summaryrefslogtreecommitdiff
path: root/_modules/networkx/algorithms/approximation/traveling_salesman.html
blob: e3c284cf1f730b42c73a688794ad0c7a856057fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.algorithms.approximation.traveling_salesman &#8212; NetworkX 3.0rc2.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
    <script src="../../../../_static/jquery.js"></script>
    <script src="../../../../_static/underscore.js"></script>
    <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../../_static/doctools.js"></script>
    <script src="../../../../_static/sphinx_highlight.js"></script>
    <script src="../../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/algorithms/approximation/traveling_salesman';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/algorithms/approximation/traveling_salesman.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.0rc2.dev0 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en">
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.algorithms.approximation.traveling_salesman</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">=================================</span>
<span class="sd">Travelling Salesman Problem (TSP)</span>
<span class="sd">=================================</span>

<span class="sd">Implementation of approximate algorithms</span>
<span class="sd">for solving and approximating the TSP problem.</span>

<span class="sd">Categories of algorithms which are implemented:</span>

<span class="sd">- Christofides (provides a 3/2-approximation of TSP)</span>
<span class="sd">- Greedy</span>
<span class="sd">- Simulated Annealing (SA)</span>
<span class="sd">- Threshold Accepting (TA)</span>
<span class="sd">- Asadpour Asymmetric Traveling Salesman Algorithm</span>

<span class="sd">The Travelling Salesman Problem tries to find, given the weight</span>
<span class="sd">(distance) between all points where a salesman has to visit, the</span>
<span class="sd">route so that:</span>

<span class="sd">- The total distance (cost) which the salesman travels is minimized.</span>
<span class="sd">- The salesman returns to the starting point.</span>
<span class="sd">- Note that for a complete graph, the salesman visits each point once.</span>

<span class="sd">The function `travelling_salesman_problem` allows for incomplete</span>
<span class="sd">graphs by finding all-pairs shortest paths, effectively converting</span>
<span class="sd">the problem to a complete graph problem. It calls one of the</span>
<span class="sd">approximate methods on that problem and then converts the result</span>
<span class="sd">back to the original graph using the previously found shortest paths.</span>

<span class="sd">TSP is an NP-hard problem in combinatorial optimization,</span>
<span class="sd">important in operations research and theoretical computer science.</span>

<span class="sd">http://en.wikipedia.org/wiki/Travelling_salesman_problem</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">math</span>

<span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>
<span class="kn">from</span> <span class="nn">networkx.algorithms.tree.mst</span> <span class="kn">import</span> <span class="n">random_spanning_tree</span>
<span class="kn">from</span> <span class="nn">networkx.utils</span> <span class="kn">import</span> <span class="n">not_implemented_for</span><span class="p">,</span> <span class="n">pairwise</span><span class="p">,</span> <span class="n">py_random_state</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
    <span class="s2">&quot;traveling_salesman_problem&quot;</span><span class="p">,</span>
    <span class="s2">&quot;christofides&quot;</span><span class="p">,</span>
    <span class="s2">&quot;asadpour_atsp&quot;</span><span class="p">,</span>
    <span class="s2">&quot;greedy_tsp&quot;</span><span class="p">,</span>
    <span class="s2">&quot;simulated_annealing_tsp&quot;</span><span class="p">,</span>
    <span class="s2">&quot;threshold_accepting_tsp&quot;</span><span class="p">,</span>
<span class="p">]</span>


<span class="k">def</span> <span class="nf">swap_two_nodes</span><span class="p">(</span><span class="n">soln</span><span class="p">,</span> <span class="n">seed</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Swap two nodes in `soln` to give a neighbor solution.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    soln : list of nodes</span>
<span class="sd">        Current cycle of nodes</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    list</span>
<span class="sd">        The solution after move is applied. (A neighbor solution.)</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">        This function assumes that the incoming list `soln` is a cycle</span>
<span class="sd">        (that the first and last element are the same) and also that</span>
<span class="sd">        we don&#39;t want any move to change the first node in the list</span>
<span class="sd">        (and thus not the last node either).</span>

<span class="sd">        The input list is changed as well as returned. Make a copy if needed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">        move_one_node</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">seed</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">soln</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">),</span> <span class="n">k</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">soln</span><span class="p">[</span><span class="n">a</span><span class="p">],</span> <span class="n">soln</span><span class="p">[</span><span class="n">b</span><span class="p">]</span> <span class="o">=</span> <span class="n">soln</span><span class="p">[</span><span class="n">b</span><span class="p">],</span> <span class="n">soln</span><span class="p">[</span><span class="n">a</span><span class="p">]</span>
    <span class="k">return</span> <span class="n">soln</span>


<span class="k">def</span> <span class="nf">move_one_node</span><span class="p">(</span><span class="n">soln</span><span class="p">,</span> <span class="n">seed</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Move one node to another position to give a neighbor solution.</span>

