <span class="c1">#</span>
        <span class="c1"># Any ``None`` indicates that the edge boundary for that</span>
        <span class="c1"># component was empty, so that part of the forest has been</span>
        <span class="c1"># completed.</span>
        <span class="c1">#</span>
        <span class="c1"># TODO This can be parallelized, both in the outer loop over</span>
        <span class="c1"># each component in the forest and in the computation of the</span>
        <span class="c1"># minimum. (Same goes for the identical lines outside the loop.)</span>
        <span class="n">best_edges</span> <span class="o">=</span> <span class="p">(</span><span class="n">best_edge</span><span class="p">(</span><span class="n">component</span><span class="p">)</span> <span class="k">for</span> <span class="n">component</span> <span class="ow">in</span> <span class="n">forest</span><span class="o">.</span><span class="n">to_sets</span><span class="p">())</span>
        <span class="n">best_edges</span> <span class="o">=</span> <span class="p">[</span><span class="n">edge</span> <span class="k">for</span> <span class="n">edge</span> <span class="ow">in</span> <span class="n">best_edges</span> <span class="k">if</span> <span class="n">edge</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">]</span>
        <span class="c1"># Join trees in the forest using the best edges, and yield that</span>
        <span class="c1"># edge, since it is part of the spanning tree.</span>
        <span class="c1">#</span>
        <span class="c1"># TODO This loop can be parallelized, to an extent (the union</span>
        <span class="c1"># operation must be atomic).</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">best_edges</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">forest</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">!=</span> <span class="n">forest</span><span class="p">[</span><span class="n">v</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">data</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span>
                <span class="n">forest</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>


<span class="k">def</span> <span class="nf">kruskal_mst_edges</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">minimum</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">partition</span><span class="o">=</span><span class="kc">None</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Iterate over edge of a Kruskal&#39;s algorithm min/max spanning tree.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX Graph</span>
<span class="sd">        The graph holding the tree of interest.</span>

<span class="sd">    minimum : bool (default: True)</span>
<span class="sd">        Find the minimum (True) or maximum (False) spanning tree.</span>

<span class="sd">    weight : string (default: &#39;weight&#39;)</span>
<span class="sd">        The name of the edge attribute holding the edge weights.</span>

<span class="sd">    keys : bool (default: True)</span>
<span class="sd">        If `G` is a multigraph, `keys` controls whether edge keys ar yielded.</span>
<span class="sd">        Otherwise `keys` is ignored.</span>

<span class="sd">    data : bool (default: True)</span>
<span class="sd">        Flag for whether to yield edge attribute dicts.</span>
<span class="sd">        If True, yield edges `(u, v, d)`, where `d` is the attribute dict.</span>
<span class="sd">        If False, yield edges `(u, v)`.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>

<span class="sd">    partition : string (default: None)</span>
<span class="sd">        The name of the edge attribute holding the partition data, if it exists.</span>
<span class="sd">        Partition data is written to the edges using the `EdgePartition` enum.</span>
<span class="sd">        If a partition exists, all included edges and none of the excluded edges</span>
<span class="sd">        will appear in the final tree. Open edges may or may not be used.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge tuple</span>
<span class="sd">        The edges as discovered by Kruskal&#39;s method. Each edge can</span>
<span class="sd">        take the following forms: `(u, v)`, `(u, v, d)` or `(u, v, k, d)`</span>
<span class="sd">        depending on the `key` and `data` parameters</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">subtrees</span> <span class="o">=</span> <span class="n">UnionFind</span><span class="p">()</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_multigraph</span><span class="p">():</span>
        <span class="n">edges</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">edges</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>

<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Sort the edges of the graph with respect to the partition data. </span>
<span class="sd">    Edges are returned in the following order:</span>

<span class="sd">    * Included edges</span>
<span class="sd">    * Open edges from smallest to largest weight</span>
<span class="sd">    * Excluded edges</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">included_edges</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">open_edges</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">edges</span><span class="p">:</span>
        <span class="n">d</span> <span class="o">=</span> <span class="n">e</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
        <span class="n">wt</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">isnan</span><span class="p">(</span><span class="n">wt</span><span class="p">):</span>
            <span class="k">if</span> <span class="n">ignore_nan</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;NaN found as an edge weight. Edge </span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>

        <span class="n">edge</span> <span class="o">=</span> <span class="p">(</span><span class="n">wt</span><span class="p">,)</span> <span class="o">+</span> <span class="n">e</span>
        <span class="k">if</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">partition</span><span class="p">)</span> <span class="o">==</span> <span class="n">EdgePartition</span><span class="o">.</span><span class="n">INCLUDED</span><span class="p">:</span>
            <span class="n">included_edges</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">edge</span><span class="p">)</span>
        <span class="k">elif</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">partition</span><span class="p">)</span> <span class="o">==</span> <span class="n">EdgePartition</span><span class="o">.</span><span class="n">EXCLUDED</span><span class="p">:</span>
            <span class="k">continue</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">open_edges</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">edge</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">minimum</span><span class="p">:</span>
        <span class="n">sorted_open_edges</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">open_edges</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="n">itemgetter</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">sorted_open_edges</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">open_edges</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="n">itemgetter</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">reverse</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>

    <span class="c1"># Condense the lists into one</span>
    <span class="n">included_edges</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">sorted_open_edges</span><span class="p">)</span>
    <span class="n">sorted_edges</span> <span class="o">=</span> <span class="n">included_edges</span>
    <span class="k">del</span> <span class="n">open_edges</span><span class="p">,</span> <span class="n">sorted_open_edges</span><span class="p">,</span> <span class="n">included_edges</span>

    <span class="c1"># Multigraphs need to handle edge keys in addition to edge data.</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_multigraph</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">wt</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">sorted_edges</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">subtrees</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">!=</span> <span class="n">subtrees</span><span class="p">[</span><span class="n">v</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">keys</span><span class="p">:</span>
                    <span class="k">if</span> <span class="n">data</span><span class="p">:</span>
                        <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span>
                    <span class="k">else</span><span class="p">:</span>
                        <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">if</span> <span class="n">data</span><span class="p">:</span>
                        <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span>
                    <span class="k">else</span><span class="p">:</span>
                        <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span>
                <span class="n">subtrees</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">for</span> <span class="n">wt</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">sorted_edges</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">subtrees</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">!=</span> <span class="n">subtrees</span><span class="p">[</span><span class="n">v</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">data</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span>
                <span class="n">subtrees</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>


