summaryrefslogtreecommitdiff
path: root/_modules/networkx/algorithms/isomorphism/isomorphvf2.html
blob: a537cca9dee2300db6c260a5f48aa806361e8323 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.algorithms.isomorphism.isomorphvf2 &#8212; NetworkX 3.0rc2.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
    <script src="../../../../_static/jquery.js"></script>
    <script src="../../../../_static/underscore.js"></script>
    <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../../_static/doctools.js"></script>
    <script src="../../../../_static/sphinx_highlight.js"></script>
    <script src="../../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/algorithms/isomorphism/isomorphvf2';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/algorithms/isomorphism/isomorphvf2.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.0rc2.dev0 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en">
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.algorithms.isomorphism.isomorphvf2</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">*************</span>
<span class="sd">VF2 Algorithm</span>
<span class="sd">*************</span>

<span class="sd">An implementation of VF2 algorithm for graph isomorphism testing.</span>

<span class="sd">The simplest interface to use this module is to call networkx.is_isomorphic().</span>

<span class="sd">Introduction</span>
<span class="sd">------------</span>

<span class="sd">The GraphMatcher and DiGraphMatcher are responsible for matching</span>
<span class="sd">graphs or directed graphs in a predetermined manner.  This</span>
<span class="sd">usually means a check for an isomorphism, though other checks</span>
<span class="sd">are also possible.  For example, a subgraph of one graph</span>
<span class="sd">can be checked for isomorphism to a second graph.</span>

<span class="sd">Matching is done via syntactic feasibility. It is also possible</span>
<span class="sd">to check for semantic feasibility. Feasibility, then, is defined</span>
<span class="sd">as the logical AND of the two functions.</span>

<span class="sd">To include a semantic check, the (Di)GraphMatcher class should be</span>
<span class="sd">subclassed, and the semantic_feasibility() function should be</span>
<span class="sd">redefined.  By default, the semantic feasibility function always</span>
<span class="sd">returns True.  The effect of this is that semantics are not</span>
<span class="sd">considered in the matching of G1 and G2.</span>

<span class="sd">Examples</span>
<span class="sd">--------</span>

<span class="sd">Suppose G1 and G2 are isomorphic graphs. Verification is as follows:</span>

<span class="sd">&gt;&gt;&gt; from networkx.algorithms import isomorphism</span>
<span class="sd">&gt;&gt;&gt; G1 = nx.path_graph(4)</span>
<span class="sd">&gt;&gt;&gt; G2 = nx.path_graph(4)</span>
<span class="sd">&gt;&gt;&gt; GM = isomorphism.GraphMatcher(G1, G2)</span>
<span class="sd">&gt;&gt;&gt; GM.is_isomorphic()</span>
<span class="sd">True</span>

<span class="sd">GM.mapping stores the isomorphism mapping from G1 to G2.</span>

<span class="sd">&gt;&gt;&gt; GM.mapping</span>
<span class="sd">{0: 0, 1: 1, 2: 2, 3: 3}</span>


<span class="sd">Suppose G1 and G2 are isomorphic directed graphs.</span>
<span class="sd">Verification is as follows:</span>

<span class="sd">&gt;&gt;&gt; G1 = nx.path_graph(4, create_using=nx.DiGraph())</span>
<span class="sd">&gt;&gt;&gt; G2 = nx.path_graph(4, create_using=nx.DiGraph())</span>
<span class="sd">&gt;&gt;&gt; DiGM = isomorphism.DiGraphMatcher(G1, G2)</span>
<span class="sd">&gt;&gt;&gt; DiGM.is_isomorphic()</span>
<span class="sd">True</span>

<span class="sd">DiGM.mapping stores the isomorphism mapping from G1 to G2.</span>

<span class="sd">&gt;&gt;&gt; DiGM.mapping</span>
<span class="sd">{0: 0, 1: 1, 2: 2, 3: 3}</span>



<span class="sd">Subgraph Isomorphism</span>
<span class="sd">--------------------</span>
<span class="sd">Graph theory literature can be ambiguous about the meaning of the</span>
<span class="sd">above statement, and we seek to clarify it now.</span>

<span class="sd">In the VF2 literature, a mapping M is said to be a graph-subgraph</span>
<span class="sd">isomorphism iff M is an isomorphism between G2 and a subgraph of G1.</span>
<span class="sd">Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say</span>
<span class="sd">that a subgraph of G1 is isomorphic to G2.</span>

<span class="sd">Other literature uses the phrase &#39;subgraph isomorphic&#39; as in &#39;G1 does</span>
<span class="sd">not have a subgraph isomorphic to G2&#39;.  Another use is as an in adverb</span>
<span class="sd">for isomorphic.  Thus, to say that G1 and G2 are subgraph isomorphic</span>
<span class="sd">is to say that a subgraph of G1 is isomorphic to G2.</span>

<span class="sd">Finally, the term &#39;subgraph&#39; can have multiple meanings. In this</span>
<span class="sd">context, &#39;subgraph&#39; always means a &#39;node-induced subgraph&#39;. Edge-induced</span>
<span class="sd">subgraph isomorphisms are not directly supported, but one should be</span>
<span class="sd">able to perform the check by making use of nx.line_graph(). For</span>
<span class="sd">subgraphs which are not induced, the term &#39;monomorphism&#39; is preferred</span>
<span class="sd">over &#39;isomorphism&#39;.</span>

<span class="sd">Let G=(N,E) be a graph with a set of nodes N and set of edges E.</span>

<span class="sd">If G&#39;=(N&#39;,E&#39;) is a subgraph, then:</span>
<span class="sd">    N&#39; is a subset of N</span>
<span class="sd">    E&#39; is a subset of E</span>

<span class="sd">If G&#39;=(N&#39;,E&#39;) is a node-induced subgraph, then:</span>
<span class="sd">    N&#39; is a subset of N</span>
<span class="sd">    E&#39; is the subset of edges in E relating nodes in N&#39;</span>

<span class="sd">If G&#39;=(N&#39;,E&#39;) is an edge-induced subgraph, then:</span>
<span class="sd">    N&#39; is the subset of nodes in N related by edges in E&#39;</span>
<span class="sd">    E&#39; is a subset of E</span>

<span class="sd">If G&#39;=(N&#39;,E&#39;) is a monomorphism, then:</span>
<span class="sd">    N&#39; is a subset of N</span>
<span class="sd">    E&#39; is a subset of the set of edges in E relating nodes in N&#39;</span>

<span class="sd">Note that if G&#39; is a node-induced subgraph of G, then it is always a</span>
<span class="sd">subgraph monomorphism of G, but the opposite is not always true, as a</span>
<span class="sd">monomorphism can have fewer edges.</span>

