summaryrefslogtreecommitdiff
path: root/_modules/networkx/algorithms/connectivity/edge_augmentation.html
blob: 84d8553ca6632866d81b8c0315f39218244e64fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.algorithms.connectivity.edge_augmentation &#8212; NetworkX 3.0rc2.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
    <script src="../../../../_static/jquery.js"></script>
    <script src="../../../../_static/underscore.js"></script>
    <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../../_static/doctools.js"></script>
    <script src="../../../../_static/sphinx_highlight.js"></script>
    <script src="../../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/algorithms/connectivity/edge_augmentation';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/algorithms/connectivity/edge_augmentation.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.0rc2.dev0 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en">
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.algorithms.connectivity.edge_augmentation</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Algorithms for finding k-edge-augmentations</span>

<span class="sd">A k-edge-augmentation is a set of edges, that once added to a graph, ensures</span>
<span class="sd">that the graph is k-edge-connected; i.e. the graph cannot be disconnected</span>
<span class="sd">unless k or more edges are removed.  Typically, the goal is to find the</span>
<span class="sd">augmentation with minimum weight.  In general, it is not guaranteed that a</span>
<span class="sd">k-edge-augmentation exists.</span>

<span class="sd">See Also</span>
<span class="sd">--------</span>
<span class="sd">:mod:`edge_kcomponents` : algorithms for finding k-edge-connected components</span>
<span class="sd">:mod:`connectivity` : algorithms for determening edge connectivity.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">itertools</span> <span class="k">as</span> <span class="nn">it</span>
<span class="kn">import</span> <span class="nn">math</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">defaultdict</span><span class="p">,</span> <span class="n">namedtuple</span>

<span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>
<span class="kn">from</span> <span class="nn">networkx.utils</span> <span class="kn">import</span> <span class="n">not_implemented_for</span><span class="p">,</span> <span class="n">py_random_state</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;k_edge_augmentation&quot;</span><span class="p">,</span> <span class="s2">&quot;is_k_edge_connected&quot;</span><span class="p">,</span> <span class="s2">&quot;is_locally_k_edge_connected&quot;</span><span class="p">]</span>


<div class="viewcode-block" id="is_k_edge_connected"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.is_k_edge_connected.html#networkx.algorithms.connectivity.edge_augmentation.is_k_edge_connected">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">is_k_edge_connected</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Tests to see if a graph is k-edge-connected.</span>

<span class="sd">    Is it impossible to disconnect the graph by removing fewer than k edges?</span>
<span class="sd">    If so, then G is k-edge-connected.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    k : integer</span>
<span class="sd">        edge connectivity to test for</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    boolean</span>
<span class="sd">        True if G is k-edge-connected.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`is_locally_k_edge_connected`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.barbell_graph(10, 0)</span>
<span class="sd">    &gt;&gt;&gt; nx.is_k_edge_connected(G, k=1)</span>
<span class="sd">    True</span>
<span class="sd">    &gt;&gt;&gt; nx.is_k_edge_connected(G, k=2)</span>
<span class="sd">    False</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">k</span> <span class="o">&lt;</span> <span class="mi">1</span><span class="p">:</span>
        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;k must be positive, not </span><span class="si">{</span><span class="n">k</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
    <span class="c1"># First try to quickly determine if G is not k-edge-connected</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">&lt;</span> <span class="n">k</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">False</span>
    <span class="k">elif</span> <span class="nb">any</span><span class="p">(</span><span class="n">d</span> <span class="o">&lt;</span> <span class="n">k</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">()):</span>
        <span class="k">return</span> <span class="kc">False</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="c1"># Otherwise perform the full check</span>
        <span class="k">if</span> <span class="n">k</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
        <span class="k">elif</span> <span class="n">k</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
            <span class="k">return</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">has_bridges</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">k</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">k</span></div>


<div class="viewcode-block" id="is_locally_k_edge_connected"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.is_locally_k_edge_connected.html#networkx.algorithms.connectivity.edge_augmentation.is_locally_k_edge_connected">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">is_locally_k_edge_connected</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">k</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Tests to see if an edge in a graph is locally k-edge-connected.</span>

<span class="sd">    Is it impossible to disconnect s and t by removing fewer than k edges?</span>
<span class="sd">    If so, then s and t are locally k-edge-connected in G.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node</span>

<span class="sd">    k : integer</span>
<span class="sd">        local edge connectivity for nodes s and t</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    boolean</span>
<span class="sd">        True if s and t are locally k-edge-connected in G.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`is_k_edge_connected`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.connectivity import is_locally_k_edge_connected</span>
<span class="sd">    &gt;&gt;&gt; G = nx.barbell_graph(10, 0)</span>
<span class="sd">    &gt;&gt;&gt; is_locally_k_edge_connected(G, 5, 15, k=1)</span>
<span class="sd">    True</span>
<span class="sd">    &gt;&gt;&gt; is_locally_k_edge_connected(G, 5, 15, k=2)</span>
<span class="sd">    False</span>
<span class="sd">    &gt;&gt;&gt; is_locally_k_edge_connected(G, 1, 5, k=2)</span>
<span class="sd">    True</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">k</span> <span class="o">&lt;</span> <span class="mi">1</span><span class="p">:</span>
        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;k must be positive, not </span><span class="si">{</span><span class="n">k</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>

    <span class="c1"># First try to quickly determine s, t is not k-locally-edge-connected in G</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">k</span> <span class="ow">or</span> <span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">t</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">k</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">False</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="c1"># Otherwise perform the full check</span>
        <span class="k">if</span> <span class="n">k</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">has_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">localk</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">connectivity</span><span class="o">.</span><span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">k</span><span class="p">)</span>
            <span class="k">return</span> <span class="n">localk</span> <span class="o">&gt;=</span> <span class="n">k</span></div>


<div class="viewcode-block" id="k_edge_augmentation"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">k_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">partial</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds set of edges to k-edge-connect G.</span>

<span class="sd">    Adding edges from the augmentation to G make it impossible to disconnect G</span>
<span class="sd">    unless k or more edges are removed. This function uses the most efficient</span>
<span class="sd">    function available (depending on the value of k and if the problem is</span>
<span class="sd">    weighted or unweighted) to search for a minimum weight subset of available</span>
<span class="sd">    edges that k-edge-connects G. In general, finding a k-edge-augmentation is</span>
<span class="sd">    NP-hard, so solutions are not guaranteed to be minimal. Furthermore, a</span>
<span class="sd">    k-edge-augmentation may not exist.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    k : integer</span>
<span class="sd">        Desired edge connectivity</span>

<span class="sd">    avail : dict or a set of 2 or 3 tuples</span>
<span class="sd">        The available edges that can be used in the augmentation.</span>

<span class="sd">        If unspecified, then all edges in the complement of G are available.</span>
<span class="sd">        Otherwise, each item is an available edge (with an optional weight).</span>

<span class="sd">        In the unweighted case, each item is an edge ``(u, v)``.</span>

<span class="sd">        In the weighted case, each item is a 3-tuple ``(u, v, d)`` or a dict</span>
<span class="sd">        with items ``(u, v): d``.  The third item, ``d``, can be a dictionary</span>
<span class="sd">        or a real number.  If ``d`` is a dictionary ``d[weight]``</span>
<span class="sd">        correspondings to the weight.</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if ``avail`` is a set of 3-tuples where the</span>
<span class="sd">        third item in each tuple is a dictionary.</span>

<span class="sd">    partial : boolean</span>
<span class="sd">        If partial is True and no feasible k-edge-augmentation exists, then all</span>
<span class="sd">        a partial k-edge-augmentation is generated. Adding the edges in a</span>
<span class="sd">        partial augmentation to G, minimizes the number of k-edge-connected</span>
<span class="sd">        components and maximizes the edge connectivity between those</span>
<span class="sd">        components. For details, see :func:`partial_k_edge_augmentation`.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges that, once added to G, would cause G to become k-edge-connected.</span>
<span class="sd">        If partial is False, an error is raised if this is not possible.</span>
<span class="sd">        Otherwise, generated edges form a partial augmentation, which</span>
<span class="sd">        k-edge-connects any part of G where it is possible, and maximally</span>
<span class="sd">        connects the remaining parts.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXUnfeasible</span>
<span class="sd">        If partial is False and no k-edge-augmentation exists.</span>

<span class="sd">    NetworkXNotImplemented</span>
<span class="sd">        If the input graph is directed or a multigraph.</span>

