summaryrefslogtreecommitdiff
path: root/_modules/networkx/algorithms/connectivity/connectivity.html
blob: 6a2bd21140f3716b35bb27d2176644cb93d22e24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.algorithms.connectivity.connectivity &#8212; NetworkX 3.1rc1.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
    <script src="../../../../_static/jquery.js"></script>
    <script src="../../../../_static/underscore.js"></script>
    <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../../_static/doctools.js"></script>
    <script src="../../../../_static/sphinx_highlight.js"></script>
    <script src="../../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/algorithms/connectivity/connectivity';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/algorithms/connectivity/connectivity.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.1rc1.dev0 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" />
<script
  defer
  data-domain="networkx.org"
  src="https://views.scientific-python.org/js/script.js"
></script>

  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en"> 
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div><div class="bd-header-announcement container-fluid" id="header-announcement">
    


<div class="bd-header-announcement__content"><p><a href='https://forms.gle/NUGcBxyjx5onbAgc8'> NetworkX User Survey 2023</a> 🎉 Fill out the survey to tell us about your ideas, complaints, praises of NetworkX!</p></div>

  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.1rc1.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.1rc1.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.algorithms.connectivity.connectivity</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Flow based connectivity algorithms</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="kn">import</span> <span class="nn">itertools</span>
<span class="kn">from</span> <span class="nn">operator</span> <span class="kn">import</span> <span class="n">itemgetter</span>

<span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>

<span class="c1"># Define the default maximum flow function to use in all flow based</span>
<span class="c1"># connectivity algorithms.</span>
<span class="kn">from</span> <span class="nn">networkx.algorithms.flow</span> <span class="kn">import</span> <span class="p">(</span>
    <span class="n">boykov_kolmogorov</span><span class="p">,</span>
    <span class="n">build_residual_network</span><span class="p">,</span>
    <span class="n">dinitz</span><span class="p">,</span>
    <span class="n">edmonds_karp</span><span class="p">,</span>
    <span class="n">shortest_augmenting_path</span><span class="p">,</span>
<span class="p">)</span>

<span class="n">default_flow_func</span> <span class="o">=</span> <span class="n">edmonds_karp</span>

<span class="kn">from</span> <span class="nn">.utils</span> <span class="kn">import</span> <span class="n">build_auxiliary_edge_connectivity</span><span class="p">,</span> <span class="n">build_auxiliary_node_connectivity</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
    <span class="s2">&quot;average_node_connectivity&quot;</span><span class="p">,</span>
    <span class="s2">&quot;local_node_connectivity&quot;</span><span class="p">,</span>
    <span class="s2">&quot;node_connectivity&quot;</span><span class="p">,</span>
    <span class="s2">&quot;local_edge_connectivity&quot;</span><span class="p">,</span>
    <span class="s2">&quot;edge_connectivity&quot;</span><span class="p">,</span>
    <span class="s2">&quot;all_pairs_node_connectivity&quot;</span><span class="p">,</span>
<span class="p">]</span>


<div class="viewcode-block" id="local_node_connectivity"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.local_node_connectivity.html#networkx.algorithms.connectivity.connectivity.local_node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">local_node_connectivity</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">auxiliary</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">residual</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span>
<span class="p">):</span>
<span class="w">    </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Computes local node connectivity for nodes s and t.</span>

<span class="sd">    Local node connectivity for two non adjacent nodes s and t is the</span>
<span class="sd">    minimum number of nodes that must be removed (along with their incident</span>
<span class="sd">    edges) to disconnect them.</span>

<span class="sd">    This is a flow based implementation of node connectivity. We compute the</span>
<span class="sd">    maximum flow on an auxiliary digraph build from the original input</span>
<span class="sd">    graph (see below for details).</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node</span>

<span class="sd">    flow_func : function</span>
<span class="sd">        A function for computing the maximum flow among a pair of nodes.</span>
<span class="sd">        The function has to accept at least three parameters: a Digraph,</span>
<span class="sd">        a source node, and a target node. And return a residual network</span>
<span class="sd">        that follows NetworkX conventions (see :meth:`maximum_flow` for</span>
<span class="sd">        details). If flow_func is None, the default maximum flow function</span>
<span class="sd">        (:meth:`edmonds_karp`) is used. See below for details. The choice</span>
<span class="sd">        of the default function may change from version to version and</span>
<span class="sd">        should not be relied on. Default value: None.</span>

<span class="sd">    auxiliary : NetworkX DiGraph</span>
<span class="sd">        Auxiliary digraph to compute flow based node connectivity. It has</span>
<span class="sd">        to have a graph attribute called mapping with a dictionary mapping</span>
<span class="sd">        node names in G and in the auxiliary digraph. If provided</span>
<span class="sd">        it will be reused instead of recreated. Default value: None.</span>

<span class="sd">    residual : NetworkX DiGraph</span>
<span class="sd">        Residual network to compute maximum flow. If provided it will be</span>
<span class="sd">        reused instead of recreated. Default value: None.</span>