<span class="sd">References</span>
<span class="sd">----------</span>
<span class="sd">[1]   Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento,</span>
<span class="sd">      &quot;A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs&quot;,</span>
<span class="sd">      IEEE Transactions on Pattern Analysis and Machine Intelligence,</span>
<span class="sd">      vol. 26,  no. 10,  pp. 1367-1372,  Oct.,  2004.</span>
<span class="sd">      http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf</span>

<span class="sd">[2]   L. P. Cordella, P. Foggia, C. Sansone, M. Vento, &quot;An Improved</span>
<span class="sd">      Algorithm for Matching Large Graphs&quot;, 3rd IAPR-TC15 Workshop</span>
<span class="sd">      on Graph-based Representations in Pattern Recognition, Cuen,</span>
<span class="sd">      pp. 149-159, 2001.</span>
<span class="sd">      https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5342</span>

<span class="sd">See Also</span>
<span class="sd">--------</span>
<span class="sd">syntactic_feasibility(), semantic_feasibility()</span>

<span class="sd">Notes</span>
<span class="sd">-----</span>

<span class="sd">The implementation handles both directed and undirected graphs as well</span>
<span class="sd">as multigraphs.</span>

<span class="sd">In general, the subgraph isomorphism problem is NP-complete whereas the</span>
<span class="sd">graph isomorphism problem is most likely not NP-complete (although no</span>
<span class="sd">polynomial-time algorithm is known to exist).</span>

<span class="sd">&quot;&quot;&quot;</span>

<span class="c1"># This work was originally coded by Christopher Ellison</span>
<span class="c1"># as part of the Computational Mechanics Python (CMPy) project.</span>
<span class="c1"># James P. Crutchfield, principal investigator.</span>
<span class="c1"># Complexity Sciences Center and Physics Department, UC Davis.</span>

<span class="kn">import</span> <span class="nn">sys</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;GraphMatcher&quot;</span><span class="p">,</span> <span class="s2">&quot;DiGraphMatcher&quot;</span><span class="p">]</span>


<span class="k">class</span> <span class="nc">GraphMatcher</span><span class="p">:</span>
    <span class="sd">&quot;&quot;&quot;Implementation of VF2 algorithm for matching undirected graphs.</span>

<span class="sd">    Suitable for Graph and MultiGraph instances.</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G1</span><span class="p">,</span> <span class="n">G2</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Initialize GraphMatcher.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        G1,G2: NetworkX Graph or MultiGraph instances.</span>
<span class="sd">           The two graphs to check for isomorphism or monomorphism.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        To create a GraphMatcher which checks for syntactic feasibility:</span>

<span class="sd">        &gt;&gt;&gt; from networkx.algorithms import isomorphism</span>
<span class="sd">        &gt;&gt;&gt; G1 = nx.path_graph(4)</span>
<span class="sd">        &gt;&gt;&gt; G2 = nx.path_graph(4)</span>
<span class="sd">        &gt;&gt;&gt; GM = isomorphism.GraphMatcher(G1, G2)</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G1</span> <span class="o">=</span> <span class="n">G1</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G2</span> <span class="o">=</span> <span class="n">G2</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G1_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G1</span><span class="o">.</span><span class="n">nodes</span><span class="p">())</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G2_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G2</span><span class="o">.</span><span class="n">nodes</span><span class="p">())</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G2_node_order</span> <span class="o">=</span> <span class="p">{</span><span class="n">n</span><span class="p">:</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">n</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">G2</span><span class="p">)}</span>

        <span class="c1"># Set recursion limit.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">old_recursion_limit</span> <span class="o">=</span> <span class="n">sys</span><span class="o">.</span><span class="n">getrecursionlimit</span><span class="p">()</span>
        <span class="n">expected_max_recursion_level</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">)</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">old_recursion_limit</span> <span class="o">&lt;</span> <span class="mf">1.5</span> <span class="o">*</span> <span class="n">expected_max_recursion_level</span><span class="p">:</span>
            <span class="c1"># Give some breathing room.</span>
            <span class="n">sys</span><span class="o">.</span><span class="n">setrecursionlimit</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="mf">1.5</span> <span class="o">*</span> <span class="n">expected_max_recursion_level</span><span class="p">))</span>

        <span class="c1"># Declare that we will be searching for a graph-graph isomorphism.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">=</span> <span class="s2">&quot;graph&quot;</span>

        <span class="c1"># Initialize state</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">initialize</span><span class="p">()</span>

    <span class="k">def</span> <span class="nf">reset_recursion_limit</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Restores the recursion limit.&quot;&quot;&quot;</span>
        <span class="c1"># TODO:</span>
        <span class="c1"># Currently, we use recursion and set the recursion level higher.</span>
        <span class="c1"># It would be nice to restore the level, but because the</span>
        <span class="c1"># (Di)GraphMatcher classes make use of cyclic references, garbage</span>
        <span class="c1"># collection will never happen when we define __del__() to</span>
        <span class="c1"># restore the recursion level. The result is a memory leak.</span>
        <span class="c1"># So for now, we do not automatically restore the recursion level,</span>
        <span class="c1"># and instead provide a method to do this manually. Eventually,</span>
        <span class="c1"># we should turn this into a non-recursive implementation.</span>
        <span class="n">sys</span><span class="o">.</span><span class="n">setrecursionlimit</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">old_recursion_limit</span><span class="p">)</span>

<div class="viewcode-block" id="GraphMatcher.candidate_pairs_iter"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.candidate_pairs_iter.html#networkx.algorithms.isomorphism.GraphMatcher.candidate_pairs_iter">[docs]</a>    <span class="k">def</span> <span class="nf">candidate_pairs_iter</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Iterator over candidate pairs of nodes in G1 and G2.&quot;&quot;&quot;</span>

        <span class="c1"># All computations are done using the current state!</span>

        <span class="n">G1_nodes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1_nodes</span>
        <span class="n">G2_nodes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2_nodes</span>
        <span class="n">min_key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2_node_order</span><span class="o">.</span><span class="fm">__getitem__</span>

        <span class="c1"># First we compute the inout-terminal sets.</span>
        <span class="n">T1_inout</span> <span class="o">=</span> <span class="p">[</span><span class="n">node</span> <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">inout_1</span> <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">]</span>
        <span class="n">T2_inout</span> <span class="o">=</span> <span class="p">[</span><span class="n">node</span> <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">inout_2</span> <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">]</span>

        <span class="c1"># If T1_inout and T2_inout are both nonempty.</span>
        <span class="c1"># P(s) = T1_inout x {min T2_inout}</span>
        <span class="k">if</span> <span class="n">T1_inout</span> <span class="ow">and</span> <span class="n">T2_inout</span><span class="p">:</span>
            <span class="n">node_2</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">T2_inout</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="n">min_key</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">node_1</span> <span class="ow">in</span> <span class="n">T1_inout</span><span class="p">:</span>
                <span class="k">yield</span> <span class="n">node_1</span><span class="p">,</span> <span class="n">node_2</span>