<span class="sd">    ValueError:</span>
<span class="sd">        If k is less than 1</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    When k=1 this returns an optimal solution.</span>

<span class="sd">    When k=2 and ``avail`` is None, this returns an optimal solution.</span>
<span class="sd">    Otherwise when k=2, this returns a 2-approximation of the optimal solution.</span>

<span class="sd">    For k&gt;3, this problem is NP-hard and this uses a randomized algorithm that</span>
<span class="sd">        produces a feasible solution, but provides no guarantees on the</span>
<span class="sd">        solution weight.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Unweighted cases</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4))</span>
<span class="sd">    &gt;&gt;&gt; G.add_node(5)</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=1))</span>
<span class="sd">    [(1, 5)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=2))</span>
<span class="sd">    [(1, 5), (5, 4)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=3))</span>
<span class="sd">    [(1, 4), (1, 5), (2, 5), (3, 5), (4, 5)]</span>
<span class="sd">    &gt;&gt;&gt; complement = list(nx.k_edge_augmentation(G, k=5, partial=True))</span>
<span class="sd">    &gt;&gt;&gt; G.add_edges_from(complement)</span>
<span class="sd">    &gt;&gt;&gt; nx.edge_connectivity(G)</span>
<span class="sd">    4</span>

<span class="sd">    &gt;&gt;&gt; # Weighted cases</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4))</span>
<span class="sd">    &gt;&gt;&gt; G.add_node(5)</span>
<span class="sd">    &gt;&gt;&gt; # avail can be a tuple with a dict</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 5, {&quot;weight&quot;: 11}), (2, 5, {&quot;weight&quot;: 10})]</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=1, avail=avail, weight=&quot;weight&quot;))</span>
<span class="sd">    [(2, 5)]</span>
<span class="sd">    &gt;&gt;&gt; # or avail can be a 3-tuple with a real number</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=2, avail=avail))</span>
<span class="sd">    [(1, 5), (2, 5), (4, 5)]</span>
<span class="sd">    &gt;&gt;&gt; # or avail can be a dict</span>
<span class="sd">    &gt;&gt;&gt; avail = {(1, 5): 11, (2, 5): 10, (4, 3): 1, (4, 5): 51}</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=2, avail=avail))</span>
<span class="sd">    [(1, 5), (2, 5), (4, 5)]</span>
<span class="sd">    &gt;&gt;&gt; # If augmentation is infeasible, then a partial solution can be found</span>
<span class="sd">    &gt;&gt;&gt; avail = {(1, 5): 11}</span>
<span class="sd">    &gt;&gt;&gt; sorted(nx.k_edge_augmentation(G, k=2, avail=avail, partial=True))</span>
<span class="sd">    [(1, 5)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">k</span> <span class="o">&lt;=</span> <span class="mi">0</span><span class="p">:</span>
            <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;k must be a positive integer, not </span><span class="si">{</span><span class="n">k</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
        <span class="k">elif</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">&lt;</span> <span class="n">k</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:</span>
            <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;impossible to </span><span class="si">{</span><span class="n">k</span><span class="si">}</span><span class="s2"> connect in graph with less than </span><span class="si">{</span><span class="n">k</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="si">}</span><span class="s2"> nodes&quot;</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span>
        <span class="k">elif</span> <span class="n">avail</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">avail</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_k_edge_connected</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="p">):</span>
                <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="s2">&quot;no available edges&quot;</span><span class="p">)</span>
            <span class="n">aug_edges</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">elif</span> <span class="n">k</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
            <span class="n">aug_edges</span> <span class="o">=</span> <span class="n">one_edge_augmentation</span><span class="p">(</span>
                <span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">partial</span><span class="o">=</span><span class="n">partial</span>
            <span class="p">)</span>
        <span class="k">elif</span> <span class="n">k</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
            <span class="n">aug_edges</span> <span class="o">=</span> <span class="n">bridge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># raise NotImplementedError(f&#39;not implemented for k&gt;2. k={k}&#39;)</span>
            <span class="n">aug_edges</span> <span class="o">=</span> <span class="n">greedy_k_edge_augmentation</span><span class="p">(</span>
                <span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">0</span>
            <span class="p">)</span>
        <span class="c1"># Do eager evaulation so we can catch any exceptions</span>
        <span class="c1"># Before executing partial code.</span>
        <span class="k">yield from</span> <span class="nb">list</span><span class="p">(</span><span class="n">aug_edges</span><span class="p">)</span>
    <span class="k">except</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">partial</span><span class="p">:</span>
            <span class="c1"># Return all available edges</span>
            <span class="k">if</span> <span class="n">avail</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="n">aug_edges</span> <span class="o">=</span> <span class="n">complement_edges</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="c1"># If we can&#39;t k-edge-connect the entire graph, try to</span>
                <span class="c1"># k-edge-connect as much as possible</span>
                <span class="n">aug_edges</span> <span class="o">=</span> <span class="n">partial_k_edge_augmentation</span><span class="p">(</span>
                    <span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span>
                <span class="p">)</span>
            <span class="k">yield from</span> <span class="n">aug_edges</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="k">raise</span></div>


<span class="k">def</span> <span class="nf">partial_k_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds augmentation that k-edge-connects as much of the graph as possible.</span>

<span class="sd">    When a k-edge-augmentation is not possible, we can still try to find a</span>
<span class="sd">    small set of edges that partially k-edge-connects as much of the graph as</span>
<span class="sd">    possible. All possible edges are generated between remaining parts.</span>
<span class="sd">    This minimizes the number of k-edge-connected subgraphs in the resulting</span>
<span class="sd">    graph and maxmizes the edge connectivity between those subgraphs.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    k : integer</span>
<span class="sd">        Desired edge connectivity</span>

<span class="sd">    avail : dict or a set of 2 or 3 tuples</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if ``avail`` is a set of 3-tuples.</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the partial augmentation of G. These edges k-edge-connect any</span>
<span class="sd">        part of G where it is possible, and maximally connects the remaining</span>
<span class="sd">        parts. In other words, all edges from avail are generated except for</span>
<span class="sd">        those within subgraphs that have already become k-edge-connected.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Construct H that augments G with all edges in avail.</span>
<span class="sd">    Find the k-edge-subgraphs of H.</span>
<span class="sd">    For each k-edge-subgraph, if the number of nodes is more than k, then find</span>
<span class="sd">    the k-edge-augmentation of that graph and add it to the solution. Then add</span>
<span class="sd">    all edges in avail between k-edge subgraphs to the solution.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`k_edge_augmentation`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))</span>
<span class="sd">    &gt;&gt;&gt; G.add_node(8)</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), (1, 8)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(partial_k_edge_augmentation(G, k=2, avail=avail))</span>
<span class="sd">    [(1, 5), (1, 8)]</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">_edges_between_disjoint</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">only1</span><span class="p">,</span> <span class="n">only2</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;finds edges between disjoint nodes&quot;&quot;&quot;</span>
        <span class="n">only1_adj</span> <span class="o">=</span> <span class="p">{</span><span class="n">u</span><span class="p">:</span> <span class="nb">set</span><span class="p">(</span><span class="n">H</span><span class="o">.</span><span class="n">adj</span><span class="p">[</span><span class="n">u</span><span class="p">])</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">only1</span><span class="p">}</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">neighbs</span> <span class="ow">in</span> <span class="n">only1_adj</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
            <span class="c1"># Find the neighbors of u in only1 that are also in only2</span>
            <span class="n">neighbs12</span> <span class="o">=</span> <span class="n">neighbs</span><span class="o">.</span><span class="n">intersection</span><span class="p">(</span><span class="n">only2</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">neighbs12</span><span class="p">:</span>
                <span class="k">yield</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>

    <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span> <span class="o">=</span> <span class="n">_unpack_available_edges</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">G</span><span class="o">=</span><span class="n">G</span><span class="p">)</span>

    <span class="c1"># Find which parts of the graph can be k-edge-connected</span>
    <span class="n">H</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">H</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span>
        <span class="p">(</span>
            <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="p">{</span><span class="s2">&quot;weight&quot;</span><span class="p">:</span> <span class="n">w</span><span class="p">,</span> <span class="s2">&quot;generator&quot;</span><span class="p">:</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)})</span>
            <span class="k">for</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">),</span> <span class="n">w</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="n">avail_w</span><span class="p">)</span>
        <span class="p">)</span>
    <span class="p">)</span>
    <span class="n">k_edge_subgraphs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">k_edge_subgraphs</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">))</span>