<span class="sd">    cutoff : integer, float, or None (default: None)</span>
<span class="sd">        If specified, the maximum flow algorithm will terminate when the</span>
<span class="sd">        flow value reaches or exceeds the cutoff. This only works for flows</span>
<span class="sd">        that support the cutoff parameter (most do) and is ignored otherwise.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        local node connectivity for nodes s and t</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    This function is not imported in the base NetworkX namespace, so you</span>
<span class="sd">    have to explicitly import it from the connectivity package:</span>

<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.connectivity import local_node_connectivity</span>

<span class="sd">    We use in this example the platonic icosahedral graph, which has node</span>
<span class="sd">    connectivity 5.</span>

<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; local_node_connectivity(G, 0, 6)</span>
<span class="sd">    5</span>

<span class="sd">    If you need to compute local connectivity on several pairs of</span>
<span class="sd">    nodes in the same graph, it is recommended that you reuse the</span>
<span class="sd">    data structures that NetworkX uses in the computation: the</span>
<span class="sd">    auxiliary digraph for node connectivity, and the residual</span>
<span class="sd">    network for the underlying maximum flow computation.</span>

<span class="sd">    Example of how to compute local node connectivity among</span>
<span class="sd">    all pairs of nodes of the platonic icosahedral graph reusing</span>
<span class="sd">    the data structures.</span>

<span class="sd">    &gt;&gt;&gt; import itertools</span>
<span class="sd">    &gt;&gt;&gt; # You also have to explicitly import the function for</span>
<span class="sd">    &gt;&gt;&gt; # building the auxiliary digraph from the connectivity package</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.connectivity import build_auxiliary_node_connectivity</span>
<span class="sd">    ...</span>
<span class="sd">    &gt;&gt;&gt; H = build_auxiliary_node_connectivity(G)</span>
<span class="sd">    &gt;&gt;&gt; # And the function for building the residual network from the</span>
<span class="sd">    &gt;&gt;&gt; # flow package</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.flow import build_residual_network</span>
<span class="sd">    &gt;&gt;&gt; # Note that the auxiliary digraph has an edge attribute named capacity</span>
<span class="sd">    &gt;&gt;&gt; R = build_residual_network(H, &quot;capacity&quot;)</span>
<span class="sd">    &gt;&gt;&gt; result = dict.fromkeys(G, dict())</span>
<span class="sd">    &gt;&gt;&gt; # Reuse the auxiliary digraph and the residual network by passing them</span>
<span class="sd">    &gt;&gt;&gt; # as parameters</span>
<span class="sd">    &gt;&gt;&gt; for u, v in itertools.combinations(G, 2):</span>
<span class="sd">    ...     k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)</span>
<span class="sd">    ...     result[u][v] = k</span>
<span class="sd">    ...</span>
<span class="sd">    &gt;&gt;&gt; all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))</span>
<span class="sd">    True</span>

<span class="sd">    You can also use alternative flow algorithms for computing node</span>
<span class="sd">    connectivity. For instance, in dense networks the algorithm</span>
<span class="sd">    :meth:`shortest_augmenting_path` will usually perform better than</span>
<span class="sd">    the default :meth:`edmonds_karp` which is faster for sparse</span>
<span class="sd">    networks with highly skewed degree distributions. Alternative flow</span>
<span class="sd">    functions have to be explicitly imported from the flow package.</span>

<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.flow import shortest_augmenting_path</span>
<span class="sd">    &gt;&gt;&gt; local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)</span>
<span class="sd">    5</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of node connectivity. We compute the</span>
<span class="sd">    maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see:</span>
<span class="sd">    :meth:`maximum_flow`) on an auxiliary digraph build from the original</span>
<span class="sd">    input graph:</span>

<span class="sd">    For an undirected graph G having `n` nodes and `m` edges we derive a</span>
<span class="sd">    directed graph H with `2n` nodes and `2m+n` arcs by replacing each</span>
<span class="sd">    original node `v` with two nodes `v_A`, `v_B` linked by an (internal)</span>
<span class="sd">    arc in H. Then for each edge (`u`, `v`) in G we add two arcs</span>
<span class="sd">    (`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute</span>
<span class="sd">    capacity = 1 for each arc in H [1]_ .</span>

<span class="sd">    For a directed graph G having `n` nodes and `m` arcs we derive a</span>
<span class="sd">    directed graph H with `2n` nodes and `m+n` arcs by replacing each</span>
<span class="sd">    original node `v` with two nodes `v_A`, `v_B` linked by an (internal)</span>
<span class="sd">    arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc</span>
<span class="sd">    (`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for</span>
<span class="sd">    each arc in H.</span>