<span class="k">def</span> <span class="nf">prim_mst_edges</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">minimum</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Iterate over edges of Prim&#39;s algorithm min/max spanning tree.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX Graph</span>
<span class="sd">        The graph holding the tree of interest.</span>

<span class="sd">    minimum : bool (default: True)</span>
<span class="sd">        Find the minimum (True) or maximum (False) spanning tree.</span>

<span class="sd">    weight : string (default: &#39;weight&#39;)</span>
<span class="sd">        The name of the edge attribute holding the edge weights.</span>

<span class="sd">    keys : bool (default: True)</span>
<span class="sd">        If `G` is a multigraph, `keys` controls whether edge keys ar yielded.</span>
<span class="sd">        Otherwise `keys` is ignored.</span>

<span class="sd">    data : bool (default: True)</span>
<span class="sd">        Flag for whether to yield edge attribute dicts.</span>
<span class="sd">        If True, yield edges `(u, v, d)`, where `d` is the attribute dict.</span>
<span class="sd">        If False, yield edges `(u, v)`.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">is_multigraph</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">is_multigraph</span><span class="p">()</span>
    <span class="n">push</span> <span class="o">=</span> <span class="n">heappush</span>
    <span class="n">pop</span> <span class="o">=</span> <span class="n">heappop</span>

    <span class="n">nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">c</span> <span class="o">=</span> <span class="n">count</span><span class="p">()</span>

    <span class="n">sign</span> <span class="o">=</span> <span class="mi">1</span> <span class="k">if</span> <span class="n">minimum</span> <span class="k">else</span> <span class="o">-</span><span class="mi">1</span>

    <span class="k">while</span> <span class="n">nodes</span><span class="p">:</span>
        <span class="n">u</span> <span class="o">=</span> <span class="n">nodes</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
        <span class="n">frontier</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="n">visited</span> <span class="o">=</span> <span class="p">{</span><span class="n">u</span><span class="p">}</span>
        <span class="k">if</span> <span class="n">is_multigraph</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">keydict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">keydict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                    <span class="n">wt</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">sign</span>
                    <span class="k">if</span> <span class="n">isnan</span><span class="p">(</span><span class="n">wt</span><span class="p">):</span>
                        <span class="k">if</span> <span class="n">ignore_nan</span><span class="p">:</span>
                            <span class="k">continue</span>
                        <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;NaN found as an edge weight. Edge </span><span class="si">{</span><span class="p">(</span><span class="n">u</span><span class="p">,</span><span class="w"> </span><span class="n">v</span><span class="p">,</span><span class="w"> </span><span class="n">k</span><span class="p">,</span><span class="w"> </span><span class="n">d</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
                        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span>
                    <span class="n">push</span><span class="p">(</span><span class="n">frontier</span><span class="p">,</span> <span class="p">(</span><span class="n">wt</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span><span class="p">))</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                <span class="n">wt</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">sign</span>
                <span class="k">if</span> <span class="n">isnan</span><span class="p">(</span><span class="n">wt</span><span class="p">):</span>
                    <span class="k">if</span> <span class="n">ignore_nan</span><span class="p">:</span>
                        <span class="k">continue</span>
                    <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;NaN found as an edge weight. Edge </span><span class="si">{</span><span class="p">(</span><span class="n">u</span><span class="p">,</span><span class="w"> </span><span class="n">v</span><span class="p">,</span><span class="w"> </span><span class="n">d</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
                    <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span>
                <span class="n">push</span><span class="p">(</span><span class="n">frontier</span><span class="p">,</span> <span class="p">(</span><span class="n">wt</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">))</span>
        <span class="k">while</span> <span class="n">nodes</span> <span class="ow">and</span> <span class="n">frontier</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">is_multigraph</span><span class="p">:</span>
                <span class="n">W</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span> <span class="o">=</span> <span class="n">pop</span><span class="p">(</span><span class="n">frontier</span><span class="p">)</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">W</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="o">=</span> <span class="n">pop</span><span class="p">(</span><span class="n">frontier</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">visited</span> <span class="ow">or</span> <span class="n">v</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">nodes</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="c1"># Multigraphs need to handle edge keys in addition to edge data.</span>
            <span class="k">if</span> <span class="n">is_multigraph</span> <span class="ow">and</span> <span class="n">keys</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">data</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">d</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">data</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span>
            <span class="c1"># update frontier</span>
            <span class="n">visited</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
            <span class="n">nodes</span><span class="o">.</span><span class="n">discard</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">is_multigraph</span><span class="p">:</span>
                <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">keydict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                    <span class="k">if</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">visited</span><span class="p">:</span>
                        <span class="k">continue</span>
                    <span class="k">for</span> <span class="n">k2</span><span class="p">,</span> <span class="n">d2</span> <span class="ow">in</span> <span class="n">keydict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                        <span class="n">new_weight</span> <span class="o">=</span> <span class="n">d2</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">sign</span>
                        <span class="n">push</span><span class="p">(</span><span class="n">frontier</span><span class="p">,</span> <span class="p">(</span><span class="n">new_weight</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">k2</span><span class="p">,</span> <span class="n">d2</span><span class="p">))</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">d2</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                    <span class="k">if</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">visited</span><span class="p">:</span>
                        <span class="k">continue</span>
                    <span class="n">new_weight</span> <span class="o">=</span> <span class="n">d2</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">sign</span>
                    <span class="n">push</span><span class="p">(</span><span class="n">frontier</span><span class="p">,</span> <span class="p">(</span><span class="n">new_weight</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">d2</span><span class="p">))</span>


<span class="n">ALGORITHMS</span> <span class="o">=</span> <span class="p">{</span>
    <span class="s2">&quot;boruvka&quot;</span><span class="p">:</span> <span class="n">boruvka_mst_edges</span><span class="p">,</span>
    <span class="s2">&quot;borůvka&quot;</span><span class="p">:</span> <span class="n">boruvka_mst_edges</span><span class="p">,</span>
    <span class="s2">&quot;kruskal&quot;</span><span class="p">:</span> <span class="n">kruskal_mst_edges</span><span class="p">,</span>
    <span class="s2">&quot;prim&quot;</span><span class="p">:</span> <span class="n">prim_mst_edges</span><span class="p">,</span>
<span class="p">}</span>


<div class="viewcode-block" id="minimum_spanning_edges"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.minimum_spanning_edges.html#networkx.algorithms.tree.mst.minimum_spanning_edges">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">minimum_spanning_edges</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">algorithm</span><span class="o">=</span><span class="s2">&quot;kruskal&quot;</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Generate edges in a minimum spanning forest of an undirected</span>
<span class="sd">    weighted graph.</span>