<span class="sd">    The node to move and the position to move to are chosen randomly.</span>
<span class="sd">    The first and last nodes are left untouched as soln must be a cycle</span>
<span class="sd">    starting at that node.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    soln : list of nodes</span>
<span class="sd">        Current cycle of nodes</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    list</span>
<span class="sd">        The solution after move is applied. (A neighbor solution.)</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">        This function assumes that the incoming list `soln` is a cycle</span>
<span class="sd">        (that the first and last element are the same) and also that</span>
<span class="sd">        we don&#39;t want any move to change the first node in the list</span>
<span class="sd">        (and thus not the last node either).</span>

<span class="sd">        The input list is changed as well as returned. Make a copy if needed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">        swap_two_nodes</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">seed</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">soln</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">),</span> <span class="n">k</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">soln</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">soln</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="n">a</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">soln</span>


<div class="viewcode-block" id="christofides"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.christofides.html#networkx.algorithms.approximation.traveling_salesman.christofides">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;directed&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">christofides</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">tree</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Approximate a solution of the traveling salesman problem</span>

<span class="sd">    Compute a 3/2-approximation of the traveling salesman problem</span>
<span class="sd">    in a complete undirected graph using Christofides [1]_ algorithm.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : Graph</span>
<span class="sd">        `G` should be a complete weighted undirected graph.</span>
<span class="sd">        The distance between all pairs of nodes should be included.</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    tree : NetworkX graph or None (default: None)</span>
<span class="sd">        A minimum spanning tree of G. Or, if None, the minimum spanning</span>
<span class="sd">        tree is computed using :func:`networkx.minimum_spanning_tree`</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    list</span>
<span class="sd">        List of nodes in `G` along a cycle with a 3/2-approximation of</span>
<span class="sd">        the minimal Hamiltonian cycle.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Christofides, Nicos. &quot;Worst-case analysis of a new heuristic for</span>
<span class="sd">       the travelling salesman problem.&quot; No. RR-388. Carnegie-Mellon Univ</span>
<span class="sd">       Pittsburgh Pa Management Sciences Research Group, 1976.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c1"># Remove selfloops if necessary</span>
    <span class="n">loop_nodes</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">nodes_with_selfloops</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="n">node</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">loop_nodes</span><span class="p">)</span>
    <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>
        <span class="k">pass</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">G</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
        <span class="n">G</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="n">node</span><span class="p">,</span> <span class="n">node</span><span class="p">)</span>
        <span class="n">G</span><span class="o">.</span><span class="n">remove_edges_from</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">loop_nodes</span><span class="p">)</span>
    <span class="c1"># Check that G is a complete graph</span>
    <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
    <span class="c1"># This check ignores selfloops which is what we want here.</span>
    <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nbrdict</span><span class="p">)</span> <span class="o">!=</span> <span class="n">N</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">nbrdict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="o">.</span><span class="n">items</span><span class="p">()):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G must be a complete graph.&quot;</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">tree</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">tree</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">minimum_spanning_tree</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="n">L</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">L</span><span class="o">.</span><span class="n">remove_nodes_from</span><span class="p">([</span><span class="n">v</span> <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">degree</span> <span class="ow">in</span> <span class="n">tree</span><span class="o">.</span><span class="n">degree</span> <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">degree</span> <span class="o">%</span> <span class="mi">2</span><span class="p">)])</span>
    <span class="n">MG</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">MultiGraph</span><span class="p">()</span>
    <span class="n">MG</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">tree</span><span class="o">.</span><span class="n">edges</span><span class="p">)</span>
    <span class="n">edges</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">min_weight_matching</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="n">MG</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">edges</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">_shortcutting</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">eulerian_circuit</span><span class="p">(</span><span class="n">MG</span><span class="p">))</span></div>


<span class="k">def</span> <span class="nf">_shortcutting</span><span class="p">(</span><span class="n">circuit</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Remove duplicate nodes in the path&quot;&quot;&quot;</span>
    <span class="n">nodes</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">circuit</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">nodes</span><span class="p">:</span>
            <span class="k">continue</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nodes</span><span class="p">:</span>
            <span class="n">nodes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">u</span><span class="p">)</span>
        <span class="n">nodes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
    <span class="n">nodes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nodes</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
    <span class="k">return</span> <span class="n">nodes</span>


<div class="viewcode-block" id="traveling_salesman_problem"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.traveling_salesman_problem.html#networkx.algorithms.approximation.traveling_salesman.traveling_salesman_problem">[docs]</a><span class="k">def</span> <span class="nf">traveling_salesman_problem</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">nodes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cycle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Find the shortest path in `G` connecting specified nodes</span>