<span class="sd">    This is equal to the local node connectivity because the value of</span>
<span class="sd">    a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    :meth:`local_edge_connectivity`</span>
<span class="sd">    :meth:`node_connectivity`</span>
<span class="sd">    :meth:`minimum_node_cut`</span>
<span class="sd">    :meth:`maximum_flow`</span>
<span class="sd">    :meth:`edmonds_karp`</span>
<span class="sd">    :meth:`preflow_push`</span>
<span class="sd">    :meth:`shortest_augmenting_path`</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and</span>
<span class="sd">        Erlebach, &#39;Network Analysis: Methodological Foundations&#39;, Lecture</span>
<span class="sd">        Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.</span>
<span class="sd">        http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">flow_func</span> <span class="o">=</span> <span class="n">default_flow_func</span>

    <span class="k">if</span> <span class="n">auxiliary</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">build_auxiliary_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">auxiliary</span>

    <span class="n">mapping</span> <span class="o">=</span> <span class="n">H</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mapping&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">mapping</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;Invalid auxiliary digraph.&quot;</span><span class="p">)</span>

    <span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;flow_func&quot;</span><span class="p">:</span> <span class="n">flow_func</span><span class="p">,</span> <span class="s2">&quot;residual&quot;</span><span class="p">:</span> <span class="n">residual</span><span class="p">}</span>
    <span class="k">if</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">shortest_augmenting_path</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;two_phase&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
    <span class="k">elif</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">edmonds_karp</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>
    <span class="k">elif</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">dinitz</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>
    <span class="k">elif</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">boykov_kolmogorov</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>

    <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">maximum_flow_value</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">mapping</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="si">}</span><span class="s2">B&quot;</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">mapping</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="si">}</span><span class="s2">A&quot;</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>


<div class="viewcode-block" id="node_connectivity"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.node_connectivity.html#networkx.algorithms.connectivity.connectivity.node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">t</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Returns node connectivity for a graph or digraph G.</span>

<span class="sd">    Node connectivity is equal to the minimum number of nodes that</span>
<span class="sd">    must be removed to disconnect G or render it trivial. If source</span>
<span class="sd">    and target nodes are provided, this function returns the local node</span>
<span class="sd">    connectivity: the minimum number of nodes that must be removed to break</span>
<span class="sd">    all paths from source to target in G.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node. Optional. Default value: None.</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node. Optional. Default value: None.</span>

<span class="sd">    flow_func : function</span>
<span class="sd">        A function for computing the maximum flow among a pair of nodes.</span>
<span class="sd">        The function has to accept at least three parameters: a Digraph,</span>
<span class="sd">        a source node, and a target node. And return a residual network</span>
<span class="sd">        that follows NetworkX conventions (see :meth:`maximum_flow` for</span>
<span class="sd">        details). If flow_func is None, the default maximum flow function</span>
<span class="sd">        (:meth:`edmonds_karp`) is used. See below for details. The</span>
<span class="sd">        choice of the default function may change from version</span>
<span class="sd">        to version and should not be relied on. Default value: None.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        Node connectivity of G, or local node connectivity if source</span>
<span class="sd">        and target are provided.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Platonic icosahedral graph is 5-node-connected</span>
<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; nx.node_connectivity(G)</span>
<span class="sd">    5</span>

<span class="sd">    You can use alternative flow algorithms for the underlying maximum</span>
<span class="sd">    flow computation. In dense networks the algorithm</span>
<span class="sd">    :meth:`shortest_augmenting_path` will usually perform better</span>
<span class="sd">    than the default :meth:`edmonds_karp`, which is faster for</span>
<span class="sd">    sparse networks with highly skewed degree distributions. Alternative</span>
<span class="sd">    flow functions have to be explicitly imported from the flow package.</span>

<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.flow import shortest_augmenting_path</span>
<span class="sd">    &gt;&gt;&gt; nx.node_connectivity(G, flow_func=shortest_augmenting_path)</span>
<span class="sd">    5</span>

<span class="sd">    If you specify a pair of nodes (source and target) as parameters,</span>
<span class="sd">    this function returns the value of local node connectivity.</span>

<span class="sd">    &gt;&gt;&gt; nx.node_connectivity(G, 3, 7)</span>
<span class="sd">    5</span>

<span class="sd">    If you need to perform several local computations among different</span>
<span class="sd">    pairs of nodes on the same graph, it is recommended that you reuse</span>
<span class="sd">    the data structures used in the maximum flow computations. See</span>
<span class="sd">    :meth:`local_node_connectivity` for details.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of node connectivity. The</span>
<span class="sd">    algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$</span>
<span class="sd">    maximum flow problems on an auxiliary digraph. Where $\delta$</span>
<span class="sd">    is the minimum degree of G. For details about the auxiliary</span>
<span class="sd">    digraph and the computation of local node connectivity see</span>
<span class="sd">    :meth:`local_node_connectivity`. This implementation is based</span>
<span class="sd">    on algorithm 11 in [1]_.</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    :meth:`local_node_connectivity`</span>
<span class="sd">    :meth:`edge_connectivity`</span>
<span class="sd">    :meth:`maximum_flow`</span>
<span class="sd">    :meth:`edmonds_karp`</span>
<span class="sd">    :meth:`preflow_push`</span>
<span class="sd">    :meth:`shortest_augmenting_path`</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.</span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">or</span> <span class="p">(</span><span class="n">s</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;Both source and target must be specified.&quot;</span><span class="p">)</span>