        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># If T1_inout and T2_inout were both empty....</span>
            <span class="c1"># P(s) = (N_1 - M_1) x {min (N_2 - M_2)}</span>
            <span class="c1"># if not (T1_inout or T2_inout):  # as suggested by  [2], incorrect</span>
            <span class="k">if</span> <span class="mi">1</span><span class="p">:</span>  <span class="c1"># as inferred from [1], correct</span>
                <span class="c1"># First we determine the candidate node for G2</span>
                <span class="n">other_node</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G2_nodes</span> <span class="o">-</span> <span class="nb">set</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">),</span> <span class="n">key</span><span class="o">=</span><span class="n">min_key</span><span class="p">)</span>
                <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">:</span>
                    <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                        <span class="k">yield</span> <span class="n">node</span><span class="p">,</span> <span class="n">other_node</span></div>

        <span class="c1"># For all other cases, we don&#39;t have any candidate pairs.</span>

<div class="viewcode-block" id="GraphMatcher.initialize"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.initialize.html#networkx.algorithms.isomorphism.GraphMatcher.initialize">[docs]</a>    <span class="k">def</span> <span class="nf">initialize</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Reinitializes the state of the algorithm.</span>

<span class="sd">        This method should be redefined if using something other than GMState.</span>
<span class="sd">        If only subclassing GraphMatcher, a redefinition is not necessary.</span>

<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># core_1[n] contains the index of the node paired with n, which is m,</span>
        <span class="c1">#           provided n is in the mapping.</span>
        <span class="c1"># core_2[m] contains the index of the node paired with m, which is n,</span>
        <span class="c1">#           provided m is in the mapping.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span> <span class="o">=</span> <span class="p">{}</span>

        <span class="c1"># See the paper for definitions of M_x and T_x^{y}</span>

        <span class="c1"># inout_1[n]  is non-zero if n is in M_1 or in T_1^{inout}</span>
        <span class="c1"># inout_2[m]  is non-zero if m is in M_2 or in T_2^{inout}</span>
        <span class="c1">#</span>
        <span class="c1"># The value stored is the depth of the SSR tree when the node became</span>
        <span class="c1"># part of the corresponding set.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">inout_1</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">inout_2</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="c1"># Practically, these sets simply store the nodes in the subgraph.</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">state</span> <span class="o">=</span> <span class="n">GMState</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>

        <span class="c1"># Provide a convenient way to access the isomorphism mapping.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span></div>

<div class="viewcode-block" id="GraphMatcher.is_isomorphic"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.is_isomorphic.html#networkx.algorithms.isomorphism.GraphMatcher.is_isomorphic">[docs]</a>    <span class="k">def</span> <span class="nf">is_isomorphic</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Returns True if G1 and G2 are isomorphic graphs.&quot;&quot;&quot;</span>

        <span class="c1"># Let&#39;s do two very quick checks!</span>
        <span class="c1"># QUESTION: Should we call faster_graph_could_be_isomorphic(G1,G2)?</span>
        <span class="c1"># For now, I just copy the code.</span>

        <span class="c1"># Check global properties</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">order</span><span class="p">()</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">order</span><span class="p">():</span>
            <span class="k">return</span> <span class="kc">False</span>

        <span class="c1"># Check local properties</span>
        <span class="n">d1</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">d</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">degree</span><span class="p">())</span>
        <span class="n">d2</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">d</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">degree</span><span class="p">())</span>
        <span class="k">if</span> <span class="n">d1</span> <span class="o">!=</span> <span class="n">d2</span><span class="p">:</span>
            <span class="k">return</span> <span class="kc">False</span>

        <span class="k">try</span><span class="p">:</span>
            <span class="n">x</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">isomorphisms_iter</span><span class="p">())</span>
            <span class="k">return</span> <span class="kc">True</span>
        <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>
            <span class="k">return</span> <span class="kc">False</span></div>

<div class="viewcode-block" id="GraphMatcher.isomorphisms_iter"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.isomorphisms_iter.html#networkx.algorithms.isomorphism.GraphMatcher.isomorphisms_iter">[docs]</a>    <span class="k">def</span> <span class="nf">isomorphisms_iter</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Generator over isomorphisms between G1 and G2.&quot;&quot;&quot;</span>
        <span class="c1"># Declare that we are looking for a graph-graph isomorphism.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">=</span> <span class="s2">&quot;graph&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">initialize</span><span class="p">()</span>
        <span class="k">yield from</span> <span class="bp">self</span><span class="o">.</span><span class="n">match</span><span class="p">()</span></div>

<div class="viewcode-block" id="GraphMatcher.match"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.match.html#networkx.algorithms.isomorphism.GraphMatcher.match">[docs]</a>    <span class="k">def</span> <span class="nf">match</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Extends the isomorphism mapping.</span>

<span class="sd">        This function is called recursively to determine if a complete</span>
<span class="sd">        isomorphism can be found between G1 and G2.  It cleans up the class</span>
<span class="sd">        variables after each recursive call. If an isomorphism is found,</span>
<span class="sd">        we yield the mapping.</span>

<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">)</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">):</span>
            <span class="c1"># Save the final mapping, otherwise garbage collection deletes it.</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
            <span class="c1"># The mapping is complete.</span>
            <span class="k">yield</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">candidate_pairs_iter</span><span class="p">():</span>
                <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">syntactic_feasibility</span><span class="p">(</span><span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">semantic_feasibility</span><span class="p">(</span><span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="c1"># Recursive call, adding the feasible state.</span>
                        <span class="n">newstate</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">state</span><span class="o">.</span><span class="vm">__class__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">)</span>
                        <span class="k">yield from</span> <span class="bp">self</span><span class="o">.</span><span class="n">match</span><span class="p">()</span>

                        <span class="c1"># restore data structures</span>
                        <span class="n">newstate</span><span class="o">.</span><span class="n">restore</span><span class="p">()</span></div>

    <span class="k">def</span> <span class="nf">semantic_feasibility</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Returns True if adding (G1_node, G2_node) is symantically feasible.</span>

<span class="sd">        The semantic feasibility function should return True if it is</span>
<span class="sd">        acceptable to add the candidate pair (G1_node, G2_node) to the current</span>
<span class="sd">        partial isomorphism mapping.   The logic should focus on semantic</span>
<span class="sd">        information contained in the edge data or a formalized node class.</span>

<span class="sd">        By acceptable, we mean that the subsequent mapping can still become a</span>
<span class="sd">        complete isomorphism mapping.  Thus, if adding the candidate pair</span>
<span class="sd">        definitely makes it so that the subsequent mapping cannot become a</span>
<span class="sd">        complete isomorphism mapping, then this function must return False.</span>