<span class="sd">    A minimum spanning tree is a subgraph of the graph (a tree)</span>
<span class="sd">    with the minimum sum of edge weights.  A spanning forest is a</span>
<span class="sd">    union of the spanning trees for each connected component of the graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : undirected Graph</span>
<span class="sd">       An undirected graph. If `G` is connected, then the algorithm finds a</span>
<span class="sd">       spanning tree. Otherwise, a spanning forest is found.</span>

<span class="sd">    algorithm : string</span>
<span class="sd">       The algorithm to use when finding a minimum spanning tree. Valid</span>
<span class="sd">       choices are &#39;kruskal&#39;, &#39;prim&#39;, or &#39;boruvka&#39;. The default is &#39;kruskal&#39;.</span>

<span class="sd">    weight : string</span>
<span class="sd">       Edge data key to use for weight (default &#39;weight&#39;).</span>

<span class="sd">    keys : bool</span>
<span class="sd">       Whether to yield edge key in multigraphs in addition to the edge.</span>
<span class="sd">       If `G` is not a multigraph, this is ignored.</span>

<span class="sd">    data : bool, optional</span>
<span class="sd">       If True yield the edge data along with the edge.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    edges : iterator</span>
<span class="sd">       An iterator over edges in a maximum spanning tree of `G`.</span>
<span class="sd">       Edges connecting nodes `u` and `v` are represented as tuples:</span>
<span class="sd">       `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)`</span>

<span class="sd">       If `G` is a multigraph, `keys` indicates whether the edge key `k` will</span>
<span class="sd">       be reported in the third position in the edge tuple. `data` indicates</span>
<span class="sd">       whether the edge datadict `d` will appear at the end of the edge tuple.</span>

<span class="sd">       If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True</span>
<span class="sd">       or `(u, v)` if `data` is False.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms import tree</span>

<span class="sd">    Find minimum spanning edges by Kruskal&#39;s algorithm</span>

<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(4)</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(0, 3, weight=2)</span>
<span class="sd">    &gt;&gt;&gt; mst = tree.minimum_spanning_edges(G, algorithm=&quot;kruskal&quot;, data=False)</span>
<span class="sd">    &gt;&gt;&gt; edgelist = list(mst)</span>
<span class="sd">    &gt;&gt;&gt; sorted(sorted(e) for e in edgelist)</span>
<span class="sd">    [[0, 1], [1, 2], [2, 3]]</span>

<span class="sd">    Find minimum spanning edges by Prim&#39;s algorithm</span>

<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(4)</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(0, 3, weight=2)</span>
<span class="sd">    &gt;&gt;&gt; mst = tree.minimum_spanning_edges(G, algorithm=&quot;prim&quot;, data=False)</span>
<span class="sd">    &gt;&gt;&gt; edgelist = list(mst)</span>
<span class="sd">    &gt;&gt;&gt; sorted(sorted(e) for e in edgelist)</span>
<span class="sd">    [[0, 1], [1, 2], [2, 3]]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    For Borůvka&#39;s algorithm, each edge must have a weight attribute, and</span>
<span class="sd">    each edge weight must be distinct.</span>

<span class="sd">    For the other algorithms, if the graph edges do not have a weight</span>
<span class="sd">    attribute a default weight of 1 will be used.</span>

<span class="sd">    Modified code from David Eppstein, April 2006</span>
<span class="sd">    http://www.ics.uci.edu/~eppstein/PADS/</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="n">algo</span> <span class="o">=</span> <span class="n">ALGORITHMS</span><span class="p">[</span><span class="n">algorithm</span><span class="p">]</span>
    <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">algorithm</span><span class="si">}</span><span class="s2"> is not a valid choice for an algorithm.&quot;</span>
        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span>

    <span class="k">return</span> <span class="n">algo</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="n">minimum</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="n">keys</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="n">ignore_nan</span>
    <span class="p">)</span></div>


<div class="viewcode-block" id="maximum_spanning_edges"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.maximum_spanning_edges.html#networkx.algorithms.tree.mst.maximum_spanning_edges">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">maximum_spanning_edges</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">algorithm</span><span class="o">=</span><span class="s2">&quot;kruskal&quot;</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Generate edges in a maximum spanning forest of an undirected</span>
<span class="sd">    weighted graph.</span>

<span class="sd">    A maximum spanning tree is a subgraph of the graph (a tree)</span>
<span class="sd">    with the maximum possible sum of edge weights.  A spanning forest is a</span>
<span class="sd">    union of the spanning trees for each connected component of the graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : undirected Graph</span>
<span class="sd">       An undirected graph. If `G` is connected, then the algorithm finds a</span>
<span class="sd">       spanning tree. Otherwise, a spanning forest is found.</span>

<span class="sd">    algorithm : string</span>
<span class="sd">       The algorithm to use when finding a maximum spanning tree. Valid</span>
<span class="sd">       choices are &#39;kruskal&#39;, &#39;prim&#39;, or &#39;boruvka&#39;. The default is &#39;kruskal&#39;.</span>

<span class="sd">    weight : string</span>
<span class="sd">       Edge data key to use for weight (default &#39;weight&#39;).</span>

<span class="sd">    keys : bool</span>
<span class="sd">       Whether to yield edge key in multigraphs in addition to the edge.</span>
<span class="sd">       If `G` is not a multigraph, this is ignored.</span>

<span class="sd">    data : bool, optional</span>
<span class="sd">       If True yield the edge data along with the edge.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    edges : iterator</span>
<span class="sd">       An iterator over edges in a maximum spanning tree of `G`.</span>
<span class="sd">       Edges connecting nodes `u` and `v` are represented as tuples:</span>
<span class="sd">       `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)`</span>

<span class="sd">       If `G` is a multigraph, `keys` indicates whether the edge key `k` will</span>
<span class="sd">       be reported in the third position in the edge tuple. `data` indicates</span>
<span class="sd">       whether the edge datadict `d` will appear at the end of the edge tuple.</span>

<span class="sd">       If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True</span>
<span class="sd">       or `(u, v)` if `data` is False.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms import tree</span>

<span class="sd">    Find maximum spanning edges by Kruskal&#39;s algorithm</span>

<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(4)</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(0, 3, weight=2)</span>
<span class="sd">    &gt;&gt;&gt; mst = tree.maximum_spanning_edges(G, algorithm=&quot;kruskal&quot;, data=False)</span>
<span class="sd">    &gt;&gt;&gt; edgelist = list(mst)</span>
<span class="sd">    &gt;&gt;&gt; sorted(sorted(e) for e in edgelist)</span>
<span class="sd">    [[0, 1], [0, 3], [1, 2]]</span>