    <span class="c1"># Generate edges to k-edge-connect internal subgraphs</span>
    <span class="k">for</span> <span class="n">nodes</span> <span class="ow">in</span> <span class="n">k_edge_subgraphs</span><span class="p">:</span>
        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">nodes</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
            <span class="c1"># Get the k-edge-connected subgraph</span>
            <span class="n">C</span> <span class="o">=</span> <span class="n">H</span><span class="o">.</span><span class="n">subgraph</span><span class="p">(</span><span class="n">nodes</span><span class="p">)</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
            <span class="c1"># Find the internal edges that were available</span>
            <span class="n">sub_avail</span> <span class="o">=</span> <span class="p">{</span>
                <span class="n">d</span><span class="p">[</span><span class="s2">&quot;generator&quot;</span><span class="p">]:</span> <span class="n">d</span><span class="p">[</span><span class="s2">&quot;weight&quot;</span><span class="p">]</span>
                <span class="k">for</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span> <span class="ow">in</span> <span class="n">C</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
                <span class="k">if</span> <span class="s2">&quot;generator&quot;</span> <span class="ow">in</span> <span class="n">d</span>
            <span class="p">}</span>
            <span class="c1"># Remove potential augmenting edges</span>
            <span class="n">C</span><span class="o">.</span><span class="n">remove_edges_from</span><span class="p">(</span><span class="n">sub_avail</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
            <span class="c1"># Find a subset of these edges that makes the compoment</span>
            <span class="c1"># k-edge-connected and ignore the rest</span>
            <span class="k">yield from</span> <span class="n">nx</span><span class="o">.</span><span class="n">k_edge_augmentation</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">sub_avail</span><span class="p">)</span>

    <span class="c1"># Generate all edges between CCs that could not be k-edge-connected</span>
    <span class="k">for</span> <span class="n">cc1</span><span class="p">,</span> <span class="n">cc2</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">combinations</span><span class="p">(</span><span class="n">k_edge_subgraphs</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span>
        <span class="k">for</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">_edges_between_disjoint</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">cc1</span><span class="p">,</span> <span class="n">cc2</span><span class="p">):</span>
            <span class="n">d</span> <span class="o">=</span> <span class="n">H</span><span class="o">.</span><span class="n">get_edge_data</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
            <span class="n">edge</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;generator&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">edge</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">yield</span> <span class="n">edge</span>


<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">one_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">partial</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds minimum weight set of edges to connect G.</span>

<span class="sd">    Equivalent to :func:`k_edge_augmentation` when k=1. Adding the resulting</span>
<span class="sd">    edges to G will make it 1-edge-connected. The solution is optimal for both</span>
<span class="sd">    weighted and non-weighted variants.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    avail : dict or a set of 2 or 3 tuples</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if ``avail`` is a set of 3-tuples.</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    partial : boolean</span>
<span class="sd">        If partial is True and no feasible k-edge-augmentation exists, then the</span>
<span class="sd">        augmenting edges minimize the number of connected components.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the one-augmentation of G</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXUnfeasible</span>
<span class="sd">        If partial is False and no one-edge-augmentation exists.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Uses either :func:`unconstrained_one_edge_augmentation` or</span>
<span class="sd">    :func:`weighted_one_edge_augmentation` depending on whether ``avail`` is</span>
<span class="sd">    specified. Both algorithms are based on finding a minimum spanning tree.</span>
<span class="sd">    As such both algorithms find optimal solutions and run in linear time.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`k_edge_augmentation`</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">avail</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">unconstrained_one_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">weighted_one_edge_augmentation</span><span class="p">(</span>
            <span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">partial</span><span class="o">=</span><span class="n">partial</span>
        <span class="p">)</span>


<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">bridge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds the a set of edges that bridge connects G.</span>

<span class="sd">    Equivalent to :func:`k_edge_augmentation` when k=2, and partial=False.</span>
<span class="sd">    Adding the resulting edges to G will make it 2-edge-connected.  If no</span>
<span class="sd">    constraints are specified the returned set of edges is minimum an optimal,</span>
<span class="sd">    otherwise the solution is approximated.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    avail : dict or a set of 2 or 3 tuples</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if ``avail`` is a set of 3-tuples.</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the bridge-augmentation of G</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXUnfeasible</span>
<span class="sd">        If no bridge-augmentation exists.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    If there are no constraints the solution can be computed in linear time</span>
<span class="sd">    using :func:`unconstrained_bridge_augmentation`. Otherwise, the problem</span>
<span class="sd">    becomes NP-hard and is the solution is approximated by</span>
<span class="sd">    :func:`weighted_bridge_augmentation`.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`k_edge_augmentation`</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">&lt;</span> <span class="mi">3</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="s2">&quot;impossible to bridge connect less than 3 nodes&quot;</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">avail</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">unconstrained_bridge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">weighted_bridge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>


<span class="c1"># --- Algorithms and Helpers ---</span>


<span class="k">def</span> <span class="nf">_ordered</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Returns the nodes in an undirected edge in lower-triangular order&quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="k">if</span> <span class="n">u</span> <span class="o">&lt;</span> <span class="n">v</span> <span class="k">else</span> <span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">u</span><span class="p">)</span>


<span class="k">def</span> <span class="nf">_unpack_available_edges</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">G</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Helper to separate avail into edges and corresponding weights&quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">weight</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">weight</span> <span class="o">=</span> <span class="s2">&quot;weight&quot;</span>
    <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
        <span class="n">avail_uv</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">avail</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
        <span class="n">avail_w</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">avail</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
    <span class="k">else</span><span class="p">:</span>

        <span class="k">def</span> <span class="nf">_try_getitem</span><span class="p">(</span><span class="n">d</span><span class="p">):</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="k">return</span> <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span>
            <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
                <span class="k">return</span> <span class="n">d</span>

        <span class="n">avail_uv</span> <span class="o">=</span> <span class="p">[</span><span class="n">tup</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">2</span><span class="p">]</span> <span class="k">for</span> <span class="n">tup</span> <span class="ow">in</span> <span class="n">avail</span><span class="p">]</span>
        <span class="n">avail_w</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">tup</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">_try_getitem</span><span class="p">(</span><span class="n">tup</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="k">for</span> <span class="n">tup</span> <span class="ow">in</span> <span class="n">avail</span><span class="p">]</span>

    <span class="k">if</span> <span class="n">G</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="c1"># Edges already in the graph are filtered</span>
        <span class="n">flags</span> <span class="o">=</span> <span class="p">[</span><span class="ow">not</span> <span class="n">G</span><span class="o">.</span><span class="n">has_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">avail_uv</span><span class="p">]</span>
        <span class="n">avail_uv</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">it</span><span class="o">.</span><span class="n">compress</span><span class="p">(</span><span class="n">avail_uv</span><span class="p">,</span> <span class="n">flags</span><span class="p">))</span>
        <span class="n">avail_w</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">it</span><span class="o">.</span><span class="n">compress</span><span class="p">(</span><span class="n">avail_w</span><span class="p">,</span> <span class="n">flags</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span>


<span class="n">MetaEdge</span> <span class="o">=</span> <span class="n">namedtuple</span><span class="p">(</span><span class="s2">&quot;MetaEdge&quot;</span><span class="p">,</span> <span class="p">(</span><span class="s2">&quot;meta_uv&quot;</span><span class="p">,</span> <span class="s2">&quot;uv&quot;</span><span class="p">,</span> <span class="s2">&quot;w&quot;</span><span class="p">))</span>


<span class="k">def</span> <span class="nf">_lightest_meta_edges</span><span class="p">(</span><span class="n">mapping</span><span class="p">,</span> <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Maps available edges in the original graph to edges in the metagraph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    mapping : dict</span>
<span class="sd">        mapping produced by :func:`collapse`, that maps each node in the</span>
<span class="sd">        original graph to a node in the meta graph</span>

<span class="sd">    avail_uv : list</span>
<span class="sd">        list of edges</span>