    <span class="c1"># Local node connectivity</span>
    <span class="k">if</span> <span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;node </span><span class="si">{</span><span class="n">s</span><span class="si">}</span><span class="s2"> not in graph&quot;</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">t</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;node </span><span class="si">{</span><span class="n">t</span><span class="si">}</span><span class="s2"> not in graph&quot;</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="n">flow_func</span><span class="p">)</span>

    <span class="c1"># Global node connectivity</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_weakly_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">permutations</span>
        <span class="c1"># It is necessary to consider both predecessors</span>
        <span class="c1"># and successors for directed graphs</span>

        <span class="k">def</span> <span class="nf">neighbors</span><span class="p">(</span><span class="n">v</span><span class="p">):</span>
            <span class="k">return</span> <span class="n">itertools</span><span class="o">.</span><span class="n">chain</span><span class="o">.</span><span class="n">from_iterable</span><span class="p">([</span><span class="n">G</span><span class="o">.</span><span class="n">predecessors</span><span class="p">(</span><span class="n">v</span><span class="p">),</span> <span class="n">G</span><span class="o">.</span><span class="n">successors</span><span class="p">(</span><span class="n">v</span><span class="p">)])</span>

    <span class="k">else</span><span class="p">:</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">combinations</span>
        <span class="n">neighbors</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">neighbors</span>

    <span class="c1"># Reuse the auxiliary digraph and the residual network</span>
    <span class="n">H</span> <span class="o">=</span> <span class="n">build_auxiliary_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">R</span> <span class="o">=</span> <span class="n">build_residual_network</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="s2">&quot;capacity&quot;</span><span class="p">)</span>
    <span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;flow_func&quot;</span><span class="p">:</span> <span class="n">flow_func</span><span class="p">,</span> <span class="s2">&quot;auxiliary&quot;</span><span class="p">:</span> <span class="n">H</span><span class="p">,</span> <span class="s2">&quot;residual&quot;</span><span class="p">:</span> <span class="n">R</span><span class="p">}</span>

    <span class="c1"># Pick a node with minimum degree</span>
    <span class="c1"># Node connectivity is bounded by degree.</span>
    <span class="n">v</span><span class="p">,</span> <span class="n">K</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">(),</span> <span class="n">key</span><span class="o">=</span><span class="n">itemgetter</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
    <span class="c1"># compute local node connectivity with all its non-neighbors nodes</span>
    <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="nb">set</span><span class="p">(</span><span class="n">neighbors</span><span class="p">(</span><span class="n">v</span><span class="p">))</span> <span class="o">-</span> <span class="p">{</span><span class="n">v</span><span class="p">}:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">K</span>
        <span class="n">K</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">K</span><span class="p">,</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">))</span>
    <span class="c1"># Also for non adjacent pairs of neighbors of v</span>
    <span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">iter_func</span><span class="p">(</span><span class="n">neighbors</span><span class="p">(</span><span class="n">v</span><span class="p">),</span> <span class="mi">2</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">x</span><span class="p">]:</span>
            <span class="k">continue</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">K</span>
        <span class="n">K</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">K</span><span class="p">,</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">))</span>

    <span class="k">return</span> <span class="n">K</span></div>


<div class="viewcode-block" id="average_node_connectivity"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.average_node_connectivity.html#networkx.algorithms.connectivity.connectivity.average_node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">average_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Returns the average connectivity of a graph G.</span>

<span class="sd">    The average connectivity `\bar{\kappa}` of a graph G is the average</span>
<span class="sd">    of local node connectivity over all pairs of nodes of G [1]_ .</span>

<span class="sd">    .. math::</span>

<span class="sd">        \bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>

<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    flow_func : function</span>
<span class="sd">        A function for computing the maximum flow among a pair of nodes.</span>
<span class="sd">        The function has to accept at least three parameters: a Digraph,</span>
<span class="sd">        a source node, and a target node. And return a residual network</span>
<span class="sd">        that follows NetworkX conventions (see :meth:`maximum_flow` for</span>
<span class="sd">        details). If flow_func is None, the default maximum flow function</span>
<span class="sd">        (:meth:`edmonds_karp`) is used. See :meth:`local_node_connectivity`</span>
<span class="sd">        for details. The choice of the default function may change from</span>
<span class="sd">        version to version and should not be relied on. Default value: None.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : float</span>
<span class="sd">        Average node connectivity</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    :meth:`local_node_connectivity`</span>
<span class="sd">    :meth:`node_connectivity`</span>
<span class="sd">    :meth:`edge_connectivity`</span>
<span class="sd">    :meth:`maximum_flow`</span>
<span class="sd">    :meth:`edmonds_karp`</span>
<span class="sd">    :meth:`preflow_push`</span>
<span class="sd">    :meth:`shortest_augmenting_path`</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1]  Beineke, L., O. Oellermann, and R. Pippert (2002). The average</span>
<span class="sd">            connectivity of a graph. Discrete mathematics 252(1-3), 31-45.</span>
<span class="sd">            http://www.sciencedirect.com/science/article/pii/S0012365X01001807</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">permutations</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">combinations</span>