<span class="sd">    Find maximum spanning edges by Prim&#39;s algorithm</span>

<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(4)</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(0, 3, weight=2)  # assign weight 2 to edge 0-3</span>
<span class="sd">    &gt;&gt;&gt; mst = tree.maximum_spanning_edges(G, algorithm=&quot;prim&quot;, data=False)</span>
<span class="sd">    &gt;&gt;&gt; edgelist = list(mst)</span>
<span class="sd">    &gt;&gt;&gt; sorted(sorted(e) for e in edgelist)</span>
<span class="sd">    [[0, 1], [0, 3], [2, 3]]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    For Borůvka&#39;s algorithm, each edge must have a weight attribute, and</span>
<span class="sd">    each edge weight must be distinct.</span>

<span class="sd">    For the other algorithms, if the graph edges do not have a weight</span>
<span class="sd">    attribute a default weight of 1 will be used.</span>

<span class="sd">    Modified code from David Eppstein, April 2006</span>
<span class="sd">    http://www.ics.uci.edu/~eppstein/PADS/</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="n">algo</span> <span class="o">=</span> <span class="n">ALGORITHMS</span><span class="p">[</span><span class="n">algorithm</span><span class="p">]</span>
    <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">algorithm</span><span class="si">}</span><span class="s2"> is not a valid choice for an algorithm.&quot;</span>
        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span>

    <span class="k">return</span> <span class="n">algo</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="n">minimum</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="n">keys</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="n">ignore_nan</span>
    <span class="p">)</span></div>


<div class="viewcode-block" id="minimum_spanning_tree"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.minimum_spanning_tree.html#networkx.algorithms.tree.mst.minimum_spanning_tree">[docs]</a><span class="k">def</span> <span class="nf">minimum_spanning_tree</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">algorithm</span><span class="o">=</span><span class="s2">&quot;kruskal&quot;</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Returns a minimum spanning tree or forest on an undirected graph `G`.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : undirected graph</span>
<span class="sd">        An undirected graph. If `G` is connected, then the algorithm finds a</span>
<span class="sd">        spanning tree. Otherwise, a spanning forest is found.</span>

<span class="sd">    weight : str</span>
<span class="sd">       Data key to use for edge weights.</span>

<span class="sd">    algorithm : string</span>
<span class="sd">       The algorithm to use when finding a minimum spanning tree. Valid</span>
<span class="sd">       choices are &#39;kruskal&#39;, &#39;prim&#39;, or &#39;boruvka&#39;. The default is</span>
<span class="sd">       &#39;kruskal&#39;.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    G : NetworkX Graph</span>
<span class="sd">       A minimum spanning tree or forest.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(4)</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(0, 3, weight=2)</span>
<span class="sd">    &gt;&gt;&gt; T = nx.minimum_spanning_tree(G)</span>
<span class="sd">    &gt;&gt;&gt; sorted(T.edges(data=True))</span>
<span class="sd">    [(0, 1, {}), (1, 2, {}), (2, 3, {})]</span>


<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    For Borůvka&#39;s algorithm, each edge must have a weight attribute, and</span>
<span class="sd">    each edge weight must be distinct.</span>

<span class="sd">    For the other algorithms, if the graph edges do not have a weight</span>
<span class="sd">    attribute a default weight of 1 will be used.</span>

<span class="sd">    There may be more than one tree with the same minimum or maximum weight.</span>
<span class="sd">    See :mod:`networkx.tree.recognition` for more detailed definitions.</span>

<span class="sd">    Isolated nodes with self-loops are in the tree as edgeless isolated nodes.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">edges</span> <span class="o">=</span> <span class="n">minimum_spanning_edges</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="n">algorithm</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="n">ignore_nan</span>
    <span class="p">)</span>
    <span class="n">T</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="vm">__class__</span><span class="p">()</span>  <span class="c1"># Same graph class as G</span>
    <span class="n">T</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="p">)</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="o">.</span><span class="n">items</span><span class="p">())</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">edges</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">T</span></div>


<span class="k">def</span> <span class="nf">partition_spanning_tree</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">minimum</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">partition</span><span class="o">=</span><span class="s2">&quot;partition&quot;</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Find a spanning tree while respecting a partition of edges.</span>

<span class="sd">    Edges can be flagged as either `INLCUDED` which are required to be in the</span>
<span class="sd">    returned tree, `EXCLUDED`, which cannot be in the returned tree and `OPEN`.</span>

<span class="sd">    This is used in the SpanningTreeIterator to create new partitions following</span>
<span class="sd">    the algorithm of Sörensen and Janssens [1]_.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : undirected graph</span>
<span class="sd">        An undirected graph.</span>

<span class="sd">    minimum : bool (default: True)</span>
<span class="sd">        Determines whether the returned tree is the minimum spanning tree of</span>
<span class="sd">        the partition of the maximum one.</span>

<span class="sd">    weight : str</span>
<span class="sd">        Data key to use for edge weights.</span>

<span class="sd">    partition : str</span>
<span class="sd">        The key for the edge attribute containing the partition</span>
<span class="sd">        data on the graph. Edges can be included, excluded or open using the</span>
<span class="sd">        `EdgePartition` enum.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>


<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    G : NetworkX Graph</span>
<span class="sd">        A minimum spanning tree using all of the included edges in the graph and</span>
<span class="sd">        none of the excluded edges.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning</span>
<span class="sd">           trees in order of increasing cost, Pesquisa Operacional, 2005-08,</span>
<span class="sd">           Vol. 25 (2), p. 219-229,</span>
<span class="sd">           https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">edges</span> <span class="o">=</span> <span class="n">kruskal_mst_edges</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span>
        <span class="n">minimum</span><span class="p">,</span>
        <span class="n">weight</span><span class="p">,</span>
        <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
        <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
        <span class="n">ignore_nan</span><span class="o">=</span><span class="n">ignore_nan</span><span class="p">,</span>
        <span class="n">partition</span><span class="o">=</span><span class="n">partition</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="n">T</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="vm">__class__</span><span class="p">()</span>  <span class="c1"># Same graph class as G</span>
    <span class="n">T</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="p">)</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="o">.</span><span class="n">items</span><span class="p">())</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">edges</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">T</span>