<span class="sd">        The default semantic feasibility function always returns True. The</span>
<span class="sd">        effect is that semantics are not considered in the matching of G1</span>
<span class="sd">        and G2.</span>

<span class="sd">        The semantic checks might differ based on the what type of test is</span>
<span class="sd">        being performed.  A keyword description of the test is stored in</span>
<span class="sd">        self.test.  Here is a quick description of the currently implemented</span>
<span class="sd">        tests::</span>

<span class="sd">          test=&#39;graph&#39;</span>
<span class="sd">            Indicates that the graph matcher is looking for a graph-graph</span>
<span class="sd">            isomorphism.</span>

<span class="sd">          test=&#39;subgraph&#39;</span>
<span class="sd">            Indicates that the graph matcher is looking for a subgraph-graph</span>
<span class="sd">            isomorphism such that a subgraph of G1 is isomorphic to G2.</span>

<span class="sd">          test=&#39;mono&#39;</span>
<span class="sd">            Indicates that the graph matcher is looking for a subgraph-graph</span>
<span class="sd">            monomorphism such that a subgraph of G1 is monomorphic to G2.</span>

<span class="sd">        Any subclass which redefines semantic_feasibility() must maintain</span>
<span class="sd">        the above form to keep the match() method functional. Implementations</span>
<span class="sd">        should consider multigraphs.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="kc">True</span>

<div class="viewcode-block" id="GraphMatcher.subgraph_is_isomorphic"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.subgraph_is_isomorphic.html#networkx.algorithms.isomorphism.GraphMatcher.subgraph_is_isomorphic">[docs]</a>    <span class="k">def</span> <span class="nf">subgraph_is_isomorphic</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Returns True if a subgraph of G1 is isomorphic to G2.&quot;&quot;&quot;</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">x</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">subgraph_isomorphisms_iter</span><span class="p">())</span>
            <span class="k">return</span> <span class="kc">True</span>
        <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>
            <span class="k">return</span> <span class="kc">False</span></div>

    <span class="k">def</span> <span class="nf">subgraph_is_monomorphic</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Returns True if a subgraph of G1 is monomorphic to G2.&quot;&quot;&quot;</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">x</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">subgraph_monomorphisms_iter</span><span class="p">())</span>
            <span class="k">return</span> <span class="kc">True</span>
        <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>
            <span class="k">return</span> <span class="kc">False</span>

    <span class="c1">#    subgraph_is_isomorphic.__doc__ += &quot;\n&quot; + subgraph.replace(&#39;\n&#39;,&#39;\n&#39;+indent)</span>

<div class="viewcode-block" id="GraphMatcher.subgraph_isomorphisms_iter"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.subgraph_isomorphisms_iter.html#networkx.algorithms.isomorphism.GraphMatcher.subgraph_isomorphisms_iter">[docs]</a>    <span class="k">def</span> <span class="nf">subgraph_isomorphisms_iter</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Generator over isomorphisms between a subgraph of G1 and G2.&quot;&quot;&quot;</span>
        <span class="c1"># Declare that we are looking for graph-subgraph isomorphism.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">=</span> <span class="s2">&quot;subgraph&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">initialize</span><span class="p">()</span>
        <span class="k">yield from</span> <span class="bp">self</span><span class="o">.</span><span class="n">match</span><span class="p">()</span></div>

    <span class="k">def</span> <span class="nf">subgraph_monomorphisms_iter</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Generator over monomorphisms between a subgraph of G1 and G2.&quot;&quot;&quot;</span>
        <span class="c1"># Declare that we are looking for graph-subgraph monomorphism.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">=</span> <span class="s2">&quot;mono&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">initialize</span><span class="p">()</span>
        <span class="k">yield from</span> <span class="bp">self</span><span class="o">.</span><span class="n">match</span><span class="p">()</span>

    <span class="c1">#    subgraph_isomorphisms_iter.__doc__ += &quot;\n&quot; + subgraph.replace(&#39;\n&#39;,&#39;\n&#39;+indent)</span>

<div class="viewcode-block" id="GraphMatcher.syntactic_feasibility"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.GraphMatcher.syntactic_feasibility.html#networkx.algorithms.isomorphism.GraphMatcher.syntactic_feasibility">[docs]</a>    <span class="k">def</span> <span class="nf">syntactic_feasibility</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Returns True if adding (G1_node, G2_node) is syntactically feasible.</span>

<span class="sd">        This function returns True if it is adding the candidate pair</span>
<span class="sd">        to the current partial isomorphism/monomorphism mapping is allowable.</span>
<span class="sd">        The addition is allowable if the inclusion of the candidate pair does</span>
<span class="sd">        not make it impossible for an isomorphism/monomorphism to be found.</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># The VF2 algorithm was designed to work with graphs having, at most,</span>
        <span class="c1"># one edge connecting any two nodes.  This is not the case when</span>
        <span class="c1"># dealing with an MultiGraphs.</span>
        <span class="c1">#</span>
        <span class="c1"># Basically, when we test the look-ahead rules R_neighbor, we will</span>
        <span class="c1"># make sure that the number of edges are checked. We also add</span>
        <span class="c1"># a R_self check to verify that the number of selfloops is acceptable.</span>
        <span class="c1">#</span>
        <span class="c1"># Users might be comparing Graph instances with MultiGraph instances.</span>
        <span class="c1"># So the generic GraphMatcher class must work with MultiGraphs.</span>
        <span class="c1"># Care must be taken since the value in the innermost dictionary is a</span>
        <span class="c1"># singlet for Graph instances.  For MultiGraphs, the value in the</span>
        <span class="c1"># innermost dictionary is a list.</span>

        <span class="c1">###</span>
        <span class="c1"># Test at each step to get a return value as soon as possible.</span>
        <span class="c1">###</span>

        <span class="c1"># Look ahead 0</span>

        <span class="c1"># R_self</span>

        <span class="c1"># The number of selfloops for G1_node must equal the number of</span>
        <span class="c1"># self-loops for G2_node. Without this check, we would fail on</span>
        <span class="c1"># R_neighbor at the next recursion level. But it is good to prune the</span>
        <span class="c1"># search tree now.</span>

        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G1_node</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">)</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                <span class="n">G2_node</span><span class="p">,</span> <span class="n">G2_node</span>
            <span class="p">):</span>
                <span class="k">return</span> <span class="kc">False</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G1_node</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                <span class="n">G2_node</span><span class="p">,</span> <span class="n">G2_node</span>
            <span class="p">):</span>
                <span class="k">return</span> <span class="kc">False</span>