<span class="sd">    This function allows approximate solution to the traveling salesman</span>
<span class="sd">    problem on networks that are not complete graphs and/or where the</span>
<span class="sd">    salesman does not need to visit all nodes.</span>

<span class="sd">    This function proceeds in two steps. First, it creates a complete</span>
<span class="sd">    graph using the all-pairs shortest_paths between nodes in `nodes`.</span>
<span class="sd">    Edge weights in the new graph are the lengths of the paths</span>
<span class="sd">    between each pair of nodes in the original graph.</span>
<span class="sd">    Second, an algorithm (default: `christofides` for undirected and</span>
<span class="sd">    `asadpour_atsp` for directed) is used to approximate the minimal Hamiltonian</span>
<span class="sd">    cycle on this new graph. The available algorithms are:</span>

<span class="sd">     - christofides</span>
<span class="sd">     - greedy_tsp</span>
<span class="sd">     - simulated_annealing_tsp</span>
<span class="sd">     - threshold_accepting_tsp</span>
<span class="sd">     - asadpour_atsp</span>

<span class="sd">    Once the Hamiltonian Cycle is found, this function post-processes to</span>
<span class="sd">    accommodate the structure of the original graph. If `cycle` is ``False``,</span>
<span class="sd">    the biggest weight edge is removed to make a Hamiltonian path.</span>
<span class="sd">    Then each edge on the new complete graph used for that analysis is</span>
<span class="sd">    replaced by the shortest_path between those nodes on the original graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        A possibly weighted graph</span>

<span class="sd">    nodes : collection of nodes (default=G.nodes)</span>
<span class="sd">        collection (list, set, etc.) of nodes to visit</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    cycle : bool (default: True)</span>
<span class="sd">        Indicates whether a cycle should be returned, or a path.</span>
<span class="sd">        Note: the cycle is the approximate minimal cycle.</span>
<span class="sd">        The path simply removes the biggest edge in that cycle.</span>

<span class="sd">    method : function (default: None)</span>
<span class="sd">        A function that returns a cycle on all nodes and approximates</span>
<span class="sd">        the solution to the traveling salesman problem on a complete</span>
<span class="sd">        graph. The returned cycle is then used to find a corresponding</span>
<span class="sd">        solution on `G`. `method` should be callable; take inputs</span>
<span class="sd">        `G`, and `weight`; and return a list of nodes along the cycle.</span>

<span class="sd">        Provided options include :func:`christofides`, :func:`greedy_tsp`,</span>
<span class="sd">        :func:`simulated_annealing_tsp` and :func:`threshold_accepting_tsp`.</span>

<span class="sd">        If `method is None`: use :func:`christofides` for undirected `G` and</span>
<span class="sd">        :func:`threshold_accepting_tsp` for directed `G`.</span>

<span class="sd">        To specify parameters for these provided functions, construct lambda</span>
<span class="sd">        functions that state the specific value. `method` must have 2 inputs.</span>
<span class="sd">        (See examples).</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    list</span>
<span class="sd">        List of nodes in `G` along a path with an approximation of the minimal</span>
<span class="sd">        path through `nodes`.</span>


<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If `G` is a directed graph it has to be strongly connected or the</span>
<span class="sd">        complete version cannot be generated.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; tsp = nx.approximation.traveling_salesman_problem</span>
<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(9)</span>
<span class="sd">    &gt;&gt;&gt; G[4][5][&quot;weight&quot;] = 5  # all other weights are 1</span>
<span class="sd">    &gt;&gt;&gt; tsp(G, nodes=[3, 6])</span>
<span class="sd">    [3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3]</span>
<span class="sd">    &gt;&gt;&gt; path = tsp(G, cycle=False)</span>
<span class="sd">    &gt;&gt;&gt; path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])</span>
<span class="sd">    True</span>

<span class="sd">    Build (curry) your own function to provide parameter values to the methods.</span>

<span class="sd">    &gt;&gt;&gt; SA_tsp = nx.approximation.simulated_annealing_tsp</span>
<span class="sd">    &gt;&gt;&gt; method = lambda G, wt: SA_tsp(G, &quot;greedy&quot;, weight=wt, temp=500)</span>
<span class="sd">    &gt;&gt;&gt; path = tsp(G, cycle=False, method=method)</span>
<span class="sd">    &gt;&gt;&gt; path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])</span>
<span class="sd">    True</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">method</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
            <span class="n">method</span> <span class="o">=</span> <span class="n">asadpour_atsp</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">method</span> <span class="o">=</span> <span class="n">christofides</span>
    <span class="k">if</span> <span class="n">nodes</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">nodes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">)</span>

    <span class="n">dist</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">path</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">p</span><span class="p">)</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">all_pairs_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">):</span>
        <span class="n">dist</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span>
        <span class="n">path</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">=</span> <span class="n">p</span>