    <span class="c1"># Reuse the auxiliary digraph and the residual network</span>
    <span class="n">H</span> <span class="o">=</span> <span class="n">build_auxiliary_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">R</span> <span class="o">=</span> <span class="n">build_residual_network</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="s2">&quot;capacity&quot;</span><span class="p">)</span>
    <span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;flow_func&quot;</span><span class="p">:</span> <span class="n">flow_func</span><span class="p">,</span> <span class="s2">&quot;auxiliary&quot;</span><span class="p">:</span> <span class="n">H</span><span class="p">,</span> <span class="s2">&quot;residual&quot;</span><span class="p">:</span> <span class="n">R</span><span class="p">}</span>

    <span class="n">num</span><span class="p">,</span> <span class="n">den</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">iter_func</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span>
        <span class="n">num</span> <span class="o">+=</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
        <span class="n">den</span> <span class="o">+=</span> <span class="mi">1</span>

    <span class="k">if</span> <span class="n">den</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>  <span class="c1"># Null Graph</span>
        <span class="k">return</span> <span class="mi">0</span>
    <span class="k">return</span> <span class="n">num</span> <span class="o">/</span> <span class="n">den</span></div>


<div class="viewcode-block" id="all_pairs_node_connectivity"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.all_pairs_node_connectivity.html#networkx.algorithms.connectivity.connectivity.all_pairs_node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nbunch</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Compute node connectivity between all pairs of nodes of G.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    nbunch: container</span>
<span class="sd">        Container of nodes. If provided node connectivity will be computed</span>
<span class="sd">        only over pairs of nodes in nbunch.</span>

<span class="sd">    flow_func : function</span>
<span class="sd">        A function for computing the maximum flow among a pair of nodes.</span>
<span class="sd">        The function has to accept at least three parameters: a Digraph,</span>
<span class="sd">        a source node, and a target node. And return a residual network</span>
<span class="sd">        that follows NetworkX conventions (see :meth:`maximum_flow` for</span>
<span class="sd">        details). If flow_func is None, the default maximum flow function</span>
<span class="sd">        (:meth:`edmonds_karp`) is used. See below for details. The</span>
<span class="sd">        choice of the default function may change from version</span>
<span class="sd">        to version and should not be relied on. Default value: None.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    all_pairs : dict</span>
<span class="sd">        A dictionary with node connectivity between all pairs of nodes</span>
<span class="sd">        in G, or in nbunch if provided.</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    :meth:`local_node_connectivity`</span>
<span class="sd">    :meth:`edge_connectivity`</span>
<span class="sd">    :meth:`local_edge_connectivity`</span>
<span class="sd">    :meth:`maximum_flow`</span>
<span class="sd">    :meth:`edmonds_karp`</span>
<span class="sd">    :meth:`preflow_push`</span>
<span class="sd">    :meth:`shortest_augmenting_path`</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">nbunch</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">nbunch</span> <span class="o">=</span> <span class="n">G</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">nbunch</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">nbunch</span><span class="p">)</span>

    <span class="n">directed</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">()</span>
    <span class="k">if</span> <span class="n">directed</span><span class="p">:</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">permutations</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">combinations</span>

    <span class="n">all_pairs</span> <span class="o">=</span> <span class="p">{</span><span class="n">n</span><span class="p">:</span> <span class="p">{}</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">nbunch</span><span class="p">}</span>

    <span class="c1"># Reuse auxiliary digraph and residual network</span>
    <span class="n">H</span> <span class="o">=</span> <span class="n">build_auxiliary_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">mapping</span> <span class="o">=</span> <span class="n">H</span><span class="o">.</span><span class="n">graph</span><span class="p">[</span><span class="s2">&quot;mapping&quot;</span><span class="p">]</span>
    <span class="n">R</span> <span class="o">=</span> <span class="n">build_residual_network</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="s2">&quot;capacity&quot;</span><span class="p">)</span>
    <span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;flow_func&quot;</span><span class="p">:</span> <span class="n">flow_func</span><span class="p">,</span> <span class="s2">&quot;auxiliary&quot;</span><span class="p">:</span> <span class="n">H</span><span class="p">,</span> <span class="s2">&quot;residual&quot;</span><span class="p">:</span> <span class="n">R</span><span class="p">}</span>

    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">iter_func</span><span class="p">(</span><span class="n">nbunch</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span>
        <span class="n">K</span> <span class="o">=</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
        <span class="n">all_pairs</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">K</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">directed</span><span class="p">:</span>
            <span class="n">all_pairs</span><span class="p">[</span><span class="n">v</span><span class="p">][</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="n">K</span>

    <span class="k">return</span> <span class="n">all_pairs</span></div>


<div class="viewcode-block" id="local_edge_connectivity"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.local_edge_connectivity.html#networkx.algorithms.connectivity.connectivity.local_edge_connectivity">[docs]</a><span class="k">def</span> <span class="nf">local_edge_connectivity</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">auxiliary</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">residual</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span>
<span class="p">):</span>
<span class="w">    </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Returns local edge connectivity for nodes s and t in G.</span>