        <span class="c1"># R_neighbor</span>

        <span class="c1"># For each neighbor n&#39; of n in the partial mapping, the corresponding</span>
        <span class="c1"># node m&#39; is a neighbor of m, and vice versa. Also, the number of</span>
        <span class="c1"># edges must be equal.</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">!=</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                    <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">neighbor</span><span class="p">]</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]):</span>
                        <span class="k">return</span> <span class="kc">False</span>
                    <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="n">neighbor</span><span class="p">,</span> <span class="n">G1_node</span>
                    <span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">neighbor</span><span class="p">],</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>

        <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
            <span class="k">if</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">neighbor</span><span class="p">]</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]):</span>
                    <span class="k">return</span> <span class="kc">False</span>
                <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">neighbor</span><span class="p">],</span> <span class="n">G1_node</span>
                    <span class="p">)</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">neighbor</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">neighbor</span><span class="p">],</span> <span class="n">G1_node</span>
                    <span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">neighbor</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>

        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">!=</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
            <span class="c1"># Look ahead 1</span>

            <span class="c1"># R_terminout</span>
            <span class="c1"># The number of neighbors of n in T_1^{inout} is equal to the</span>
            <span class="c1"># number of neighbors of m that are in T_2^{inout}, and vice versa.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">inout_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">neighbor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">inout_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">neighbor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

            <span class="c1"># Look ahead 2</span>

            <span class="c1"># R_new</span>

            <span class="c1"># The number of neighbors of n that are neither in the core_1 nor</span>
            <span class="c1"># T_1^{inout} is equal to the number of neighbors of m</span>
            <span class="c1"># that are neither in core_2 nor T_2^{inout}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">neighbor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">inout_1</span><span class="p">:</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">neighbor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">inout_2</span><span class="p">:</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

        <span class="c1"># Otherwise, this node pair is syntactically feasible!</span>
        <span class="k">return</span> <span class="kc">True</span></div>


<span class="k">class</span> <span class="nc">DiGraphMatcher</span><span class="p">(</span><span class="n">GraphMatcher</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Implementation of VF2 algorithm for matching directed graphs.</span>

<span class="sd">    Suitable for DiGraph and MultiDiGraph instances.</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G1</span><span class="p">,</span> <span class="n">G2</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Initialize DiGraphMatcher.</span>

<span class="sd">        G1 and G2 should be nx.Graph or nx.MultiGraph instances.</span>

<span class="sd">        Examples</span>
<span class="sd">        --------</span>
<span class="sd">        To create a GraphMatcher which checks for syntactic feasibility:</span>

<span class="sd">        &gt;&gt;&gt; from networkx.algorithms import isomorphism</span>
<span class="sd">        &gt;&gt;&gt; G1 = nx.DiGraph(nx.path_graph(4, create_using=nx.DiGraph()))</span>
<span class="sd">        &gt;&gt;&gt; G2 = nx.DiGraph(nx.path_graph(4, create_using=nx.DiGraph()))</span>
<span class="sd">        &gt;&gt;&gt; DiGM = isomorphism.DiGraphMatcher(G1, G2)</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">G1</span><span class="p">,</span> <span class="n">G2</span><span class="p">)</span>

<div class="viewcode-block" id="DiGraphMatcher.candidate_pairs_iter"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.DiGraphMatcher.candidate_pairs_iter.html#networkx.algorithms.isomorphism.DiGraphMatcher.candidate_pairs_iter">[docs]</a>    <span class="k">def</span> <span class="nf">candidate_pairs_iter</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Iterator over candidate pairs of nodes in G1 and G2.&quot;&quot;&quot;</span>

        <span class="c1"># All computations are done using the current state!</span>

        <span class="n">G1_nodes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1_nodes</span>
        <span class="n">G2_nodes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2_nodes</span>
        <span class="n">min_key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2_node_order</span><span class="o">.</span><span class="fm">__getitem__</span>

        <span class="c1"># First we compute the out-terminal sets.</span>
        <span class="n">T1_out</span> <span class="o">=</span> <span class="p">[</span><span class="n">node</span> <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_1</span> <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">]</span>
        <span class="n">T2_out</span> <span class="o">=</span> <span class="p">[</span><span class="n">node</span> <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_2</span> <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">]</span>

        <span class="c1"># If T1_out and T2_out are both nonempty.</span>
        <span class="c1"># P(s) = T1_out x {min T2_out}</span>
        <span class="k">if</span> <span class="n">T1_out</span> <span class="ow">and</span> <span class="n">T2_out</span><span class="p">:</span>
            <span class="n">node_2</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">T2_out</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="n">min_key</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">node_1</span> <span class="ow">in</span> <span class="n">T1_out</span><span class="p">:</span>
                <span class="k">yield</span> <span class="n">node_1</span><span class="p">,</span> <span class="n">node_2</span>

        <span class="c1"># If T1_out and T2_out were both empty....</span>
        <span class="c1"># We compute the in-terminal sets.</span>

        <span class="c1"># elif not (T1_out or T2_out):   # as suggested by [2], incorrect</span>
        <span class="k">else</span><span class="p">:</span>  <span class="c1"># as suggested by [1], correct</span>
            <span class="n">T1_in</span> <span class="o">=</span> <span class="p">[</span><span class="n">node</span> <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_1</span> <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">]</span>
            <span class="n">T2_in</span> <span class="o">=</span> <span class="p">[</span><span class="n">node</span> <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_2</span> <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">]</span>

            <span class="c1"># If T1_in and T2_in are both nonempty.</span>
            <span class="c1"># P(s) = T1_out x {min T2_out}</span>
            <span class="k">if</span> <span class="n">T1_in</span> <span class="ow">and</span> <span class="n">T2_in</span><span class="p">:</span>
                <span class="n">node_2</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">T2_in</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="n">min_key</span><span class="p">)</span>
                <span class="k">for</span> <span class="n">node_1</span> <span class="ow">in</span> <span class="n">T1_in</span><span class="p">:</span>
                    <span class="k">yield</span> <span class="n">node_1</span><span class="p">,</span> <span class="n">node_2</span>

            <span class="c1"># If all terminal sets are empty...</span>
            <span class="c1"># P(s) = (N_1 - M_1) x {min (N_2 - M_2)}</span>

            <span class="c1"># elif not (T1_in or T2_in):   # as suggested by  [2], incorrect</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># as inferred from [1], correct</span>
                <span class="n">node_2</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G2_nodes</span> <span class="o">-</span> <span class="nb">set</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">),</span> <span class="n">key</span><span class="o">=</span><span class="n">min_key</span><span class="p">)</span>
                <span class="k">for</span> <span class="n">node_1</span> <span class="ow">in</span> <span class="n">G1_nodes</span><span class="p">:</span>
                    <span class="k">if</span> <span class="n">node_1</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                        <span class="k">yield</span> <span class="n">node_1</span><span class="p">,</span> <span class="n">node_2</span></div>