<span class="sd">    avail_w : list</span>
<span class="sd">        list of edge weights</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Each node in the metagraph is a k-edge-connected component in the original</span>
<span class="sd">    graph.  We don&#39;t care about any edge within the same k-edge-connected</span>
<span class="sd">    component, so we ignore self edges.  We also are only intereseted in the</span>
<span class="sd">    minimum weight edge bridging each k-edge-connected component so, we group</span>
<span class="sd">    the edges by meta-edge and take the lightest in each group.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Each group represents a meta-node</span>
<span class="sd">    &gt;&gt;&gt; groups = ([1, 2, 3], [4, 5], [6])</span>
<span class="sd">    &gt;&gt;&gt; mapping = {n: meta_n for meta_n, ns in enumerate(groups) for n in ns}</span>
<span class="sd">    &gt;&gt;&gt; avail_uv = [(1, 2), (3, 6), (1, 4), (5, 2), (6, 1), (2, 6), (3, 1)]</span>
<span class="sd">    &gt;&gt;&gt; avail_w = [20, 99, 20, 15, 50, 99, 20]</span>
<span class="sd">    &gt;&gt;&gt; sorted(_lightest_meta_edges(mapping, avail_uv, avail_w))</span>
<span class="sd">    [MetaEdge(meta_uv=(0, 1), uv=(5, 2), w=15), MetaEdge(meta_uv=(0, 2), uv=(6, 1), w=50)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">grouped_wuv</span> <span class="o">=</span> <span class="n">defaultdict</span><span class="p">(</span><span class="nb">list</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">avail_w</span><span class="p">,</span> <span class="n">avail_uv</span><span class="p">):</span>
        <span class="c1"># Order the meta-edge so it can be used as a dict key</span>
        <span class="n">meta_uv</span> <span class="o">=</span> <span class="n">_ordered</span><span class="p">(</span><span class="n">mapping</span><span class="p">[</span><span class="n">u</span><span class="p">],</span> <span class="n">mapping</span><span class="p">[</span><span class="n">v</span><span class="p">])</span>
        <span class="c1"># Group each available edge using the meta-edge as a key</span>
        <span class="n">grouped_wuv</span><span class="p">[</span><span class="n">meta_uv</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">w</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>

    <span class="c1"># Now that all available edges are grouped, choose one per group</span>
    <span class="k">for</span> <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">),</span> <span class="n">choices_wuv</span> <span class="ow">in</span> <span class="n">grouped_wuv</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
        <span class="c1"># Ignore available edges within the same meta-node</span>
        <span class="k">if</span> <span class="n">mu</span> <span class="o">!=</span> <span class="n">mv</span><span class="p">:</span>
            <span class="c1"># Choose the lightest available edge belonging to each meta-edge</span>
            <span class="n">w</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">choices_wuv</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">MetaEdge</span><span class="p">((</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">),</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">),</span> <span class="n">w</span><span class="p">)</span>


<span class="k">def</span> <span class="nf">unconstrained_one_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds the smallest set of edges to connect G.</span>

<span class="sd">    This is a variant of the unweighted MST problem.</span>
<span class="sd">    If G is not empty, a feasible solution always exists.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the one-edge-augmentation of G</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`one_edge_augmentation`</span>
<span class="sd">    :func:`k_edge_augmentation`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.Graph([(1, 2), (2, 3), (4, 5)])</span>
<span class="sd">    &gt;&gt;&gt; G.add_nodes_from([6, 7, 8])</span>
<span class="sd">    &gt;&gt;&gt; sorted(unconstrained_one_edge_augmentation(G))</span>
<span class="sd">    [(1, 4), (4, 6), (6, 7), (7, 8)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">ccs1</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">connected_components</span><span class="p">(</span><span class="n">G</span><span class="p">))</span>
    <span class="n">C</span> <span class="o">=</span> <span class="n">collapse</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">ccs1</span><span class="p">)</span>
    <span class="c1"># When we are not constrained, we can just make a meta graph tree.</span>
    <span class="n">meta_nodes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">C</span><span class="o">.</span><span class="n">nodes</span><span class="p">())</span>
    <span class="c1"># build a path in the metagraph</span>
    <span class="n">meta_aug</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">meta_nodes</span><span class="p">,</span> <span class="n">meta_nodes</span><span class="p">[</span><span class="mi">1</span><span class="p">:]))</span>
    <span class="c1"># map that path to the original graph</span>
    <span class="n">inverse</span> <span class="o">=</span> <span class="n">defaultdict</span><span class="p">(</span><span class="nb">list</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">C</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="s2">&quot;mapping&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
        <span class="n">inverse</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">mu</span><span class="p">,</span> <span class="n">mv</span> <span class="ow">in</span> <span class="n">meta_aug</span><span class="p">:</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">inverse</span><span class="p">[</span><span class="n">mu</span><span class="p">][</span><span class="mi">0</span><span class="p">],</span> <span class="n">inverse</span><span class="p">[</span><span class="n">mv</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>


<span class="k">def</span> <span class="nf">weighted_one_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">partial</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds the minimum weight set of edges to connect G if one exists.</span>

<span class="sd">    This is a variant of the weighted MST problem.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    avail : dict or a set of 2 or 3 tuples</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if ``avail`` is a set of 3-tuples.</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    partial : boolean</span>
<span class="sd">        If partial is True and no feasible k-edge-augmentation exists, then the</span>
<span class="sd">        augmenting edges minimize the number of connected components.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the subset of avail chosen to connect G.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`one_edge_augmentation`</span>
<span class="sd">    :func:`k_edge_augmentation`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.Graph([(1, 2), (2, 3), (4, 5)])</span>
<span class="sd">    &gt;&gt;&gt; G.add_nodes_from([6, 7, 8])</span>
<span class="sd">    &gt;&gt;&gt; # any edge not in avail has an implicit weight of infinity</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 3), (1, 5), (4, 7), (4, 8), (6, 1), (8, 1), (8, 2)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(weighted_one_edge_augmentation(G, avail))</span>
<span class="sd">    [(1, 5), (4, 7), (6, 1), (8, 1)]</span>
<span class="sd">    &gt;&gt;&gt; # find another solution by giving large weights to edges in the</span>
<span class="sd">    &gt;&gt;&gt; # previous solution (note some of the old edges must be used)</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 3), (1, 5, 99), (4, 7, 9), (6, 1, 99), (8, 1, 99), (8, 2)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(weighted_one_edge_augmentation(G, avail))</span>
<span class="sd">    [(1, 5), (4, 7), (6, 1), (8, 2)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span> <span class="o">=</span> <span class="n">_unpack_available_edges</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">G</span><span class="o">=</span><span class="n">G</span><span class="p">)</span>
    <span class="c1"># Collapse CCs in the original graph into nodes in a metagraph</span>
    <span class="c1"># Then find an MST of the metagraph instead of the original graph</span>
    <span class="n">C</span> <span class="o">=</span> <span class="n">collapse</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nx</span><span class="o">.</span><span class="n">connected_components</span><span class="p">(</span><span class="n">G</span><span class="p">))</span>
    <span class="n">mapping</span> <span class="o">=</span> <span class="n">C</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="s2">&quot;mapping&quot;</span><span class="p">]</span>
    <span class="c1"># Assign each available edge to an edge in the metagraph</span>
    <span class="n">candidate_mapping</span> <span class="o">=</span> <span class="n">_lightest_meta_edges</span><span class="p">(</span><span class="n">mapping</span><span class="p">,</span> <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span><span class="p">)</span>
    <span class="c1"># nx.set_edge_attributes(C, name=&#39;weight&#39;, values=0)</span>
    <span class="n">C</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span>
        <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">,</span> <span class="p">{</span><span class="s2">&quot;weight&quot;</span><span class="p">:</span> <span class="n">w</span><span class="p">,</span> <span class="s2">&quot;generator&quot;</span><span class="p">:</span> <span class="n">uv</span><span class="p">})</span>
        <span class="k">for</span> <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">),</span> <span class="n">uv</span><span class="p">,</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">candidate_mapping</span>
    <span class="p">)</span>
    <span class="c1"># Find MST of the meta graph</span>
    <span class="n">meta_mst</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">minimum_spanning_tree</span><span class="p">(</span><span class="n">C</span><span class="p">)</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">partial</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">meta_mst</span><span class="p">):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="s2">&quot;Not possible to connect G with available edges&quot;</span><span class="p">)</span>
    <span class="c1"># Yield the edge that generated the meta-edge</span>
    <span class="k">for</span> <span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">meta_mst</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
        <span class="k">if</span> <span class="s2">&quot;generator&quot;</span> <span class="ow">in</span> <span class="n">d</span><span class="p">:</span>
            <span class="n">edge</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="s2">&quot;generator&quot;</span><span class="p">]</span>
            <span class="k">yield</span> <span class="n">edge</span>


<span class="k">def</span> <span class="nf">unconstrained_bridge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds an optimal 2-edge-augmentation of G using the fewest edges.</span>