    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="c1"># If the graph is not strongly connected, raise an exception</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_strongly_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G is not strongly connected&quot;</span><span class="p">)</span>
        <span class="n">GG</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">DiGraph</span><span class="p">()</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">GG</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">nodes</span><span class="p">:</span>
        <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">nodes</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">u</span> <span class="o">==</span> <span class="n">v</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="n">GG</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">dist</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">])</span>
    <span class="n">best_GG</span> <span class="o">=</span> <span class="n">method</span><span class="p">(</span><span class="n">GG</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>

    <span class="k">if</span> <span class="ow">not</span> <span class="n">cycle</span><span class="p">:</span>
        <span class="c1"># find and remove the biggest edge</span>
        <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">pairwise</span><span class="p">(</span><span class="n">best_GG</span><span class="p">),</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">dist</span><span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]][</span><span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">]])</span>
        <span class="n">pos</span> <span class="o">=</span> <span class="n">best_GG</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">u</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
        <span class="k">while</span> <span class="n">best_GG</span><span class="p">[</span><span class="n">pos</span><span class="p">]</span> <span class="o">!=</span> <span class="n">v</span><span class="p">:</span>
            <span class="n">pos</span> <span class="o">=</span> <span class="n">best_GG</span><span class="p">[</span><span class="n">pos</span><span class="p">:]</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">u</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
        <span class="n">best_GG</span> <span class="o">=</span> <span class="n">best_GG</span><span class="p">[</span><span class="n">pos</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">best_GG</span><span class="p">[:</span><span class="n">pos</span><span class="p">]</span>

    <span class="n">best_path</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pairwise</span><span class="p">(</span><span class="n">best_GG</span><span class="p">):</span>
        <span class="n">best_path</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">path</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
    <span class="n">best_path</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">best_path</span></div>


<div class="viewcode-block" id="asadpour_atsp"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.asadpour_atsp.html#networkx.algorithms.approximation.traveling_salesman.asadpour_atsp">[docs]</a><span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s2">&quot;undirected&quot;</span><span class="p">)</span>
<span class="nd">@py_random_state</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">asadpour_atsp</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Returns an approximate solution to the traveling salesman problem.</span>

<span class="sd">    This approximate solution is one of the best known approximations for the</span>
<span class="sd">    asymmetric traveling salesman problem developed by Asadpour et al,</span>
<span class="sd">    [1]_. The algorithm first solves the Held-Karp relaxation to find a lower</span>
<span class="sd">    bound for the weight of the cycle. Next, it constructs an exponential</span>
<span class="sd">    distribution of undirected spanning trees where the probability of an</span>
<span class="sd">    edge being in the tree corresponds to the weight of that edge using a</span>
<span class="sd">    maximum entropy rounding scheme. Next we sample that distribution</span>
<span class="sd">    $2 \\lceil \\ln n \\rceil$ times and save the minimum sampled tree once the</span>
<span class="sd">    direction of the arcs is added back to the edges. Finally, we augment</span>
<span class="sd">    then short circuit that graph to find the approximate tour for the</span>
<span class="sd">    salesman.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : nx.DiGraph</span>
<span class="sd">        The graph should be a complete weighted directed graph. The</span>
<span class="sd">        distance between all paris of nodes should be included and the triangle</span>
<span class="sd">        inequality should hold. That is, the direct edge between any two nodes</span>
<span class="sd">        should be the path of least cost.</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    source : node label (default=`None`)</span>
<span class="sd">        If given, return the cycle starting and ending at the given node.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    cycle : list of nodes</span>
<span class="sd">        Returns the cycle (list of nodes) that a salesman can follow to minimize</span>
<span class="sd">        the total weight of the trip.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If `G` is not complete or has less than two nodes, the algorithm raises</span>
<span class="sd">        an exception.</span>

<span class="sd">    NetworkXError</span>
<span class="sd">        If `source` is not `None` and is not a node in `G`, the algorithm raises</span>
<span class="sd">        an exception.</span>

<span class="sd">    NetworkXNotImplemented</span>
<span class="sd">        If `G` is an undirected graph.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi,</span>
<span class="sd">       An o(log n/log log n)-approximation algorithm for the asymmetric</span>
<span class="sd">       traveling salesman problem, Operations research, 65 (2017),</span>
<span class="sd">       pp. 1043–1061</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; import networkx as nx</span>
<span class="sd">    &gt;&gt;&gt; import networkx.algorithms.approximation as approx</span>
<span class="sd">    &gt;&gt;&gt; G = nx.complete_graph(3, create_using=nx.DiGraph)</span>
<span class="sd">    &gt;&gt;&gt; nx.set_edge_attributes(G, {(0, 1): 2, (1, 2): 2, (2, 0): 2, (0, 2): 1, (2, 1): 1, (1, 0): 1}, &quot;weight&quot;)</span>
<span class="sd">    &gt;&gt;&gt; tour = approx.asadpour_atsp(G,source=0)</span>
<span class="sd">    &gt;&gt;&gt; tour</span>
<span class="sd">    [0, 2, 1, 0]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">ceil</span><span class="p">,</span> <span class="n">exp</span>
    <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">log</span> <span class="k">as</span> <span class="n">ln</span>