        <span class="c1"># For all other cases, we don&#39;t have any candidate pairs.</span>

<div class="viewcode-block" id="DiGraphMatcher.initialize"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.DiGraphMatcher.initialize.html#networkx.algorithms.isomorphism.DiGraphMatcher.initialize">[docs]</a>    <span class="k">def</span> <span class="nf">initialize</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Reinitializes the state of the algorithm.</span>

<span class="sd">        This method should be redefined if using something other than DiGMState.</span>
<span class="sd">        If only subclassing GraphMatcher, a redefinition is not necessary.</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># core_1[n] contains the index of the node paired with n, which is m,</span>
        <span class="c1">#           provided n is in the mapping.</span>
        <span class="c1"># core_2[m] contains the index of the node paired with m, which is n,</span>
        <span class="c1">#           provided m is in the mapping.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span> <span class="o">=</span> <span class="p">{}</span>

        <span class="c1"># See the paper for definitions of M_x and T_x^{y}</span>

        <span class="c1"># in_1[n]  is non-zero if n is in M_1 or in T_1^{in}</span>
        <span class="c1"># out_1[n] is non-zero if n is in M_1 or in T_1^{out}</span>
        <span class="c1">#</span>
        <span class="c1"># in_2[m]  is non-zero if m is in M_2 or in T_2^{in}</span>
        <span class="c1"># out_2[m] is non-zero if m is in M_2 or in T_2^{out}</span>
        <span class="c1">#</span>
        <span class="c1"># The value stored is the depth of the search tree when the node became</span>
        <span class="c1"># part of the corresponding set.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">in_1</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">in_2</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">out_1</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">out_2</span> <span class="o">=</span> <span class="p">{}</span>

        <span class="bp">self</span><span class="o">.</span><span class="n">state</span> <span class="o">=</span> <span class="n">DiGMState</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>

        <span class="c1"># Provide a convenient way to access the isomorphism mapping.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span></div>

<div class="viewcode-block" id="DiGraphMatcher.syntactic_feasibility"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.isomorphism.DiGraphMatcher.syntactic_feasibility.html#networkx.algorithms.isomorphism.DiGraphMatcher.syntactic_feasibility">[docs]</a>    <span class="k">def</span> <span class="nf">syntactic_feasibility</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Returns True if adding (G1_node, G2_node) is syntactically feasible.</span>

<span class="sd">        This function returns True if it is adding the candidate pair</span>
<span class="sd">        to the current partial isomorphism/monomorphism mapping is allowable.</span>
<span class="sd">        The addition is allowable if the inclusion of the candidate pair does</span>
<span class="sd">        not make it impossible for an isomorphism/monomorphism to be found.</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># The VF2 algorithm was designed to work with graphs having, at most,</span>
        <span class="c1"># one edge connecting any two nodes.  This is not the case when</span>
        <span class="c1"># dealing with an MultiGraphs.</span>
        <span class="c1">#</span>
        <span class="c1"># Basically, when we test the look-ahead rules R_pred and R_succ, we</span>
        <span class="c1"># will make sure that the number of edges are checked.  We also add</span>
        <span class="c1"># a R_self check to verify that the number of selfloops is acceptable.</span>

        <span class="c1"># Users might be comparing DiGraph instances with MultiDiGraph</span>
        <span class="c1"># instances. So the generic DiGraphMatcher class must work with</span>
        <span class="c1"># MultiDiGraphs. Care must be taken since the value in the innermost</span>
        <span class="c1"># dictionary is a singlet for DiGraph instances.  For MultiDiGraphs,</span>
        <span class="c1"># the value in the innermost dictionary is a list.</span>

        <span class="c1">###</span>
        <span class="c1"># Test at each step to get a return value as soon as possible.</span>
        <span class="c1">###</span>

        <span class="c1"># Look ahead 0</span>

        <span class="c1"># R_self</span>

        <span class="c1"># The number of selfloops for G1_node must equal the number of</span>
        <span class="c1"># self-loops for G2_node. Without this check, we would fail on R_pred</span>
        <span class="c1"># at the next recursion level. This should prune the tree even further.</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G1_node</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">)</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                <span class="n">G2_node</span><span class="p">,</span> <span class="n">G2_node</span>
            <span class="p">):</span>
                <span class="k">return</span> <span class="kc">False</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G1_node</span><span class="p">,</span> <span class="n">G1_node</span><span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                <span class="n">G2_node</span><span class="p">,</span> <span class="n">G2_node</span>
            <span class="p">):</span>
                <span class="k">return</span> <span class="kc">False</span>

        <span class="c1"># R_pred</span>

        <span class="c1"># For each predecessor n&#39; of n in the partial mapping, the</span>
        <span class="c1"># corresponding node m&#39; is a predecessor of m, and vice versa. Also,</span>
        <span class="c1"># the number of edges must be equal</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">!=</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                    <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">predecessor</span><span class="p">]</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]):</span>
                        <span class="k">return</span> <span class="kc">False</span>
                    <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="n">predecessor</span><span class="p">,</span> <span class="n">G1_node</span>
                    <span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">predecessor</span><span class="p">],</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>

        <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
            <span class="k">if</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">predecessor</span><span class="p">]</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]):</span>
                    <span class="k">return</span> <span class="kc">False</span>
                <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">predecessor</span><span class="p">],</span> <span class="n">G1_node</span>
                    <span class="p">)</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">predecessor</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">predecessor</span><span class="p">],</span> <span class="n">G1_node</span>
                    <span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">predecessor</span><span class="p">,</span> <span class="n">G2_node</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>

        <span class="c1"># R_succ</span>

        <span class="c1"># For each successor n&#39; of n in the partial mapping, the corresponding</span>
        <span class="c1"># node m&#39; is a successor of m, and vice versa. Also, the number of</span>
        <span class="c1"># edges must be equal.</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">!=</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                    <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">successor</span><span class="p">]</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]):</span>
                        <span class="k">return</span> <span class="kc">False</span>
                    <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="n">G1_node</span><span class="p">,</span> <span class="n">successor</span>
                    <span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G2_node</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">successor</span><span class="p">]):</span>
                        <span class="k">return</span> <span class="kc">False</span>

        <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
            <span class="k">if</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">successor</span><span class="p">]</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]):</span>
                    <span class="k">return</span> <span class="kc">False</span>
                <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="n">G1_node</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">successor</span><span class="p">]</span>
                    <span class="p">)</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G2_node</span><span class="p">,</span> <span class="n">successor</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span>
                        <span class="n">G1_node</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">successor</span><span class="p">]</span>
                    <span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">(</span><span class="n">G2_node</span><span class="p">,</span> <span class="n">successor</span><span class="p">):</span>
                        <span class="k">return</span> <span class="kc">False</span>