<span class="sd">    This is an implementation of the algorithm detailed in [1]_.</span>
<span class="sd">    The basic idea is to construct a meta-graph of bridge-ccs, connect leaf</span>
<span class="sd">    nodes of the trees to connect the entire graph, and finally connect the</span>
<span class="sd">    leafs of the tree in dfs-preorder to bridge connect the entire graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the bridge augmentation of G</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Input: a graph G.</span>
<span class="sd">    First find the bridge components of G and collapse each bridge-cc into a</span>
<span class="sd">    node of a metagraph graph C, which is guaranteed to be a forest of trees.</span>

<span class="sd">    C contains p &quot;leafs&quot; --- nodes with exactly one incident edge.</span>
<span class="sd">    C contains q &quot;isolated nodes&quot; --- nodes with no incident edges.</span>

<span class="sd">    Theorem: If p + q &gt; 1, then at least :math:`ceil(p / 2) + q` edges are</span>
<span class="sd">        needed to bridge connect C. This algorithm achieves this min number.</span>

<span class="sd">    The method first adds enough edges to make G into a tree and then pairs</span>
<span class="sd">    leafs in a simple fashion.</span>

<span class="sd">    Let n be the number of trees in C. Let v(i) be an isolated vertex in the</span>
<span class="sd">    i-th tree if one exists, otherwise it is a pair of distinct leafs nodes</span>
<span class="sd">    in the i-th tree. Alternating edges from these sets (i.e.  adding edges</span>
<span class="sd">    A1 = [(v(i)[0], v(i + 1)[1]), v(i + 1)[0], v(i + 2)[1])...]) connects C</span>
<span class="sd">    into a tree T. This tree has p&#39; = p + 2q - 2(n -1) leafs and no isolated</span>
<span class="sd">    vertices. A1 has n - 1 edges. The next step finds ceil(p&#39; / 2) edges to</span>
<span class="sd">    biconnect any tree with p&#39; leafs.</span>

<span class="sd">    Convert T into an arborescence T&#39; by picking an arbitrary root node with</span>
<span class="sd">    degree &gt;= 2 and directing all edges away from the root. Note the</span>
<span class="sd">    implementation implicitly constructs T&#39;.</span>

<span class="sd">    The leafs of T are the nodes with no existing edges in T&#39;.</span>
<span class="sd">    Order the leafs of T&#39; by DFS prorder. Then break this list in half</span>
<span class="sd">    and add the zipped pairs to A2.</span>

<span class="sd">    The set A = A1 + A2 is the minimum augmentation in the metagraph.</span>

<span class="sd">    To convert this to edges in the original graph</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Eswaran, Kapali P., and R. Endre Tarjan. (1975) Augmentation problems.</span>
<span class="sd">        http://epubs.siam.org/doi/abs/10.1137/0205044</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`bridge_augmentation`</span>
<span class="sd">    :func:`k_edge_augmentation`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))</span>
<span class="sd">    &gt;&gt;&gt; sorted(unconstrained_bridge_augmentation(G))</span>
<span class="sd">    [(1, 7)]</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 2, 4, 5, 6, 7))</span>
<span class="sd">    &gt;&gt;&gt; sorted(unconstrained_bridge_augmentation(G))</span>
<span class="sd">    [(1, 3), (3, 7)]</span>
<span class="sd">    &gt;&gt;&gt; G = nx.Graph([(0, 1), (0, 2), (1, 2)])</span>
<span class="sd">    &gt;&gt;&gt; G.add_node(4)</span>
<span class="sd">    &gt;&gt;&gt; sorted(unconstrained_bridge_augmentation(G))</span>
<span class="sd">    [(1, 4), (4, 0)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c1"># -----</span>
    <span class="c1"># Mapping of terms from (Eswaran and Tarjan):</span>
    <span class="c1">#     G = G_0 - the input graph</span>
    <span class="c1">#     C = G_0&#39; - the bridge condensation of G. (This is a forest of trees)</span>
    <span class="c1">#     A1 = A_1 - the edges to connect the forest into a tree</span>
    <span class="c1">#         leaf = pendant - a node with degree of 1</span>

    <span class="c1">#     alpha(v) = maps the node v in G to its meta-node in C</span>
    <span class="c1">#     beta(x) = maps the meta-node x in C to any node in the bridge</span>
    <span class="c1">#         component of G corresponding to x.</span>

    <span class="c1"># find the 2-edge-connected components of G</span>
    <span class="n">bridge_ccs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">connectivity</span><span class="o">.</span><span class="n">bridge_components</span><span class="p">(</span><span class="n">G</span><span class="p">))</span>
    <span class="c1"># condense G into an forest C</span>
    <span class="n">C</span> <span class="o">=</span> <span class="n">collapse</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">bridge_ccs</span><span class="p">)</span>

    <span class="c1"># Choose pairs of distinct leaf nodes in each tree. If this is not</span>
    <span class="c1"># possible then make a pair using the single isolated node in the tree.</span>
    <span class="n">vset1</span> <span class="o">=</span> <span class="p">[</span>
        <span class="nb">tuple</span><span class="p">(</span><span class="n">cc</span><span class="p">)</span> <span class="o">*</span> <span class="mi">2</span>  <span class="c1"># case1: an isolated node</span>
        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">cc</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span>
        <span class="k">else</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">cc</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="n">C</span><span class="o">.</span><span class="n">degree</span><span class="p">)[</span><span class="mi">0</span><span class="p">:</span><span class="mi">2</span><span class="p">]</span>  <span class="c1"># case2: pair of leaf nodes</span>
        <span class="k">for</span> <span class="n">cc</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">connected_components</span><span class="p">(</span><span class="n">C</span><span class="p">)</span>
    <span class="p">]</span>
    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">vset1</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
        <span class="c1"># Use this set to construct edges that connect C into a tree.</span>
        <span class="n">nodes1</span> <span class="o">=</span> <span class="p">[</span><span class="n">vs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">vs</span> <span class="ow">in</span> <span class="n">vset1</span><span class="p">]</span>
        <span class="n">nodes2</span> <span class="o">=</span> <span class="p">[</span><span class="n">vs</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">vs</span> <span class="ow">in</span> <span class="n">vset1</span><span class="p">]</span>
        <span class="n">A1</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">nodes1</span><span class="p">[</span><span class="mi">1</span><span class="p">:],</span> <span class="n">nodes2</span><span class="p">))</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">A1</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="c1"># Connect each tree in the forest to construct an arborescence</span>
    <span class="n">T</span> <span class="o">=</span> <span class="n">C</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">T</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">A1</span><span class="p">)</span>

    <span class="c1"># If there are only two leaf nodes, we simply connect them.</span>
    <span class="n">leafs</span> <span class="o">=</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">T</span><span class="o">.</span><span class="n">degree</span><span class="p">()</span> <span class="k">if</span> <span class="n">d</span> <span class="o">==</span> <span class="mi">1</span><span class="p">]</span>
    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">leafs</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
        <span class="n">A2</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">leafs</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
        <span class="n">A2</span> <span class="o">=</span> <span class="p">[</span><span class="nb">tuple</span><span class="p">(</span><span class="n">leafs</span><span class="p">)]</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="c1"># Choose an arbitrary non-leaf root</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">root</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">T</span><span class="o">.</span><span class="n">degree</span><span class="p">()</span> <span class="k">if</span> <span class="n">d</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">)</span>
        <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>  <span class="c1"># no nodes found with degree &gt; 1</span>
            <span class="k">return</span>
        <span class="c1"># order the leaves of C by (induced directed) preorder</span>
        <span class="n">v2</span> <span class="o">=</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">dfs_preorder_nodes</span><span class="p">(</span><span class="n">T</span><span class="p">,</span> <span class="n">root</span><span class="p">)</span> <span class="k">if</span> <span class="n">T</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">]</span>
        <span class="c1"># connecting first half of the leafs in pre-order to the second</span>
        <span class="c1"># half will bridge connect the tree with the fewest edges.</span>
        <span class="n">half</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">v2</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
        <span class="n">A2</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">v2</span><span class="p">[:</span><span class="n">half</span><span class="p">],</span> <span class="n">v2</span><span class="p">[</span><span class="o">-</span><span class="n">half</span><span class="p">:]))</span>

    <span class="c1"># collect the edges used to augment the original forest</span>
    <span class="n">aug_tree_edges</span> <span class="o">=</span> <span class="n">A1</span> <span class="o">+</span> <span class="n">A2</span>