<span class="sd">    Local edge connectivity for two nodes s and t is the minimum number</span>
<span class="sd">    of edges that must be removed to disconnect them.</span>

<span class="sd">    This is a flow based implementation of edge connectivity. We compute the</span>
<span class="sd">    maximum flow on an auxiliary digraph build from the original</span>
<span class="sd">    network (see below for details). This is equal to the local edge</span>
<span class="sd">    connectivity because the value of a maximum s-t-flow is equal to the</span>
<span class="sd">    capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected or directed graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node</span>

<span class="sd">    flow_func : function</span>
<span class="sd">        A function for computing the maximum flow among a pair of nodes.</span>
<span class="sd">        The function has to accept at least three parameters: a Digraph,</span>
<span class="sd">        a source node, and a target node. And return a residual network</span>
<span class="sd">        that follows NetworkX conventions (see :meth:`maximum_flow` for</span>
<span class="sd">        details). If flow_func is None, the default maximum flow function</span>
<span class="sd">        (:meth:`edmonds_karp`) is used. See below for details. The</span>
<span class="sd">        choice of the default function may change from version</span>
<span class="sd">        to version and should not be relied on. Default value: None.</span>

<span class="sd">    auxiliary : NetworkX DiGraph</span>
<span class="sd">        Auxiliary digraph for computing flow based edge connectivity. If</span>
<span class="sd">        provided it will be reused instead of recreated. Default value: None.</span>

<span class="sd">    residual : NetworkX DiGraph</span>
<span class="sd">        Residual network to compute maximum flow. If provided it will be</span>
<span class="sd">        reused instead of recreated. Default value: None.</span>

<span class="sd">    cutoff : integer, float, or None (default: None)</span>
<span class="sd">        If specified, the maximum flow algorithm will terminate when the</span>
<span class="sd">        flow value reaches or exceeds the cutoff. This only works for flows</span>
<span class="sd">        that support the cutoff parameter (most do) and is ignored otherwise.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        local edge connectivity for nodes s and t.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    This function is not imported in the base NetworkX namespace, so you</span>
<span class="sd">    have to explicitly import it from the connectivity package:</span>

<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.connectivity import local_edge_connectivity</span>

<span class="sd">    We use in this example the platonic icosahedral graph, which has edge</span>
<span class="sd">    connectivity 5.</span>

<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; local_edge_connectivity(G, 0, 6)</span>
<span class="sd">    5</span>

<span class="sd">    If you need to compute local connectivity on several pairs of</span>
<span class="sd">    nodes in the same graph, it is recommended that you reuse the</span>
<span class="sd">    data structures that NetworkX uses in the computation: the</span>
<span class="sd">    auxiliary digraph for edge connectivity, and the residual</span>
<span class="sd">    network for the underlying maximum flow computation.</span>

<span class="sd">    Example of how to compute local edge connectivity among</span>
<span class="sd">    all pairs of nodes of the platonic icosahedral graph reusing</span>
<span class="sd">    the data structures.</span>

<span class="sd">    &gt;&gt;&gt; import itertools</span>
<span class="sd">    &gt;&gt;&gt; # You also have to explicitly import the function for</span>
<span class="sd">    &gt;&gt;&gt; # building the auxiliary digraph from the connectivity package</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity</span>
<span class="sd">    &gt;&gt;&gt; H = build_auxiliary_edge_connectivity(G)</span>
<span class="sd">    &gt;&gt;&gt; # And the function for building the residual network from the</span>
<span class="sd">    &gt;&gt;&gt; # flow package</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.flow import build_residual_network</span>
<span class="sd">    &gt;&gt;&gt; # Note that the auxiliary digraph has an edge attribute named capacity</span>
<span class="sd">    &gt;&gt;&gt; R = build_residual_network(H, &quot;capacity&quot;)</span>
<span class="sd">    &gt;&gt;&gt; result = dict.fromkeys(G, dict())</span>
<span class="sd">    &gt;&gt;&gt; # Reuse the auxiliary digraph and the residual network by passing them</span>
<span class="sd">    &gt;&gt;&gt; # as parameters</span>
<span class="sd">    &gt;&gt;&gt; for u, v in itertools.combinations(G, 2):</span>
<span class="sd">    ...     k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)</span>
<span class="sd">    ...     result[u][v] = k</span>
<span class="sd">    &gt;&gt;&gt; all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))</span>
<span class="sd">    True</span>

<span class="sd">    You can also use alternative flow algorithms for computing edge</span>
<span class="sd">    connectivity. For instance, in dense networks the algorithm</span>
<span class="sd">    :meth:`shortest_augmenting_path` will usually perform better than</span>
<span class="sd">    the default :meth:`edmonds_karp` which is faster for sparse</span>
<span class="sd">    networks with highly skewed degree distributions. Alternative flow</span>
<span class="sd">    functions have to be explicitly imported from the flow package.</span>