        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">!=</span> <span class="s2">&quot;mono&quot;</span><span class="p">:</span>

            <span class="c1"># Look ahead 1</span>

            <span class="c1"># R_termin</span>
            <span class="c1"># The number of predecessors of n that are in T_1^{in} is equal to the</span>
            <span class="c1"># number of predecessors of m that are in T_2^{in}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

            <span class="c1"># The number of successors of n that are in T_1^{in} is equal to the</span>
            <span class="c1"># number of successors of m that are in T_2^{in}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

            <span class="c1"># R_termout</span>

            <span class="c1"># The number of predecessors of n that are in T_1^{out} is equal to the</span>
            <span class="c1"># number of predecessors of m that are in T_2^{out}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

            <span class="c1"># The number of successors of n that are in T_1^{out} is equal to the</span>
            <span class="c1"># number of successors of m that are in T_2^{out}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">core_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

            <span class="c1"># Look ahead 2</span>

            <span class="c1"># R_new</span>

            <span class="c1"># The number of predecessors of n that are neither in the core_1 nor</span>
            <span class="c1"># T_1^{in} nor T_1^{out} is equal to the number of predecessors of m</span>
            <span class="c1"># that are neither in core_2 nor T_2^{in} nor T_2^{out}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">pred</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

            <span class="c1"># The number of successors of n that are neither in the core_1 nor</span>
            <span class="c1"># T_1^{in} nor T_1^{out} is equal to the number of successors of m</span>
            <span class="c1"># that are neither in core_2 nor T_2^{in} nor T_2^{out}.</span>
            <span class="n">num1</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_1</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_1</span><span class="p">):</span>
                    <span class="n">num1</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="n">num2</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]:</span>
                <span class="k">if</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_2</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_2</span><span class="p">):</span>
                    <span class="n">num2</span> <span class="o">+=</span> <span class="mi">1</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span> <span class="o">==</span> <span class="s2">&quot;graph&quot;</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">==</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># self.test == &#39;subgraph&#39;</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">num1</span> <span class="o">&gt;=</span> <span class="n">num2</span><span class="p">):</span>
                    <span class="k">return</span> <span class="kc">False</span>

        <span class="c1"># Otherwise, this node pair is syntactically feasible!</span>
        <span class="k">return</span> <span class="kc">True</span></div>


<span class="k">class</span> <span class="nc">GMState</span><span class="p">:</span>
    <span class="sd">&quot;&quot;&quot;Internal representation of state for the GraphMatcher class.</span>

<span class="sd">    This class is used internally by the GraphMatcher class.  It is used</span>
<span class="sd">    only to store state specific data. There will be at most G2.order() of</span>
<span class="sd">    these objects in memory at a time, due to the depth-first search</span>
<span class="sd">    strategy employed by the VF2 algorithm.</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">GM</span><span class="p">,</span> <span class="n">G1_node</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">G2_node</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Initializes GMState object.</span>

<span class="sd">        Pass in the GraphMatcher to which this GMState belongs and the</span>
<span class="sd">        new node pair that will be added to the GraphMatcher&#39;s current</span>
<span class="sd">        isomorphism mapping.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">GM</span> <span class="o">=</span> <span class="n">GM</span>

        <span class="c1"># Initialize the last stored node pair.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span> <span class="o">=</span> <span class="kc">None</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span> <span class="o">=</span> <span class="kc">None</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">depth</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">)</span>

        <span class="k">if</span> <span class="n">G1_node</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">G2_node</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="c1"># Then we reset the class variables</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">inout_1</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">inout_2</span> <span class="o">=</span> <span class="p">{}</span>

        <span class="c1"># Watch out! G1_node == 0 should evaluate to True.</span>
        <span class="k">if</span> <span class="n">G1_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">G2_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="c1"># Add the node pair to the isomorphism mapping.</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]</span> <span class="o">=</span> <span class="n">G2_node</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]</span> <span class="o">=</span> <span class="n">G1_node</span>

            <span class="c1"># Store the node that was added last.</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span> <span class="o">=</span> <span class="n">G1_node</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span> <span class="o">=</span> <span class="n">G2_node</span>

            <span class="c1"># Now we must update the other two vectors.</span>
            <span class="c1"># We will add only if it is not in there already!</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">depth</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">)</span>

            <span class="c1"># First we add the new nodes...</span>
            <span class="k">if</span> <span class="n">G1_node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">inout_1</span><span class="p">:</span>
                <span class="n">GM</span><span class="o">.</span><span class="n">inout_1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>
            <span class="k">if</span> <span class="n">G2_node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">inout_2</span><span class="p">:</span>
                <span class="n">GM</span><span class="o">.</span><span class="n">inout_2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

            <span class="c1"># Now we add every other node...</span>

            <span class="c1"># Updates for T_1^{inout}</span>
            <span class="n">new_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                <span class="n">new_nodes</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
                    <span class="p">[</span><span class="n">neighbor</span> <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">G1</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="k">if</span> <span class="n">neighbor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">]</span>
                <span class="p">)</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">new_nodes</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">inout_1</span><span class="p">:</span>
                    <span class="n">GM</span><span class="o">.</span><span class="n">inout_1</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

            <span class="c1"># Updates for T_2^{inout}</span>
            <span class="n">new_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">:</span>
                <span class="n">new_nodes</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
                    <span class="p">[</span><span class="n">neighbor</span> <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">G2</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="k">if</span> <span class="n">neighbor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">]</span>
                <span class="p">)</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">new_nodes</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">inout_2</span><span class="p">:</span>
                    <span class="n">GM</span><span class="o">.</span><span class="n">inout_2</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

    <span class="k">def</span> <span class="nf">restore</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Deletes the GMState object and restores the class variables.&quot;&quot;&quot;</span>
        <span class="c1"># First we remove the node that was added from the core vectors.</span>
        <span class="c1"># Watch out! G1_node == 0 should evaluate to True.</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span><span class="p">]</span>
            <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span><span class="p">]</span>

        <span class="c1"># Now we revert the other two vectors.</span>
        <span class="c1"># Thus, we delete all entries which have this depth level.</span>
        <span class="k">for</span> <span class="n">vector</span> <span class="ow">in</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">inout_1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">inout_2</span><span class="p">):</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">vector</span><span class="o">.</span><span class="n">keys</span><span class="p">()):</span>
                <span class="k">if</span> <span class="n">vector</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span><span class="p">:</span>
                    <span class="k">del</span> <span class="n">vector</span><span class="p">[</span><span class="n">node</span><span class="p">]</span>