    <span class="c1"># Construct the mapping (beta) from meta-nodes to regular nodes</span>
    <span class="n">inverse</span> <span class="o">=</span> <span class="n">defaultdict</span><span class="p">(</span><span class="nb">list</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">C</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="s2">&quot;mapping&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
        <span class="n">inverse</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
    <span class="c1"># sort so we choose minimum degree nodes first</span>
    <span class="n">inverse</span> <span class="o">=</span> <span class="p">{</span>
        <span class="n">mu</span><span class="p">:</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">mapped</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">u</span><span class="p">:</span> <span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">u</span><span class="p">),</span> <span class="n">u</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">mu</span><span class="p">,</span> <span class="n">mapped</span> <span class="ow">in</span> <span class="n">inverse</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
    <span class="p">}</span>

    <span class="c1"># For each meta-edge, map back to an arbitrary pair in the original graph</span>
    <span class="n">G2</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">mu</span><span class="p">,</span> <span class="n">mv</span> <span class="ow">in</span> <span class="n">aug_tree_edges</span><span class="p">:</span>
        <span class="c1"># Find the first available edge that doesn&#39;t exist and return it</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">product</span><span class="p">(</span><span class="n">inverse</span><span class="p">[</span><span class="n">mu</span><span class="p">],</span> <span class="n">inverse</span><span class="p">[</span><span class="n">mv</span><span class="p">]):</span>
            <span class="k">if</span> <span class="ow">not</span> <span class="n">G2</span><span class="o">.</span><span class="n">has_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">):</span>
                <span class="n">G2</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
                <span class="k">yield</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span>
                <span class="k">break</span>


<span class="k">def</span> <span class="nf">weighted_bridge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Finds an approximate min-weight 2-edge-augmentation of G.</span>

<span class="sd">    This is an implementation of the approximation algorithm detailed in [1]_.</span>
<span class="sd">    It chooses a set of edges from avail to add to G that renders it</span>
<span class="sd">    2-edge-connected if such a subset exists.  This is done by finding a</span>
<span class="sd">    minimum spanning arborescence of a specially constructed metagraph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    avail : set of 2 or 3 tuples.</span>
<span class="sd">        candidate edges (with optional weights) to choose from</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if avail is a set of 3-tuples where the</span>
<span class="sd">        third item in each tuple is a dictionary.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the subset of avail chosen to bridge augment G.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Finding a weighted 2-edge-augmentation is NP-hard.</span>
<span class="sd">    Any edge not in ``avail`` is considered to have a weight of infinity.</span>
<span class="sd">    The approximation factor is 2 if ``G`` is connected and 3 if it is not.</span>
<span class="sd">    Runs in :math:`O(m + n log(n))` time</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Khuller, Samir, and Ramakrishna Thurimella. (1993) Approximation</span>
<span class="sd">        algorithms for graph augmentation.</span>
<span class="sd">        http://www.sciencedirect.com/science/article/pii/S0196677483710102</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`bridge_augmentation`</span>
<span class="sd">    :func:`k_edge_augmentation`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4))</span>
<span class="sd">    &gt;&gt;&gt; # When the weights are equal, (1, 4) is the best</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 4, 1), (1, 3, 1), (2, 4, 1)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(weighted_bridge_augmentation(G, avail))</span>
<span class="sd">    [(1, 4)]</span>
<span class="sd">    &gt;&gt;&gt; # Giving (1, 4) a high weight makes the two edge solution the best.</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 4, 1000), (1, 3, 1), (2, 4, 1)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(weighted_bridge_augmentation(G, avail))</span>
<span class="sd">    [(1, 3), (2, 4)]</span>
<span class="sd">    &gt;&gt;&gt; # ------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4))</span>
<span class="sd">    &gt;&gt;&gt; G.add_node(5)</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 1)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(weighted_bridge_augmentation(G, avail=avail))</span>
<span class="sd">    [(1, 5), (4, 5)]</span>
<span class="sd">    &gt;&gt;&gt; avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(weighted_bridge_augmentation(G, avail=avail))</span>
<span class="sd">    [(1, 5), (2, 5), (4, 5)]</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">if</span> <span class="n">weight</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">weight</span> <span class="o">=</span> <span class="s2">&quot;weight&quot;</span>

    <span class="c1"># If input G is not connected the approximation factor increases to 3</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
        <span class="n">connectors</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">one_edge_augmentation</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">))</span>
        <span class="n">H</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">connectors</span><span class="p">)</span>

        <span class="k">yield from</span> <span class="n">connectors</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">connectors</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">G</span>

    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">avail</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">nx</span><span class="o">.</span><span class="n">has_bridges</span><span class="p">(</span><span class="n">H</span><span class="p">):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="s2">&quot;no augmentation possible&quot;</span><span class="p">)</span>

    <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span> <span class="o">=</span> <span class="n">_unpack_available_edges</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">G</span><span class="o">=</span><span class="n">H</span><span class="p">)</span>

    <span class="c1"># Collapse input into a metagraph. Meta nodes are bridge-ccs</span>
    <span class="n">bridge_ccs</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">connectivity</span><span class="o">.</span><span class="n">bridge_components</span><span class="p">(</span><span class="n">H</span><span class="p">)</span>
    <span class="n">C</span> <span class="o">=</span> <span class="n">collapse</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">bridge_ccs</span><span class="p">)</span>

    <span class="c1"># Use the meta graph to shrink avail to a small feasible subset</span>
    <span class="n">mapping</span> <span class="o">=</span> <span class="n">C</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="s2">&quot;mapping&quot;</span><span class="p">]</span>
    <span class="c1"># Choose the minimum weight feasible edge in each group</span>
    <span class="n">meta_to_wuv</span> <span class="o">=</span> <span class="p">{</span>
        <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">):</span> <span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">uv</span><span class="p">)</span>
        <span class="k">for</span> <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">),</span> <span class="n">uv</span><span class="p">,</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">_lightest_meta_edges</span><span class="p">(</span><span class="n">mapping</span><span class="p">,</span> <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span><span class="p">)</span>
    <span class="p">}</span>

    <span class="c1"># Mapping of terms from (Khuller and Thurimella):</span>
    <span class="c1">#     C         : G_0 = (V, E^0)</span>
    <span class="c1">#        This is the metagraph where each node is a 2-edge-cc in G.</span>
    <span class="c1">#        The edges in C represent bridges in the original graph.</span>
    <span class="c1">#     (mu, mv)  : E - E^0  # they group both avail and given edges in E</span>
    <span class="c1">#     T         : \Gamma</span>
    <span class="c1">#     D         : G^D = (V, E_D)</span>

    <span class="c1">#     The paper uses ancestor because children point to parents, which is</span>
    <span class="c1">#     contrary to networkx standards.  So, we actually need to run</span>
    <span class="c1">#     nx.least_common_ancestor on the reversed Tree.</span>

    <span class="c1"># Pick an arbitrary leaf from C as the root</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="n">root</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">C</span><span class="o">.</span><span class="n">degree</span><span class="p">()</span> <span class="k">if</span> <span class="n">d</span> <span class="o">==</span> <span class="mi">1</span><span class="p">)</span>
    <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>  <span class="c1"># no nodes found with degree == 1</span>
        <span class="k">return</span>
    <span class="c1"># Root C into a tree TR by directing all edges away from the root</span>
    <span class="c1"># Note in their paper T directs edges towards the root</span>
    <span class="n">TR</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">dfs_tree</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">root</span><span class="p">)</span>

    <span class="c1"># Add to D the directed edges of T and set their weight to zero</span>
    <span class="c1"># This indicates that it costs nothing to use edges that were given.</span>
    <span class="n">D</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">reverse</span><span class="p">(</span><span class="n">TR</span><span class="p">)</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>

    <span class="n">nx</span><span class="o">.</span><span class="n">set_edge_attributes</span><span class="p">(</span><span class="n">D</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">values</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>

    <span class="c1"># The LCA of mu and mv in T is the shared ancestor of mu and mv that is</span>
    <span class="c1"># located farthest from the root.</span>
    <span class="n">lca_gen</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">tree_all_pairs_lowest_common_ancestor</span><span class="p">(</span>
        <span class="n">TR</span><span class="p">,</span> <span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span> <span class="n">pairs</span><span class="o">=</span><span class="n">meta_to_wuv</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
    <span class="p">)</span>