    <span class="c1"># Check that G is a complete graph</span>
    <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
    <span class="k">if</span> <span class="n">N</span> <span class="o">&lt;</span> <span class="mi">2</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G must have at least two nodes&quot;</span><span class="p">)</span>
    <span class="c1"># This check ignores selfloops which is what we want here.</span>
    <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nbrdict</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">n</span> <span class="ow">in</span> <span class="n">nbrdict</span><span class="p">)</span> <span class="o">!=</span> <span class="n">N</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">nbrdict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="o">.</span><span class="n">items</span><span class="p">()):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G is not a complete DiGraph&quot;</span><span class="p">)</span>
    <span class="c1"># Check that the source vertex, if given, is in the graph</span>
    <span class="k">if</span> <span class="n">source</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;Given source node not in G.&quot;</span><span class="p">)</span>

    <span class="n">opt_hk</span><span class="p">,</span> <span class="n">z_star</span> <span class="o">=</span> <span class="n">held_karp_ascent</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>

    <span class="c1"># Test to see if the ascent method found an integer solution or a fractional</span>
    <span class="c1"># solution. If it is integral then z_star is a nx.Graph, otherwise it is</span>
    <span class="c1"># a dict</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">z_star</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
        <span class="c1"># Here we are using the shortcutting method to go from the list of edges</span>
        <span class="c1"># returned from eularian_circuit to a list of nodes</span>
        <span class="k">return</span> <span class="n">_shortcutting</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">eulerian_circuit</span><span class="p">(</span><span class="n">z_star</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="n">source</span><span class="p">))</span>

    <span class="c1"># Create the undirected support of z_star</span>
    <span class="n">z_support</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">MultiGraph</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">z_star</span><span class="p">:</span>
        <span class="k">if</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">z_support</span><span class="o">.</span><span class="n">edges</span><span class="p">:</span>
            <span class="n">edge_weight</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][</span><span class="n">weight</span><span class="p">],</span> <span class="n">G</span><span class="p">[</span><span class="n">v</span><span class="p">][</span><span class="n">u</span><span class="p">][</span><span class="n">weight</span><span class="p">])</span>
            <span class="n">z_support</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">edge_weight</span><span class="p">})</span>

    <span class="c1"># Create the exponential distribution of spanning trees</span>
    <span class="n">gamma</span> <span class="o">=</span> <span class="n">spanning_tree_distribution</span><span class="p">(</span><span class="n">z_support</span><span class="p">,</span> <span class="n">z_star</span><span class="p">)</span>

    <span class="c1"># Write the lambda values to the edges of z_support</span>
    <span class="n">z_support</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">Graph</span><span class="p">(</span><span class="n">z_support</span><span class="p">)</span>
    <span class="n">lambda_dict</span> <span class="o">=</span> <span class="p">{(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">):</span> <span class="n">exp</span><span class="p">(</span><span class="n">gamma</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)])</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">z_support</span><span class="o">.</span><span class="n">edges</span><span class="p">()}</span>
    <span class="n">nx</span><span class="o">.</span><span class="n">set_edge_attributes</span><span class="p">(</span><span class="n">z_support</span><span class="p">,</span> <span class="n">lambda_dict</span><span class="p">,</span> <span class="s2">&quot;weight&quot;</span><span class="p">)</span>
    <span class="k">del</span> <span class="n">gamma</span><span class="p">,</span> <span class="n">lambda_dict</span>

    <span class="c1"># Sample 2 * ceil( ln(n) ) spanning trees and record the minimum one</span>
    <span class="n">minimum_sampled_tree</span> <span class="o">=</span> <span class="kc">None</span>
    <span class="n">minimum_sampled_tree_weight</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span>
    <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">ceil</span><span class="p">(</span><span class="n">ln</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()))):</span>
        <span class="n">sampled_tree</span> <span class="o">=</span> <span class="n">random_spanning_tree</span><span class="p">(</span><span class="n">z_support</span><span class="p">,</span> <span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
        <span class="n">sampled_tree_weight</span> <span class="o">=</span> <span class="n">sampled_tree</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="n">weight</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">sampled_tree_weight</span> <span class="o">&lt;</span> <span class="n">minimum_sampled_tree_weight</span><span class="p">:</span>
            <span class="n">minimum_sampled_tree</span> <span class="o">=</span> <span class="n">sampled_tree</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
            <span class="n">minimum_sampled_tree_weight</span> <span class="o">=</span> <span class="n">sampled_tree_weight</span>