<span class="k">class</span> <span class="nc">DiGMState</span><span class="p">:</span>
    <span class="sd">&quot;&quot;&quot;Internal representation of state for the DiGraphMatcher class.</span>

<span class="sd">    This class is used internally by the DiGraphMatcher class.  It is used</span>
<span class="sd">    only to store state specific data. There will be at most G2.order() of</span>
<span class="sd">    these objects in memory at a time, due to the depth-first search</span>
<span class="sd">    strategy employed by the VF2 algorithm.</span>

<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">GM</span><span class="p">,</span> <span class="n">G1_node</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">G2_node</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Initializes DiGMState object.</span>

<span class="sd">        Pass in the DiGraphMatcher to which this DiGMState belongs and the</span>
<span class="sd">        new node pair that will be added to the GraphMatcher&#39;s current</span>
<span class="sd">        isomorphism mapping.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">GM</span> <span class="o">=</span> <span class="n">GM</span>

        <span class="c1"># Initialize the last stored node pair.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span> <span class="o">=</span> <span class="kc">None</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span> <span class="o">=</span> <span class="kc">None</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">depth</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">)</span>

        <span class="k">if</span> <span class="n">G1_node</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">G2_node</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="c1"># Then we reset the class variables</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">in_1</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">in_2</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">out_1</span> <span class="o">=</span> <span class="p">{}</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">out_2</span> <span class="o">=</span> <span class="p">{}</span>

        <span class="c1"># Watch out! G1_node == 0 should evaluate to True.</span>
        <span class="k">if</span> <span class="n">G1_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">G2_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="c1"># Add the node pair to the isomorphism mapping.</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]</span> <span class="o">=</span> <span class="n">G2_node</span>
            <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]</span> <span class="o">=</span> <span class="n">G1_node</span>

            <span class="c1"># Store the node that was added last.</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span> <span class="o">=</span> <span class="n">G1_node</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span> <span class="o">=</span> <span class="n">G2_node</span>

            <span class="c1"># Now we must update the other four vectors.</span>
            <span class="c1"># We will add only if it is not in there already!</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">depth</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">)</span>

            <span class="c1"># First we add the new nodes...</span>
            <span class="k">for</span> <span class="n">vector</span> <span class="ow">in</span> <span class="p">(</span><span class="n">GM</span><span class="o">.</span><span class="n">in_1</span><span class="p">,</span> <span class="n">GM</span><span class="o">.</span><span class="n">out_1</span><span class="p">):</span>
                <span class="k">if</span> <span class="n">G1_node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">vector</span><span class="p">:</span>
                    <span class="n">vector</span><span class="p">[</span><span class="n">G1_node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>
            <span class="k">for</span> <span class="n">vector</span> <span class="ow">in</span> <span class="p">(</span><span class="n">GM</span><span class="o">.</span><span class="n">in_2</span><span class="p">,</span> <span class="n">GM</span><span class="o">.</span><span class="n">out_2</span><span class="p">):</span>
                <span class="k">if</span> <span class="n">G2_node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">vector</span><span class="p">:</span>
                    <span class="n">vector</span><span class="p">[</span><span class="n">G2_node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

            <span class="c1"># Now we add every other node...</span>

            <span class="c1"># Updates for T_1^{in}</span>
            <span class="n">new_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                <span class="n">new_nodes</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
                    <span class="p">[</span>
                        <span class="n">predecessor</span>
                        <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">predecessors</span><span class="p">(</span><span class="n">node</span><span class="p">)</span>
                        <span class="k">if</span> <span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span>
                    <span class="p">]</span>
                <span class="p">)</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">new_nodes</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">in_1</span><span class="p">:</span>
                    <span class="n">GM</span><span class="o">.</span><span class="n">in_1</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

            <span class="c1"># Updates for T_2^{in}</span>
            <span class="n">new_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">:</span>
                <span class="n">new_nodes</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
                    <span class="p">[</span>
                        <span class="n">predecessor</span>
                        <span class="k">for</span> <span class="n">predecessor</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">predecessors</span><span class="p">(</span><span class="n">node</span><span class="p">)</span>
                        <span class="k">if</span> <span class="n">predecessor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span>
                    <span class="p">]</span>
                <span class="p">)</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">new_nodes</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">in_2</span><span class="p">:</span>
                    <span class="n">GM</span><span class="o">.</span><span class="n">in_2</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

            <span class="c1"># Updates for T_1^{out}</span>
            <span class="n">new_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">:</span>
                <span class="n">new_nodes</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
                    <span class="p">[</span>
                        <span class="n">successor</span>
                        <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">G1</span><span class="o">.</span><span class="n">successors</span><span class="p">(</span><span class="n">node</span><span class="p">)</span>
                        <span class="k">if</span> <span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_1</span>
                    <span class="p">]</span>
                <span class="p">)</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">new_nodes</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">out_1</span><span class="p">:</span>
                    <span class="n">GM</span><span class="o">.</span><span class="n">out_1</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

            <span class="c1"># Updates for T_2^{out}</span>
            <span class="n">new_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">:</span>
                <span class="n">new_nodes</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
                    <span class="p">[</span>
                        <span class="n">successor</span>
                        <span class="k">for</span> <span class="n">successor</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">G2</span><span class="o">.</span><span class="n">successors</span><span class="p">(</span><span class="n">node</span><span class="p">)</span>
                        <span class="k">if</span> <span class="n">successor</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">core_2</span>
                    <span class="p">]</span>
                <span class="p">)</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">new_nodes</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">node</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">GM</span><span class="o">.</span><span class="n">out_2</span><span class="p">:</span>
                    <span class="n">GM</span><span class="o">.</span><span class="n">out_2</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span>

    <span class="k">def</span> <span class="nf">restore</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Deletes the DiGMState object and restores the class variables.&quot;&quot;&quot;</span>

        <span class="c1"># First we remove the node that was added from the core vectors.</span>
        <span class="c1"># Watch out! G1_node == 0 should evaluate to True.</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">core_1</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">G1_node</span><span class="p">]</span>
            <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">core_2</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">G2_node</span><span class="p">]</span>

        <span class="c1"># Now we revert the other four vectors.</span>
        <span class="c1"># Thus, we delete all entries which have this depth level.</span>
        <span class="k">for</span> <span class="n">vector</span> <span class="ow">in</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">in_1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">in_2</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">out_1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">GM</span><span class="o">.</span><span class="n">out_2</span><span class="p">):</span>
            <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">vector</span><span class="o">.</span><span class="n">keys</span><span class="p">()):</span>
                <span class="k">if</span> <span class="n">vector</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth</span><span class="p">:</span>
                    <span class="k">del</span> <span class="n">vector</span><span class="p">[</span><span class="n">node</span><span class="p">]</span>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<div id="searchbox"></div>
</div>

<div class="toc-item">
  
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2022, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>