    <span class="k">for</span> <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">),</span> <span class="n">lca</span> <span class="ow">in</span> <span class="n">lca_gen</span><span class="p">:</span>
        <span class="n">w</span><span class="p">,</span> <span class="n">uv</span> <span class="o">=</span> <span class="n">meta_to_wuv</span><span class="p">[(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">)]</span>
        <span class="k">if</span> <span class="n">lca</span> <span class="o">==</span> <span class="n">mu</span><span class="p">:</span>
            <span class="c1"># If u is an ancestor of v in TR, then add edge u-&gt;v to D</span>
            <span class="n">D</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">lca</span><span class="p">,</span> <span class="n">mv</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">generator</span><span class="o">=</span><span class="n">uv</span><span class="p">)</span>
        <span class="k">elif</span> <span class="n">lca</span> <span class="o">==</span> <span class="n">mv</span><span class="p">:</span>
            <span class="c1"># If v is an ancestor of u in TR, then add edge v-&gt;u to D</span>
            <span class="n">D</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">lca</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">generator</span><span class="o">=</span><span class="n">uv</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># If neither u nor v is a ancestor of the other in TR</span>
            <span class="c1"># let t = lca(TR, u, v) and add edges t-&gt;u and t-&gt;v</span>
            <span class="c1"># Track the original edge that GENERATED these edges.</span>
            <span class="n">D</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">lca</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">generator</span><span class="o">=</span><span class="n">uv</span><span class="p">)</span>
            <span class="n">D</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">lca</span><span class="p">,</span> <span class="n">mv</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">generator</span><span class="o">=</span><span class="n">uv</span><span class="p">)</span>

    <span class="c1"># Then compute a minimum rooted branching</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="c1"># Note the original edges must be directed towards to root for the</span>
        <span class="c1"># branching to give us a bridge-augmentation.</span>
        <span class="n">A</span> <span class="o">=</span> <span class="n">_minimum_rooted_branching</span><span class="p">(</span><span class="n">D</span><span class="p">,</span> <span class="n">root</span><span class="p">)</span>
    <span class="k">except</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXException</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="c1"># If there is no branching then augmentation is not possible</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="s2">&quot;no 2-edge-augmentation possible&quot;</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span>

    <span class="c1"># For each edge e, in the branching that did not belong to the directed</span>
    <span class="c1"># tree T, add the corresponding edge that **GENERATED** it (this is not</span>
    <span class="c1"># necesarilly e itself!)</span>

    <span class="c1"># ensure the third case does not generate edges twice</span>
    <span class="n">bridge_connectors</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">mu</span><span class="p">,</span> <span class="n">mv</span> <span class="ow">in</span> <span class="n">A</span><span class="o">.</span><span class="n">edges</span><span class="p">():</span>
        <span class="n">data</span> <span class="o">=</span> <span class="n">D</span><span class="o">.</span><span class="n">get_edge_data</span><span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">mv</span><span class="p">)</span>
        <span class="k">if</span> <span class="s2">&quot;generator&quot;</span> <span class="ow">in</span> <span class="n">data</span><span class="p">:</span>
            <span class="c1"># Add the avail edge that generated the branching edge.</span>
            <span class="n">edge</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s2">&quot;generator&quot;</span><span class="p">]</span>
            <span class="n">bridge_connectors</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">edge</span><span class="p">)</span>

    <span class="k">yield from</span> <span class="n">bridge_connectors</span>


<span class="k">def</span> <span class="nf">_minimum_rooted_branching</span><span class="p">(</span><span class="n">D</span><span class="p">,</span> <span class="n">root</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Helper function to compute a minimum rooted branching (aka rooted</span>
<span class="sd">    arborescence)</span>

<span class="sd">    Before the branching can be computed, the directed graph must be rooted by</span>
<span class="sd">    removing the predecessors of root.</span>

<span class="sd">    A branching / arborescence of rooted graph G is a subgraph that contains a</span>
<span class="sd">    directed path from the root to every other vertex. It is the directed</span>
<span class="sd">    analog of the minimum spanning tree problem.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    [1] Khuller, Samir (2002) Advanced Algorithms Lecture 24 Notes.</span>
<span class="sd">    https://web.archive.org/web/20121030033722/https://www.cs.umd.edu/class/spring2011/cmsc651/lec07.pdf</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">rooted</span> <span class="o">=</span> <span class="n">D</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="c1"># root the graph by removing all predecessors to `root`.</span>
    <span class="n">rooted</span><span class="o">.</span><span class="n">remove_edges_from</span><span class="p">([(</span><span class="n">u</span><span class="p">,</span> <span class="n">root</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">D</span><span class="o">.</span><span class="n">predecessors</span><span class="p">(</span><span class="n">root</span><span class="p">)])</span>
    <span class="c1"># Then compute the branching / arborescence.</span>
    <span class="n">A</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">minimum_spanning_arborescence</span><span class="p">(</span><span class="n">rooted</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">A</span>


<span class="k">def</span> <span class="nf">collapse</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">grouped_nodes</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Collapses each group of nodes into a single node.</span>

<span class="sd">    This is similar to condensation, but works on undirected graphs.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX Graph</span>

<span class="sd">    grouped_nodes:  list or generator</span>
<span class="sd">       Grouping of nodes to collapse. The grouping must be disjoint.</span>
<span class="sd">       If grouped_nodes are strongly_connected_components then this is</span>
<span class="sd">       equivalent to :func:`condensation`.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    C : NetworkX Graph</span>
<span class="sd">       The collapsed graph C of G with respect to the node grouping.  The node</span>
<span class="sd">       labels are integers corresponding to the index of the component in the</span>
<span class="sd">       list of grouped_nodes.  C has a graph attribute named &#39;mapping&#39; with a</span>
<span class="sd">       dictionary mapping the original nodes to the nodes in C to which they</span>
<span class="sd">       belong.  Each node in C also has a node attribute &#39;members&#39; with the set</span>
<span class="sd">       of original nodes in G that form the group that the node in C</span>
<span class="sd">       represents.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Collapses a graph using disjoint groups, but not necesarilly connected</span>
<span class="sd">    &gt;&gt;&gt; G = nx.Graph([(1, 0), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (5, 7)])</span>
<span class="sd">    &gt;&gt;&gt; G.add_node(&quot;A&quot;)</span>
<span class="sd">    &gt;&gt;&gt; grouped_nodes = [{0, 1, 2, 3}, {5, 6, 7}]</span>
<span class="sd">    &gt;&gt;&gt; C = collapse(G, grouped_nodes)</span>
<span class="sd">    &gt;&gt;&gt; members = nx.get_node_attributes(C, &quot;members&quot;)</span>
<span class="sd">    &gt;&gt;&gt; sorted(members.keys())</span>
<span class="sd">    [0, 1, 2, 3]</span>
<span class="sd">    &gt;&gt;&gt; member_values = set(map(frozenset, members.values()))</span>
<span class="sd">    &gt;&gt;&gt; assert {0, 1, 2, 3} in member_values</span>
<span class="sd">    &gt;&gt;&gt; assert {4} in member_values</span>
<span class="sd">    &gt;&gt;&gt; assert {5, 6, 7} in member_values</span>
<span class="sd">    &gt;&gt;&gt; assert {&quot;A&quot;} in member_values</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">mapping</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">members</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">C</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="vm">__class__</span><span class="p">()</span>
    <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span>  <span class="c1"># required if G is empty</span>
    <span class="n">remaining</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">())</span>
    <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">group</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">grouped_nodes</span><span class="p">):</span>
        <span class="n">group</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">group</span><span class="p">)</span>
        <span class="k">assert</span> <span class="n">remaining</span><span class="o">.</span><span class="n">issuperset</span><span class="p">(</span>
            <span class="n">group</span>
        <span class="p">),</span> <span class="s2">&quot;grouped nodes must exist in G and be disjoint&quot;</span>
        <span class="n">remaining</span><span class="o">.</span><span class="n">difference_update</span><span class="p">(</span><span class="n">group</span><span class="p">)</span>
        <span class="n">members</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">group</span>
        <span class="n">mapping</span><span class="o">.</span><span class="n">update</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">group</span><span class="p">)</span>
    <span class="c1"># remaining nodes are in their own group</span>
    <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">node</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">remaining</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
        <span class="n">group</span> <span class="o">=</span> <span class="p">{</span><span class="n">node</span><span class="p">}</span>
        <span class="n">members</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">group</span>
        <span class="n">mapping</span><span class="o">.</span><span class="n">update</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">group</span><span class="p">)</span>
    <span class="n">number_of_groups</span> <span class="o">=</span> <span class="n">i</span> <span class="o">+</span> <span class="mi">1</span>
    <span class="n">C</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">number_of_groups</span><span class="p">))</span>
    <span class="n">C</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span>
        <span class="p">(</span><span class="n">mapping</span><span class="p">[</span><span class="n">u</span><span class="p">],</span> <span class="n">mapping</span><span class="p">[</span><span class="n">v</span><span class="p">])</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">()</span> <span class="k">if</span> <span class="n">mapping</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">!=</span> <span class="n">mapping</span><span class="p">[</span><span class="n">v</span><span class="p">]</span>
    <span class="p">)</span>
    <span class="c1"># Add a list of members (ie original nodes) to each node (ie scc) in C.</span>
    <span class="n">nx</span><span class="o">.</span><span class="n">set_node_attributes</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;members&quot;</span><span class="p">,</span> <span class="n">values</span><span class="o">=</span><span class="n">members</span><span class="p">)</span>
    <span class="c1"># Add mapping dict as graph attribute</span>
    <span class="n">C</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="s2">&quot;mapping&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">mapping</span>
    <span class="k">return</span> <span class="n">C</span>