    <span class="c1"># Orient the edges in that tree to keep the cost of the tree the same.</span>
    <span class="n">t_star</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">MultiDiGraph</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">minimum_sampled_tree</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">d</span> <span class="o">==</span> <span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][</span><span class="n">weight</span><span class="p">]:</span>
            <span class="n">t_star</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">d</span><span class="p">})</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">t_star</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">d</span><span class="p">})</span>

    <span class="c1"># Find the node demands needed to neutralize the flow of t_star in G</span>
    <span class="n">node_demands</span> <span class="o">=</span> <span class="p">{</span><span class="n">n</span><span class="p">:</span> <span class="n">t_star</span><span class="o">.</span><span class="n">out_degree</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">-</span> <span class="n">t_star</span><span class="o">.</span><span class="n">in_degree</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">t_star</span><span class="p">}</span>
    <span class="n">nx</span><span class="o">.</span><span class="n">set_node_attributes</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">node_demands</span><span class="p">,</span> <span class="s2">&quot;demand&quot;</span><span class="p">)</span>

    <span class="c1"># Find the min_cost_flow</span>
    <span class="n">flow_dict</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">min_cost_flow</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="s2">&quot;demand&quot;</span><span class="p">)</span>

    <span class="c1"># Build the flow into t_star</span>
    <span class="k">for</span> <span class="n">source</span><span class="p">,</span> <span class="n">values</span> <span class="ow">in</span> <span class="n">flow_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">target</span> <span class="ow">in</span> <span class="n">values</span><span class="p">:</span>
            <span class="k">if</span> <span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">t_star</span><span class="o">.</span><span class="n">edges</span> <span class="ow">and</span> <span class="n">values</span><span class="p">[</span><span class="n">target</span><span class="p">]</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
                <span class="c1"># IF values[target] &gt; 0 we have to add that many edges</span>
                <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">values</span><span class="p">[</span><span class="n">target</span><span class="p">]):</span>
                    <span class="n">t_star</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>

    <span class="c1"># Return the shortcut eulerian circuit</span>
    <span class="n">circuit</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">eulerian_circuit</span><span class="p">(</span><span class="n">t_star</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="n">source</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">_shortcutting</span><span class="p">(</span><span class="n">circuit</span><span class="p">)</span></div>


<span class="k">def</span> <span class="nf">held_karp_ascent</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Minimizes the Held-Karp relaxation of the TSP for `G`</span>

<span class="sd">    Solves the Held-Karp relaxation of the input complete digraph and scales</span>
<span class="sd">    the output solution for use in the Asadpour [1]_ ASTP algorithm.</span>

<span class="sd">    The Held-Karp relaxation defines the lower bound for solutions to the</span>
<span class="sd">    ATSP, although it does return a fractional solution. This is used in the</span>
<span class="sd">    Asadpour algorithm as an initial solution which is later rounded to a</span>
<span class="sd">    integral tree within the spanning tree polytopes. This function solves</span>
<span class="sd">    the relaxation with the branch and bound method in [2]_.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : nx.DiGraph</span>
<span class="sd">        The graph should be a complete weighted directed graph.</span>
<span class="sd">        The distance between all paris of nodes should be included.</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    OPT : float</span>
<span class="sd">        The cost for the optimal solution to the Held-Karp relaxation</span>
<span class="sd">    z : dict or nx.Graph</span>
<span class="sd">        A symmetrized and scaled version of the optimal solution to the</span>
<span class="sd">        Held-Karp relaxation for use in the Asadpour algorithm.</span>

<span class="sd">        If an integral solution is found, then that is an optimal solution for</span>
<span class="sd">        the ATSP problem and that is returned instead.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi,</span>
<span class="sd">       An o(log n/log log n)-approximation algorithm for the asymmetric</span>
<span class="sd">       traveling salesman problem, Operations research, 65 (2017),</span>
<span class="sd">       pp. 1043–1061</span>

<span class="sd">    .. [2] M. Held, R. M. Karp, The traveling-salesman problem and minimum</span>
<span class="sd">           spanning trees, Operations Research, 1970-11-01, Vol. 18 (6),</span>
<span class="sd">           pp.1138-1162</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
    <span class="kn">import</span> <span class="nn">scipy.optimize</span> <span class="k">as</span> <span class="nn">optimize</span>

    <span class="k">def</span> <span class="nf">k_pi</span><span class="p">():</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Find the set of minimum 1-Arborescences for G at point pi.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        Set</span>
<span class="sd">            The set of minimum 1-Arborescences</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># Create a copy of G without vertex 1.</span>
        <span class="n">G_1</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
        <span class="n">minimum_1_arborescences</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
        <span class="n">minimum_1_arborescence_weight</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span>