<div class="viewcode-block" id="maximum_spanning_tree"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.maximum_spanning_tree.html#networkx.algorithms.tree.mst.maximum_spanning_tree">[docs]</a><span class="k">def</span> <span class="nf">maximum_spanning_tree</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">algorithm</span><span class="o">=</span><span class="s2">&quot;kruskal&quot;</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Returns a maximum spanning tree or forest on an undirected graph `G`.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : undirected graph</span>
<span class="sd">        An undirected graph. If `G` is connected, then the algorithm finds a</span>
<span class="sd">        spanning tree. Otherwise, a spanning forest is found.</span>

<span class="sd">    weight : str</span>
<span class="sd">       Data key to use for edge weights.</span>

<span class="sd">    algorithm : string</span>
<span class="sd">       The algorithm to use when finding a maximum spanning tree. Valid</span>
<span class="sd">       choices are &#39;kruskal&#39;, &#39;prim&#39;, or &#39;boruvka&#39;. The default is</span>
<span class="sd">       &#39;kruskal&#39;.</span>

<span class="sd">    ignore_nan : bool (default: False)</span>
<span class="sd">        If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">        If `ignore_nan is True` then that edge is ignored instead.</span>


<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    G : NetworkX Graph</span>
<span class="sd">       A maximum spanning tree or forest.</span>


<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(4)</span>
<span class="sd">    &gt;&gt;&gt; G.add_edge(0, 3, weight=2)</span>
<span class="sd">    &gt;&gt;&gt; T = nx.maximum_spanning_tree(G)</span>
<span class="sd">    &gt;&gt;&gt; sorted(T.edges(data=True))</span>
<span class="sd">    [(0, 1, {}), (0, 3, {&#39;weight&#39;: 2}), (1, 2, {})]</span>


<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    For Borůvka&#39;s algorithm, each edge must have a weight attribute, and</span>
<span class="sd">    each edge weight must be distinct.</span>

<span class="sd">    For the other algorithms, if the graph edges do not have a weight</span>
<span class="sd">    attribute a default weight of 1 will be used.</span>

<span class="sd">    There may be more than one tree with the same minimum or maximum weight.</span>
<span class="sd">    See :mod:`networkx.tree.recognition` for more detailed definitions.</span>

<span class="sd">    Isolated nodes with self-loops are in the tree as edgeless isolated nodes.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">edges</span> <span class="o">=</span> <span class="n">maximum_spanning_edges</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="n">algorithm</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">keys</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="n">ignore_nan</span>
    <span class="p">)</span>
    <span class="n">edges</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">edges</span><span class="p">)</span>
    <span class="n">T</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="vm">__class__</span><span class="p">()</span>  <span class="c1"># Same graph class as G</span>
    <span class="n">T</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="p">)</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="o">.</span><span class="n">items</span><span class="p">())</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">edges</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">T</span></div>


<div class="viewcode-block" id="random_spanning_tree"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.random_spanning_tree.html#networkx.algorithms.tree.mst.random_spanning_tree">[docs]</a><span class="nd">@py_random_state</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">random_spanning_tree</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span> <span class="n">multiplicative</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Sample a random spanning tree using the edges weights of `G`.</span>

<span class="sd">    This function supports two different methods for determining the</span>
<span class="sd">    probability of the graph. If ``multiplicative=True``, the probability</span>
<span class="sd">    is based on the product of edge weights, and if ``multiplicative=False``</span>
<span class="sd">    it is based on the sum of the edge weight. However, since it is</span>
<span class="sd">    easier to determine the total weight of all spanning trees for the</span>
<span class="sd">    multiplicative verison, that is significantly faster and should be used if</span>
<span class="sd">    possible. Additionally, setting `weight` to `None` will cause a spanning tree</span>
<span class="sd">    to be selected with uniform probability.</span>

<span class="sd">    The function uses algorithm A8 in [1]_ .</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : nx.Graph</span>
<span class="sd">        An undirected version of the original graph.</span>

<span class="sd">    weight : string</span>
<span class="sd">        The edge key for the edge attribute holding edge weight.</span>

<span class="sd">    multiplicative : bool, default=True</span>
<span class="sd">        If `True`, the probability of each tree is the product of its edge weight</span>
<span class="sd">        over the sum of the product of all the spanning trees in the graph. If</span>
<span class="sd">        `False`, the probability is the sum of its edge weight over the sum of</span>
<span class="sd">        the sum of weights for all spanning trees in the graph.</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    nx.Graph</span>
<span class="sd">        A spanning tree using the distribution defined by the weight of the tree.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of</span>
<span class="sd">       Algorithms, 11 (1990), pp. 185–207</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">find_node</span><span class="p">(</span><span class="n">merged_nodes</span><span class="p">,</span> <span class="n">node</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        We can think of clusters of contracted nodes as having one</span>
<span class="sd">        representative in the graph. Each node which is not in merged_nodes</span>
<span class="sd">        is still its own representative. Since a representative can be later</span>
<span class="sd">        contracted, we need to recursively search though the dict to find</span>
<span class="sd">        the final representative, but once we know it we can use path</span>
<span class="sd">        compression to speed up the access of the representative for next time.</span>

<span class="sd">        This cannot be replaced by the standard NetworkX union_find since that</span>
<span class="sd">        data structure will merge nodes with less representing nodes into the</span>
<span class="sd">        one with more representing nodes but this function requires we merge</span>
<span class="sd">        them using the order that contract_edges contracts using.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        merged_nodes : dict</span>
<span class="sd">            The dict storing the mapping from node to representative</span>
<span class="sd">        node</span>
<span class="sd">            The node whose representative we seek</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        The representative of the `node`</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">merged_nodes</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">node</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">rep</span> <span class="o">=</span> <span class="n">find_node</span><span class="p">(</span><span class="n">merged_nodes</span><span class="p">,</span> <span class="n">merged_nodes</span><span class="p">[</span><span class="n">node</span><span class="p">])</span>
            <span class="n">merged_nodes</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="n">rep</span>
            <span class="k">return</span> <span class="n">rep</span>

    <span class="k">def</span> <span class="nf">prepare_graph</span><span class="p">():</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        For the graph `G`, remove all edges not in the set `V` and then</span>
<span class="sd">        contract all edges in the set `U`.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        A copy of `G` which has had all edges not in `V` removed and all edges</span>
<span class="sd">        in `U` contracted.</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># The result is a MultiGraph version of G so that parallel edges are</span>
        <span class="c1"># allowed during edge contraction</span>
        <span class="n">result</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">MultiGraph</span><span class="p">(</span><span class="n">incoming_graph_data</span><span class="o">=</span><span class="n">G</span><span class="p">)</span>