<span class="k">def</span> <span class="nf">complement_edges</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Returns only the edges in the complement of G</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX Graph</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the complement of G</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4))</span>
<span class="sd">    &gt;&gt;&gt; sorted(complement_edges(G))</span>
<span class="sd">    [(1, 3), (1, 4), (2, 4)]</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4), nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; sorted(complement_edges(G))</span>
<span class="sd">    [(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)]</span>
<span class="sd">    &gt;&gt;&gt; G = nx.complete_graph(1000)</span>
<span class="sd">    &gt;&gt;&gt; sorted(complement_edges(G))</span>
<span class="sd">    []</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">G_adj</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">_adj</span>  <span class="c1"># Store as a variable to eliminate attribute lookup</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">combinations</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">(),</span> <span class="mi">2</span><span class="p">):</span>
            <span class="k">if</span> <span class="n">v</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G_adj</span><span class="p">[</span><span class="n">u</span><span class="p">]:</span>
                <span class="k">yield</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">u</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G_adj</span><span class="p">[</span><span class="n">v</span><span class="p">]:</span>
                <span class="k">yield</span> <span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">u</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">combinations</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">(),</span> <span class="mi">2</span><span class="p">):</span>
            <span class="k">if</span> <span class="n">v</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G_adj</span><span class="p">[</span><span class="n">u</span><span class="p">]:</span>
                <span class="k">yield</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>


<span class="k">def</span> <span class="nf">_compat_shuffle</span><span class="p">(</span><span class="n">rng</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;wrapper around rng.shuffle for python 2 compatibility reasons&quot;&quot;&quot;</span>
    <span class="n">rng</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>


<span class="nd">@py_random_state</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;multigraph&quot;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">greedy_k_edge_augmentation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">avail</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Greedy algorithm for finding a k-edge-augmentation</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">       An undirected graph.</span>

<span class="sd">    k : integer</span>
<span class="sd">        Desired edge connectivity</span>

<span class="sd">    avail : dict or a set of 2 or 3 tuples</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    weight : string</span>
<span class="sd">        key to use to find weights if ``avail`` is a set of 3-tuples.</span>
<span class="sd">        For more details, see :func:`k_edge_augmentation`.</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    edge : tuple</span>
<span class="sd">        Edges in the greedy augmentation of G</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    The algorithm is simple. Edges are incrementally added between parts of the</span>
<span class="sd">    graph that are not yet locally k-edge-connected. Then edges are from the</span>
<span class="sd">    augmenting set are pruned as long as local-edge-connectivity is not broken.</span>

<span class="sd">    This algorithm is greedy and does not provide optimality guarantees. It</span>
<span class="sd">    exists only to provide :func:`k_edge_augmentation` with the ability to</span>
<span class="sd">    generate a feasible solution for arbitrary k.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    :func:`k_edge_augmentation`</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))</span>
<span class="sd">    &gt;&gt;&gt; sorted(greedy_k_edge_augmentation(G, k=2))</span>
<span class="sd">    [(1, 7)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(greedy_k_edge_augmentation(G, k=1, avail=[]))</span>
<span class="sd">    []</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))</span>
<span class="sd">    &gt;&gt;&gt; avail = {(u, v): 1 for (u, v) in complement_edges(G)}</span>
<span class="sd">    &gt;&gt;&gt; # randomized pruning process can produce different solutions</span>
<span class="sd">    &gt;&gt;&gt; sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=2))</span>
<span class="sd">    [(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (3, 7), (5, 7)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=3))</span>
<span class="sd">    [(1, 3), (1, 5), (1, 6), (2, 4), (2, 6), (3, 7), (4, 7), (5, 7)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c1"># Result set</span>
    <span class="n">aug_edges</span> <span class="o">=</span> <span class="p">[]</span>

    <span class="n">done</span> <span class="o">=</span> <span class="n">is_k_edge_connected</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">done</span><span class="p">:</span>
        <span class="k">return</span>
    <span class="k">if</span> <span class="n">avail</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="c1"># all edges are available</span>
        <span class="n">avail_uv</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">complement_edges</span><span class="p">(</span><span class="n">G</span><span class="p">))</span>
        <span class="n">avail_w</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">avail_uv</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="c1"># Get the unique set of unweighted edges</span>
        <span class="n">avail_uv</span><span class="p">,</span> <span class="n">avail_w</span> <span class="o">=</span> <span class="n">_unpack_available_edges</span><span class="p">(</span><span class="n">avail</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">G</span><span class="o">=</span><span class="n">G</span><span class="p">)</span>

    <span class="c1"># Greedy: order lightest edges. Use degree sum to tie-break</span>
    <span class="n">tiebreaker</span> <span class="o">=</span> <span class="p">[</span><span class="nb">sum</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">,</span> <span class="n">uv</span><span class="p">))</span> <span class="k">for</span> <span class="n">uv</span> <span class="ow">in</span> <span class="n">avail_uv</span><span class="p">]</span>
    <span class="n">avail_wduv</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">avail_w</span><span class="p">,</span> <span class="n">tiebreaker</span><span class="p">,</span> <span class="n">avail_uv</span><span class="p">))</span>
    <span class="n">avail_uv</span> <span class="o">=</span> <span class="p">[</span><span class="n">uv</span> <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">uv</span> <span class="ow">in</span> <span class="n">avail_wduv</span><span class="p">]</span>

    <span class="c1"># Incrementally add edges in until we are k-connected</span>
    <span class="n">H</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="k">for</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">avail_uv</span><span class="p">:</span>
        <span class="n">done</span> <span class="o">=</span> <span class="kc">False</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">is_locally_k_edge_connected</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">):</span>
            <span class="c1"># Only add edges in parts that are not yet locally k-edge-connected</span>
            <span class="n">aug_edges</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
            <span class="n">H</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
            <span class="c1"># Did adding this edge help?</span>
            <span class="k">if</span> <span class="n">H</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">u</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">k</span> <span class="ow">and</span> <span class="n">H</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">k</span><span class="p">:</span>
                <span class="n">done</span> <span class="o">=</span> <span class="n">is_k_edge_connected</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">done</span><span class="p">:</span>
            <span class="k">break</span>

    <span class="c1"># Check for feasibility</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">done</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnfeasible</span><span class="p">(</span><span class="s2">&quot;not able to k-edge-connect with available edges&quot;</span><span class="p">)</span>

    <span class="c1"># Randomized attempt to reduce the size of the solution</span>
    <span class="n">_compat_shuffle</span><span class="p">(</span><span class="n">seed</span><span class="p">,</span> <span class="n">aug_edges</span><span class="p">)</span>
    <span class="k">for</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">aug_edges</span><span class="p">):</span>
        <span class="c1"># Don&#39;t remove if we know it would break connectivity</span>
        <span class="k">if</span> <span class="n">H</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">u</span><span class="p">)</span> <span class="o">&lt;=</span> <span class="n">k</span> <span class="ow">or</span> <span class="n">H</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="o">&lt;=</span> <span class="n">k</span><span class="p">:</span>
            <span class="k">continue</span>
        <span class="n">H</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
        <span class="n">aug_edges</span><span class="o">.</span><span class="n">remove</span><span class="p">((</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">is_k_edge_connected</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">):</span>
            <span class="c1"># If removing this edge breaks feasibility, undo</span>
            <span class="n">H</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
            <span class="n">aug_edges</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>

    <span class="c1"># Generate results</span>
    <span class="k">yield from</span> <span class="n">aug_edges</span>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<div id="searchbox"></div>
</div>

<div class="toc-item">
  
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2023, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>