        <span class="c1"># node is node &#39;1&#39; in the Held and Karp paper</span>
        <span class="n">n</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="fm">__iter__</span><span class="p">())</span>
        <span class="n">G_1</span><span class="o">.</span><span class="n">remove_node</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>

        <span class="c1"># Iterate over the spanning arborescences of the graph until we know</span>
        <span class="c1"># that we have found the minimum 1-arborescences. My proposed strategy</span>
        <span class="c1"># is to find the most extensive root to connect to from &#39;node 1&#39; and</span>
        <span class="c1"># the least expensive one. We then iterate over arborescences until</span>
        <span class="c1"># the cost of the basic arborescence is the cost of the minimum one</span>
        <span class="c1"># plus the difference between the most and least expensive roots,</span>
        <span class="c1"># that way the cost of connecting &#39;node 1&#39; will by definition not by</span>
        <span class="c1"># minimum</span>
        <span class="n">min_root</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;node&quot;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="p">:</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span><span class="p">}</span>
        <span class="n">max_root</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;node&quot;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="p">:</span> <span class="o">-</span><span class="n">math</span><span class="o">.</span><span class="n">inf</span><span class="p">}</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
            <span class="k">if</span> <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">min_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]:</span>
                <span class="n">min_root</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;node&quot;</span><span class="p">:</span> <span class="n">v</span><span class="p">,</span> <span class="n">weight</span><span class="p">:</span> <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]}</span>
            <span class="k">if</span> <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">max_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]:</span>
                <span class="n">max_root</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;node&quot;</span><span class="p">:</span> <span class="n">v</span><span class="p">,</span> <span class="n">weight</span><span class="p">:</span> <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]}</span>

        <span class="n">min_in_edge</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">in_edges</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="n">weight</span><span class="p">])</span>
        <span class="n">min_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">=</span> <span class="n">min_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">+</span> <span class="n">min_in_edge</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="n">weight</span><span class="p">]</span>
        <span class="n">max_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">=</span> <span class="n">max_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">+</span> <span class="n">min_in_edge</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="n">weight</span><span class="p">]</span>

        <span class="n">min_arb_weight</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span>
        <span class="k">for</span> <span class="n">arb</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">ArborescenceIterator</span><span class="p">(</span><span class="n">G_1</span><span class="p">):</span>
            <span class="n">arb_weight</span> <span class="o">=</span> <span class="n">arb</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="n">weight</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">min_arb_weight</span> <span class="o">==</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span><span class="p">:</span>
                <span class="n">min_arb_weight</span> <span class="o">=</span> <span class="n">arb_weight</span>
            <span class="k">elif</span> <span class="n">arb_weight</span> <span class="o">&gt;</span> <span class="n">min_arb_weight</span> <span class="o">+</span> <span class="n">max_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">-</span> <span class="n">min_root</span><span class="p">[</span><span class="n">weight</span><span class="p">]:</span>
                <span class="k">break</span>
            <span class="c1"># We have to pick the root node of the arborescence for the out</span>
            <span class="c1"># edge of the first vertex as that is the only node without an</span>
            <span class="c1"># edge directed into it.</span>
            <span class="k">for</span> <span class="n">N</span><span class="p">,</span> <span class="n">deg</span> <span class="ow">in</span> <span class="n">arb</span><span class="o">.</span><span class="n">in_degree</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">deg</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
                    <span class="c1"># root found</span>
                    <span class="n">arb</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">G</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">N</span><span class="p">][</span><span class="n">weight</span><span class="p">]})</span>
                    <span class="n">arb_weight</span> <span class="o">+=</span> <span class="n">G</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">N</span><span class="p">][</span><span class="n">weight</span><span class="p">]</span>
                    <span class="k">break</span>