        <span class="c1"># Remove all edges not in V</span>
        <span class="n">edges_to_remove</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">result</span><span class="o">.</span><span class="n">edges</span><span class="p">())</span><span class="o">.</span><span class="n">difference</span><span class="p">(</span><span class="n">V</span><span class="p">)</span>
        <span class="n">result</span><span class="o">.</span><span class="n">remove_edges_from</span><span class="p">(</span><span class="n">edges_to_remove</span><span class="p">)</span>

        <span class="c1"># Contract all edges in U</span>
        <span class="c1">#</span>
        <span class="c1"># Imagine that you have two edges to contract and they share an</span>
        <span class="c1"># endpoint like this:</span>
        <span class="c1">#                        [0] ----- [1] ----- [2]</span>
        <span class="c1"># If we contract (0, 1) first, the contraction function will always</span>
        <span class="c1"># delete the second node it is passed so the resulting graph would be</span>
        <span class="c1">#                             [0] ----- [2]</span>
        <span class="c1"># and edge (1, 2) no longer exists but (0, 2) would need to be contracted</span>
        <span class="c1"># in its place now. That is why I use the below dict as a merge-find</span>
        <span class="c1"># data structure with path compression to track how the nodes are merged.</span>
        <span class="n">merged_nodes</span> <span class="o">=</span> <span class="p">{}</span>

        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">U</span><span class="p">:</span>
            <span class="n">u_rep</span> <span class="o">=</span> <span class="n">find_node</span><span class="p">(</span><span class="n">merged_nodes</span><span class="p">,</span> <span class="n">u</span><span class="p">)</span>
            <span class="n">v_rep</span> <span class="o">=</span> <span class="n">find_node</span><span class="p">(</span><span class="n">merged_nodes</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
            <span class="c1"># We cannot contract a node with itself</span>
            <span class="k">if</span> <span class="n">u_rep</span> <span class="o">==</span> <span class="n">v_rep</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="n">nx</span><span class="o">.</span><span class="n">contracted_nodes</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">u_rep</span><span class="p">,</span> <span class="n">v_rep</span><span class="p">,</span> <span class="n">self_loops</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">copy</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
            <span class="n">merged_nodes</span><span class="p">[</span><span class="n">v_rep</span><span class="p">]</span> <span class="o">=</span> <span class="n">u_rep</span>

        <span class="k">return</span> <span class="n">merged_nodes</span><span class="p">,</span> <span class="n">result</span>

    <span class="k">def</span> <span class="nf">spanning_tree_total_weight</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Find the sum of weights of the spanning trees of `G` using the</span>
<span class="sd">        approioate `method`.</span>

<span class="sd">        This is easy if the choosen method is &#39;multiplicative&#39;, since we can</span>
<span class="sd">        use Kirchhoff&#39;s Tree Matrix Theorem directly. However, with the</span>
<span class="sd">        &#39;additive&#39; method, this process is slightly more complex and less</span>
<span class="sd">        computatiionally efficent as we have to find the number of spanning</span>
<span class="sd">        trees which contain each possible edge in the graph.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        G : NetworkX Graph</span>
<span class="sd">            The graph to find the total weight of all spanning trees on.</span>

<span class="sd">        weight : string</span>
<span class="sd">            The key for the weight edge attribute of the graph.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        float</span>
<span class="sd">            The sum of either the multiplicative or additive weight for all</span>
<span class="sd">            spanning trees in the graph.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="n">multiplicative</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">total_spanning_tree_weight</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># There are two cases for the total spanning tree additive weight.</span>
            <span class="c1"># 1. There is one edge in the graph. Then the only spanning tree is</span>
            <span class="c1">#    that edge itself, which will have a total weight of that edge</span>
            <span class="c1">#    itself.</span>
            <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">()</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
                <span class="k">return</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span><span class="o">.</span><span class="fm">__iter__</span><span class="p">()</span><span class="o">.</span><span class="fm">__next__</span><span class="p">()[</span><span class="mi">2</span><span class="p">]</span>
            <span class="c1"># 2. There are more than two edges in the graph. Then, we can find the</span>
            <span class="c1">#    total weight of the spanning trees using the formula in the</span>
            <span class="c1">#    reference paper: take the weight of that edge and multiple it by</span>
            <span class="c1">#    the number of spanning trees which have to include that edge. This</span>
            <span class="c1">#    can be accomplished by contracting the edge and finding the</span>
            <span class="c1">#    multiplicative total spanning tree weight if the weight of each edge</span>
            <span class="c1">#    is assumed to be 1, which is conviently built into networkx already,</span>
            <span class="c1">#    by calling total_spanning_tree_weight with weight=None</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">total</span> <span class="o">=</span> <span class="mi">0</span>
                <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">):</span>
                    <span class="n">total</span> <span class="o">+=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">nx</span><span class="o">.</span><span class="n">total_spanning_tree_weight</span><span class="p">(</span>
                        <span class="n">nx</span><span class="o">.</span><span class="n">contracted_edge</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">edge</span><span class="o">=</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">),</span> <span class="n">self_loops</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span> <span class="kc">None</span>
                    <span class="p">)</span>
                <span class="k">return</span> <span class="n">total</span>

    <span class="n">U</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
    <span class="n">st_cached_value</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="n">V</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">())</span>
    <span class="n">shuffled_edges</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">())</span>
    <span class="n">seed</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">shuffled_edges</span><span class="p">)</span>