<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.flow import shortest_augmenting_path</span>
<span class="sd">    &gt;&gt;&gt; local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)</span>
<span class="sd">    5</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of edge connectivity. We compute the</span>
<span class="sd">    maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an</span>
<span class="sd">    auxiliary digraph build from the original input graph:</span>

<span class="sd">    If the input graph is undirected, we replace each edge (`u`,`v`) with</span>
<span class="sd">    two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute</span>
<span class="sd">    &#39;capacity&#39; for each arc to 1. If the input graph is directed we simply</span>
<span class="sd">    add the &#39;capacity&#39; attribute. This is an implementation of algorithm 1</span>
<span class="sd">    in [1]_.</span>

<span class="sd">    The maximum flow in the auxiliary network is equal to the local edge</span>
<span class="sd">    connectivity because the value of a maximum s-t-flow is equal to the</span>
<span class="sd">    capacity of a minimum s-t-cut (Ford and Fulkerson theorem).</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    :meth:`edge_connectivity`</span>
<span class="sd">    :meth:`local_node_connectivity`</span>
<span class="sd">    :meth:`node_connectivity`</span>
<span class="sd">    :meth:`maximum_flow`</span>
<span class="sd">    :meth:`edmonds_karp`</span>
<span class="sd">    :meth:`preflow_push`</span>
<span class="sd">    :meth:`shortest_augmenting_path`</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.</span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">flow_func</span> <span class="o">=</span> <span class="n">default_flow_func</span>

    <span class="k">if</span> <span class="n">auxiliary</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">build_auxiliary_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">auxiliary</span>

    <span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;flow_func&quot;</span><span class="p">:</span> <span class="n">flow_func</span><span class="p">,</span> <span class="s2">&quot;residual&quot;</span><span class="p">:</span> <span class="n">residual</span><span class="p">}</span>
    <span class="k">if</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">shortest_augmenting_path</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;two_phase&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
    <span class="k">elif</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">edmonds_karp</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>
    <span class="k">elif</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">dinitz</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>
    <span class="k">elif</span> <span class="n">flow_func</span> <span class="ow">is</span> <span class="n">boykov_kolmogorov</span><span class="p">:</span>
        <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">cutoff</span>

    <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">maximum_flow_value</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>


<div class="viewcode-block" id="edge_connectivity"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.edge_connectivity.html#networkx.algorithms.connectivity.connectivity.edge_connectivity">[docs]</a><span class="k">def</span> <span class="nf">edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">t</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Returns the edge connectivity of the graph or digraph G.</span>

<span class="sd">    The edge connectivity is equal to the minimum number of edges that</span>
<span class="sd">    must be removed to disconnect G or render it trivial. If source</span>
<span class="sd">    and target nodes are provided, this function returns the local edge</span>
<span class="sd">    connectivity: the minimum number of edges that must be removed to</span>
<span class="sd">    break all paths from source to target in G.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected or directed graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node. Optional. Default value: None.</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node. Optional. Default value: None.</span>

<span class="sd">    flow_func : function</span>
<span class="sd">        A function for computing the maximum flow among a pair of nodes.</span>
<span class="sd">        The function has to accept at least three parameters: a Digraph,</span>
<span class="sd">        a source node, and a target node. And return a residual network</span>
<span class="sd">        that follows NetworkX conventions (see :meth:`maximum_flow` for</span>
<span class="sd">        details). If flow_func is None, the default maximum flow function</span>
<span class="sd">        (:meth:`edmonds_karp`) is used. See below for details. The</span>
<span class="sd">        choice of the default function may change from version</span>
<span class="sd">        to version and should not be relied on. Default value: None.</span>

<span class="sd">    cutoff : integer, float, or None (default: None)</span>
<span class="sd">        If specified, the maximum flow algorithm will terminate when the</span>
<span class="sd">        flow value reaches or exceeds the cutoff. This only works for flows</span>
<span class="sd">        that support the cutoff parameter (most do) and is ignored otherwise.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        Edge connectivity for G, or local edge connectivity if source</span>
<span class="sd">        and target were provided</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Platonic icosahedral graph is 5-edge-connected</span>
<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; nx.edge_connectivity(G)</span>
<span class="sd">    5</span>

<span class="sd">    You can use alternative flow algorithms for the underlying</span>
<span class="sd">    maximum flow computation. In dense networks the algorithm</span>
<span class="sd">    :meth:`shortest_augmenting_path` will usually perform better</span>
<span class="sd">    than the default :meth:`edmonds_karp`, which is faster for</span>
<span class="sd">    sparse networks with highly skewed degree distributions.</span>
<span class="sd">    Alternative flow functions have to be explicitly imported</span>
<span class="sd">    from the flow package.</span>

<span class="sd">    &gt;&gt;&gt; from networkx.algorithms.flow import shortest_augmenting_path</span>
<span class="sd">    &gt;&gt;&gt; nx.edge_connectivity(G, flow_func=shortest_augmenting_path)</span>
<span class="sd">    5</span>