    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">shuffled_edges</span><span class="p">:</span>
        <span class="n">e_weight</span> <span class="o">=</span> <span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][</span><span class="n">weight</span><span class="p">]</span> <span class="k">if</span> <span class="n">weight</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="mi">1</span>
        <span class="n">node_map</span><span class="p">,</span> <span class="n">prepared_G</span> <span class="o">=</span> <span class="n">prepare_graph</span><span class="p">()</span>
        <span class="n">G_total_tree_weight</span> <span class="o">=</span> <span class="n">spanning_tree_total_weight</span><span class="p">(</span><span class="n">prepared_G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
        <span class="c1"># Add the edge to U so that we can compute the total tree weight</span>
        <span class="c1"># assuming we include that edge</span>
        <span class="c1"># Now, if (u, v) cannot exist in G because it is fully contracted out</span>
        <span class="c1"># of existence, then it by definition cannot influence G_e&#39;s Kirchhoff</span>
        <span class="c1"># value. But, we also cannot pick it.</span>
        <span class="n">rep_edge</span> <span class="o">=</span> <span class="p">(</span><span class="n">find_node</span><span class="p">(</span><span class="n">node_map</span><span class="p">,</span> <span class="n">u</span><span class="p">),</span> <span class="n">find_node</span><span class="p">(</span><span class="n">node_map</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
        <span class="c1"># Check to see if the &#39;representative edge&#39; for the current edge is</span>
        <span class="c1"># in prepared_G. If so, then we can pick it.</span>
        <span class="k">if</span> <span class="n">rep_edge</span> <span class="ow">in</span> <span class="n">prepared_G</span><span class="o">.</span><span class="n">edges</span><span class="p">:</span>
            <span class="n">prepared_G_e</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">contracted_edge</span><span class="p">(</span>
                <span class="n">prepared_G</span><span class="p">,</span> <span class="n">edge</span><span class="o">=</span><span class="n">rep_edge</span><span class="p">,</span> <span class="n">self_loops</span><span class="o">=</span><span class="kc">False</span>
            <span class="p">)</span>
            <span class="n">G_e_total_tree_weight</span> <span class="o">=</span> <span class="n">spanning_tree_total_weight</span><span class="p">(</span><span class="n">prepared_G_e</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">multiplicative</span><span class="p">:</span>
                <span class="n">threshold</span> <span class="o">=</span> <span class="n">e_weight</span> <span class="o">*</span> <span class="n">G_e_total_tree_weight</span> <span class="o">/</span> <span class="n">G_total_tree_weight</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">numerator</span> <span class="o">=</span> <span class="p">(</span>
                    <span class="n">st_cached_value</span> <span class="o">+</span> <span class="n">e_weight</span>
                <span class="p">)</span> <span class="o">*</span> <span class="n">nx</span><span class="o">.</span><span class="n">total_spanning_tree_weight</span><span class="p">(</span><span class="n">prepared_G_e</span><span class="p">)</span> <span class="o">+</span> <span class="n">G_e_total_tree_weight</span>
                <span class="n">denominator</span> <span class="o">=</span> <span class="p">(</span>
                    <span class="n">st_cached_value</span> <span class="o">*</span> <span class="n">nx</span><span class="o">.</span><span class="n">total_spanning_tree_weight</span><span class="p">(</span><span class="n">prepared_G</span><span class="p">)</span>
                    <span class="o">+</span> <span class="n">G_total_tree_weight</span>
                <span class="p">)</span>
                <span class="n">threshold</span> <span class="o">=</span> <span class="n">numerator</span> <span class="o">/</span> <span class="n">denominator</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">threshold</span> <span class="o">=</span> <span class="mf">0.0</span>
        <span class="n">z</span> <span class="o">=</span> <span class="n">seed</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">z</span> <span class="o">&gt;</span> <span class="n">threshold</span><span class="p">:</span>
            <span class="c1"># Remove the edge from V since we did not pick it.</span>
            <span class="n">V</span><span class="o">.</span><span class="n">remove</span><span class="p">((</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># Add the edge to U since we picked it.</span>
            <span class="n">st_cached_value</span> <span class="o">+=</span> <span class="n">e_weight</span>
            <span class="n">U</span><span class="o">.</span><span class="n">add</span><span class="p">((</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
        <span class="c1"># If we decide to keep an edge, it may complete the spanning tree.</span>
        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">U</span><span class="p">)</span> <span class="o">==</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">:</span>
            <span class="n">spanning_tree</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
            <span class="n">spanning_tree</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">U</span><span class="p">)</span>
            <span class="k">return</span> <span class="n">spanning_tree</span>
    <span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Something went wrong! Only </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">U</span><span class="p">)</span><span class="si">}</span><span class="s2"> edges in the spanning tree!&quot;</span><span class="p">)</span></div>


<div class="viewcode-block" id="SpanningTreeIterator"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.SpanningTreeIterator.html#networkx.algorithms.tree.mst.SpanningTreeIterator">[docs]</a><span class="k">class</span> <span class="nc">SpanningTreeIterator</span><span class="p">:</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Iterate over all spanning trees of a graph in either increasing or</span>
<span class="sd">    decreasing cost.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This iterator uses the partition scheme from [1]_ (included edges,</span>
<span class="sd">    excluded edges and open edges) as well as a modified Kruskal&#39;s Algorithm</span>
<span class="sd">    to generate minimum spanning trees which respect the partition of edges.</span>
<span class="sd">    For spanning trees with the same weight, ties are broken arbitrarily.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning</span>
<span class="sd">           trees in order of increasing cost, Pesquisa Operacional, 2005-08,</span>
<span class="sd">           Vol. 25 (2), p. 219-229,</span>
<span class="sd">           https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="nd">@dataclass</span><span class="p">(</span><span class="n">order</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="k">class</span> <span class="nc">Partition</span><span class="p">:</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        This dataclass represents a partition and stores a dict with the edge</span>
<span class="sd">        data and the weight of the minimum spanning tree of the partition dict.</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="n">mst_weight</span><span class="p">:</span> <span class="nb">float</span>
        <span class="n">partition_dict</span><span class="p">:</span> <span class="nb">dict</span> <span class="o">=</span> <span class="n">field</span><span class="p">(</span><span class="n">compare</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>

        <span class="k">def</span> <span class="nf">__copy__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
            <span class="k">return</span> <span class="n">SpanningTreeIterator</span><span class="o">.</span><span class="n">Partition</span><span class="p">(</span>
                <span class="bp">self</span><span class="o">.</span><span class="n">mst_weight</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_dict</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
            <span class="p">)</span>

<div class="viewcode-block" id="SpanningTreeIterator.__init__"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.tree.mst.SpanningTreeIterator.html#networkx.algorithms.tree.mst.SpanningTreeIterator.__init__">[docs]</a>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">minimum</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_nan</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Initialize the iterator</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        G : nx.Graph</span>
<span class="sd">            The directed graph which we need to iterate trees over</span>

<span class="sd">        weight : String, default = &quot;weight&quot;</span>
<span class="sd">            The edge attribute used to store the weight of the edge</span>

<span class="sd">        minimum : bool, default = True</span>
<span class="sd">            Return the trees in increasing order while true and decreasing order</span>
<span class="sd">            while false.</span>

<span class="sd">        ignore_nan : bool, default = False</span>
<span class="sd">            If a NaN is found as an edge weight normally an exception is raised.</span>
<span class="sd">            If `ignore_nan is True` then that edge is ignored instead.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="n">weight</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">minimum</span> <span class="o">=</span> <span class="n">minimum</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">ignore_nan</span> <span class="o">=</span> <span class="n">ignore_nan</span>
        <span class="c1"># Randomly create a key for an edge attribute to hold the partition data</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span> <span class="o">=</span> <span class="p">(</span>
            <span class="s2">&quot;SpanningTreeIterators super secret partition attribute name&quot;</span>
        <span class="p">)</span></div>

    <span class="k">def</span> <span class="fm">__iter__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        SpanningTreeIterator</span>
<span class="sd">            The iterator object for this graph</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">partition_queue</span> <span class="o">=</span> <span class="n">PriorityQueue</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">_clear_partition</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">G</span><span class="p">)</span>
        <span class="n">mst_weight</span> <span class="o">=</span> <span class="n">partition_spanning_tree</span><span class="p">(</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">G</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">minimum</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">ignore_nan</span>
        <span class="p">)</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="n">weight</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">)</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">partition_queue</span><span class="o">.</span><span class="n">put</span><span class="p">(</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">Partition</span><span class="p">(</span><span class="n">mst_weight</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">minimum</span> <span class="k">else</span> <span class="o">-</span><span class="n">mst_weight</span><span class="p">,</span> <span class="nb">dict</span><span class="p">())</span>
        <span class="p">)</span>

        <span class="k">return</span> <span class="bp">self</span>

    <span class="k">def</span> <span class="fm">__next__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        (multi)Graph</span>
<span class="sd">            The spanning tree of next greatest weight, which ties broken</span>
<span class="sd">            arbitrarily.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_queue</span><span class="o">.</span><span class="n">empty</span><span class="p">():</span>
            <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">G</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_queue</span>
            <span class="k">raise</span> <span class="ne">StopIteration</span>

        <span class="n">partition</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_queue</span><span class="o">.</span><span class="n">get</span><span class="p">()</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">_write_partition</span><span class="p">(</span><span class="n">partition</span><span class="p">)</span>
        <span class="n">next_tree</span> <span class="o">=</span> <span class="n">partition_spanning_tree</span><span class="p">(</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">G</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">minimum</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">ignore_nan</span>
        <span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">_partition</span><span class="p">(</span><span class="n">partition</span><span class="p">,</span> <span class="n">next_tree</span><span class="p">)</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">_clear_partition</span><span class="p">(</span><span class="n">next_tree</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">next_tree</span>

    <span class="k">def</span> <span class="nf">_partition</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">partition</span><span class="p">,</span> <span class="n">partition_tree</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Create new partitions based of the minimum spanning tree of the</span>
<span class="sd">        current minimum partition.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        partition : Partition</span>
<span class="sd">            The Partition instance used to generate the current minimum spanning</span>
<span class="sd">            tree.</span>
<span class="sd">        partition_tree : nx.Graph</span>
<span class="sd">            The minimum spanning tree of the input partition.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># create two new partitions with the data from the input partition dict</span>
        <span class="n">p1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">Partition</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">partition</span><span class="o">.</span><span class="n">partition_dict</span><span class="o">.</span><span class="n">copy</span><span class="p">())</span>
        <span class="n">p2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">Partition</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">partition</span><span class="o">.</span><span class="n">partition_dict</span><span class="o">.</span><span class="n">copy</span><span class="p">())</span>
        <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">partition_tree</span><span class="o">.</span><span class="n">edges</span><span class="p">:</span>
            <span class="c1"># determine if the edge was open or included</span>
            <span class="k">if</span> <span class="n">e</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">partition</span><span class="o">.</span><span class="n">partition_dict</span><span class="p">:</span>
                <span class="c1"># This is an open edge</span>
                <span class="n">p1</span><span class="o">.</span><span class="n">partition_dict</span><span class="p">[</span><span class="n">e</span><span class="p">]</span> <span class="o">=</span> <span class="n">EdgePartition</span><span class="o">.</span><span class="n">EXCLUDED</span>
                <span class="n">p2</span><span class="o">.</span><span class="n">partition_dict</span><span class="p">[</span><span class="n">e</span><span class="p">]</span> <span class="o">=</span> <span class="n">EdgePartition</span><span class="o">.</span><span class="n">INCLUDED</span>

                <span class="bp">self</span><span class="o">.</span><span class="n">_write_partition</span><span class="p">(</span><span class="n">p1</span><span class="p">)</span>
                <span class="n">p1_mst</span> <span class="o">=</span> <span class="n">partition_spanning_tree</span><span class="p">(</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">G</span><span class="p">,</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">minimum</span><span class="p">,</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span><span class="p">,</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">ignore_nan</span><span class="p">,</span>
                <span class="p">)</span>
                <span class="n">p1_mst_weight</span> <span class="o">=</span> <span class="n">p1_mst</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="n">weight</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">)</span>
                <span class="k">if</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">p1_mst</span><span class="p">):</span>
                    <span class="n">p1</span><span class="o">.</span><span class="n">mst_weight</span> <span class="o">=</span> <span class="n">p1_mst_weight</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">minimum</span> <span class="k">else</span> <span class="o">-</span><span class="n">p1_mst_weight</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">partition_queue</span><span class="o">.</span><span class="n">put</span><span class="p">(</span><span class="n">p1</span><span class="o">.</span><span class="n">__copy__</span><span class="p">())</span>
                <span class="n">p1</span><span class="o">.</span><span class="n">partition_dict</span> <span class="o">=</span> <span class="n">p2</span><span class="o">.</span><span class="n">partition_dict</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>

    <span class="k">def</span> <span class="nf">_write_partition</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">partition</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Writes the desired partition into the graph to calculate the minimum</span>
<span class="sd">        spanning tree.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        partition : Partition</span>
<span class="sd">            A Partition dataclass describing a partition on the edges of the</span>
<span class="sd">            graph.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
            <span class="k">if</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">partition</span><span class="o">.</span><span class="n">partition_dict</span><span class="p">:</span>
                <span class="n">d</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span><span class="p">]</span> <span class="o">=</span> <span class="n">partition</span><span class="o">.</span><span class="n">partition_dict</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">d</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span><span class="p">]</span> <span class="o">=</span> <span class="n">EdgePartition</span><span class="o">.</span><span class="n">OPEN</span>

    <span class="k">def</span> <span class="nf">_clear_partition</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Removes partition data from the graph</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span> <span class="ow">in</span> <span class="n">d</span><span class="p">:</span>
                <span class="k">del</span> <span class="n">d</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">partition_key</span><span class="p">]</span></div>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<div id="searchbox"></div>
</div>

<div class="toc-item">
  
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2023, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>