<span class="sd">    If you specify a pair of nodes (source and target) as parameters,</span>
<span class="sd">    this function returns the value of local edge connectivity.</span>

<span class="sd">    &gt;&gt;&gt; nx.edge_connectivity(G, 3, 7)</span>
<span class="sd">    5</span>

<span class="sd">    If you need to perform several local computations among different</span>
<span class="sd">    pairs of nodes on the same graph, it is recommended that you reuse</span>
<span class="sd">    the data structures used in the maximum flow computations. See</span>
<span class="sd">    :meth:`local_edge_connectivity` for details.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of global edge connectivity.</span>
<span class="sd">    For undirected graphs the algorithm works by finding a &#39;small&#39;</span>
<span class="sd">    dominating set of nodes of G (see algorithm 7 in [1]_ ) and</span>
<span class="sd">    computing local maximum flow (see :meth:`local_edge_connectivity`)</span>
<span class="sd">    between an arbitrary node in the dominating set and the rest of</span>
<span class="sd">    nodes in it. This is an implementation of algorithm 6 in [1]_ .</span>
<span class="sd">    For directed graphs, the algorithm does n calls to the maximum</span>
<span class="sd">    flow function. This is an implementation of algorithm 8 in [1]_ .</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    :meth:`local_edge_connectivity`</span>
<span class="sd">    :meth:`local_node_connectivity`</span>
<span class="sd">    :meth:`node_connectivity`</span>
<span class="sd">    :meth:`maximum_flow`</span>
<span class="sd">    :meth:`edmonds_karp`</span>
<span class="sd">    :meth:`preflow_push`</span>
<span class="sd">    :meth:`shortest_augmenting_path`</span>
<span class="sd">    :meth:`k_edge_components`</span>
<span class="sd">    :meth:`k_edge_subgraphs`</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.</span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">or</span> <span class="p">(</span><span class="n">s</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;Both source and target must be specified.&quot;</span><span class="p">)</span>

    <span class="c1"># Local edge connectivity</span>
    <span class="k">if</span> <span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;node </span><span class="si">{</span><span class="n">s</span><span class="si">}</span><span class="s2"> not in graph&quot;</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">t</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;node </span><span class="si">{</span><span class="n">t</span><span class="si">}</span><span class="s2"> not in graph&quot;</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">flow_func</span><span class="o">=</span><span class="n">flow_func</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">)</span>

    <span class="c1"># Global edge connectivity</span>
    <span class="c1"># reuse auxiliary digraph and residual network</span>
    <span class="n">H</span> <span class="o">=</span> <span class="n">build_auxiliary_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">R</span> <span class="o">=</span> <span class="n">build_residual_network</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="s2">&quot;capacity&quot;</span><span class="p">)</span>
    <span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;flow_func&quot;</span><span class="p">:</span> <span class="n">flow_func</span><span class="p">,</span> <span class="s2">&quot;auxiliary&quot;</span><span class="p">:</span> <span class="n">H</span><span class="p">,</span> <span class="s2">&quot;residual&quot;</span><span class="p">:</span> <span class="n">R</span><span class="p">}</span>

    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="c1"># Algorithm 8 in [1]</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_weakly_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>

        <span class="c1"># initial value for \lambda is minimum degree</span>
        <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">d</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">())</span>
        <span class="n">nodes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
        <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">nodes</span><span class="p">)</span>

        <span class="k">if</span> <span class="n">cutoff</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">L</span><span class="p">)</span>

        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
            <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">L</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodes</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">nodes</span><span class="p">[</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">],</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">))</span>
            <span class="k">except</span> <span class="ne">IndexError</span><span class="p">:</span>  <span class="c1"># last node!</span>
                <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodes</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">nodes</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">))</span>
        <span class="k">return</span> <span class="n">L</span>
    <span class="k">else</span><span class="p">:</span>  <span class="c1"># undirected</span>
        <span class="c1"># Algorithm 6 in [1]</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>

        <span class="c1"># initial value for \lambda is minimum degree</span>
        <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">d</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">())</span>

        <span class="k">if</span> <span class="n">cutoff</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">L</span><span class="p">)</span>

        <span class="c1"># A dominating set is \lambda-covering</span>
        <span class="c1"># We need a dominating set with at least two nodes</span>
        <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="n">D</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">dominating_set</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">start_with</span><span class="o">=</span><span class="n">node</span><span class="p">)</span>
            <span class="n">v</span> <span class="o">=</span> <span class="n">D</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
            <span class="k">if</span> <span class="n">D</span><span class="p">:</span>
                <span class="k">break</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="c1"># in complete graphs the dominating sets will always be of one node</span>
            <span class="c1"># thus we return min degree</span>
            <span class="k">return</span> <span class="n">L</span>

        <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">D</span><span class="p">:</span>
            <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;cutoff&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">L</span>
            <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">))</span>

        <span class="k">return</span> <span class="n">L</span></div>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2023, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>