            <span class="c1"># We can pick the minimum weight in-edge for the vertex with</span>
            <span class="c1"># a cycle. If there are multiple edges with the same, minimum</span>
            <span class="c1"># weight, We need to add all of them.</span>
            <span class="c1">#</span>
            <span class="c1"># Delete the edge (N, v) so that we cannot pick it.</span>
            <span class="n">edge_data</span> <span class="o">=</span> <span class="n">G</span><span class="p">[</span><span class="n">N</span><span class="p">][</span><span class="n">n</span><span class="p">]</span>
            <span class="n">G</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
            <span class="n">min_weight</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">in_edges</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">),</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="p">[</span><span class="mi">2</span><span class="p">])[</span><span class="mi">2</span><span class="p">]</span>
            <span class="n">min_edges</span> <span class="o">=</span> <span class="p">[</span>
                <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">in_edges</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span> <span class="k">if</span> <span class="n">d</span> <span class="o">==</span> <span class="n">min_weight</span>
            <span class="p">]</span>
            <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">min_edges</span><span class="p">:</span>
                <span class="n">new_arb</span> <span class="o">=</span> <span class="n">arb</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
                <span class="n">new_arb</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">d</span><span class="p">})</span>
                <span class="n">new_arb_weight</span> <span class="o">=</span> <span class="n">arb_weight</span> <span class="o">+</span> <span class="n">d</span>
                <span class="c1"># Check to see the weight of the arborescence, if it is a</span>
                <span class="c1"># new minimum, clear all of the old potential minimum</span>
                <span class="c1"># 1-arborescences and add this is the only one. If its</span>
                <span class="c1"># weight is above the known minimum, do not add it.</span>
                <span class="k">if</span> <span class="n">new_arb_weight</span> <span class="o">&lt;</span> <span class="n">minimum_1_arborescence_weight</span><span class="p">:</span>
                    <span class="n">minimum_1_arborescences</span><span class="o">.</span><span class="n">clear</span><span class="p">()</span>
                    <span class="n">minimum_1_arborescence_weight</span> <span class="o">=</span> <span class="n">new_arb_weight</span>
                <span class="c1"># We have a 1-arborescence, add it to the set</span>
                <span class="k">if</span> <span class="n">new_arb_weight</span> <span class="o">==</span> <span class="n">minimum_1_arborescence_weight</span><span class="p">:</span>
                    <span class="n">minimum_1_arborescences</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">new_arb</span><span class="p">)</span>
            <span class="n">G</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="o">**</span><span class="n">edge_data</span><span class="p">)</span>

        <span class="k">return</span> <span class="n">minimum_1_arborescences</span>

    <span class="k">def</span> <span class="nf">direction_of_ascent</span><span class="p">():</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Find the direction of ascent at point pi.</span>

<span class="sd">        See [1]_ for more information.</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        dict</span>
<span class="sd">            A mapping from the nodes of the graph which represents the direction</span>
<span class="sd">            of ascent.</span>

<span class="sd">        References</span>
<span class="sd">        ----------</span>
<span class="sd">        .. [1] M. Held, R. M. Karp, The traveling-salesman problem and minimum</span>
<span class="sd">           spanning trees, Operations Research, 1970-11-01, Vol. 18 (6),</span>
<span class="sd">           pp.1138-1162</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># 1. Set d equal to the zero n-vector.</span>
        <span class="n">d</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="n">d</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="k">del</span> <span class="n">n</span>
        <span class="c1"># 2. Find a 1-Aborescence T^k such that k is in K(pi, d).</span>
        <span class="n">minimum_1_arborescences</span> <span class="o">=</span> <span class="n">k_pi</span><span class="p">()</span>
        <span class="k">while</span> <span class="kc">True</span><span class="p">:</span>
            <span class="c1"># Reduce K(pi) to K(pi, d)</span>
            <span class="c1"># Find the arborescence in K(pi) which increases the lest in</span>
            <span class="c1"># direction d</span>
            <span class="n">min_k_d_weight</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span>
            <span class="n">min_k_d</span> <span class="o">=</span> <span class="kc">None</span>
            <span class="k">for</span> <span class="n">arborescence</span> <span class="ow">in</span> <span class="n">minimum_1_arborescences</span><span class="p">:</span>
                <span class="n">weighted_cost</span> <span class="o">=</span> <span class="mi">0</span>
                <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">deg</span> <span class="ow">in</span> <span class="n">arborescence</span><span class="o">.</span><span class="n">degree</span><span class="p">:</span>
                    <span class="n">weighted_cost</span> <span class="o">+=</span> <span class="n">d</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">deg</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
                <span class="k">if</span> <span class="n">weighted_cost</span> <span class="o">&lt;</span> <span class="n">min_k_d_weight</span><span class="p">:</span>
                    <span class="n">min_k_d_weight</span> <span class="o">=</span> <span class="n">weighted_cost</span>
                    <span class="n">min_k_d</span> <span class="o">=</span> <span class="n">arborescence</span>

            <span class="c1"># 3. If sum of d_i * v_{i, k} is greater than zero, terminate</span>
            <span class="k">if</span> <span class="n">min_k_d_weight</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
                <span class="k">return</span> <span class="n">d</span><span class="p">,</span> <span class="n">min_k_d</span>
            <span class="c1"># 4. d_i = d_i + v_{i, k}</span>
            <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">deg</span> <span class="ow">in</span> <span class="n">min_k_d</span><span class="o">.</span><span class="n">degree</span><span class="p">:</span>
                <span class="n">d</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">+=</span> <span class="n">deg</span> <span class="o">-</span> <span class="mi">2</span>
            <span class="c1"># Check that we do not need to terminate because the direction</span>
            <span class="c1"># of ascent does not exist. This is done with linear</span>
            <span class="c1"># programming.</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">minimum_1_arborescences</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
            <span class="n">a_eq</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">minimum_1_arborescences</span><span class="p">)),</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
            <span class="n">b_eq</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
            <span class="n">b_eq</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)]</span> <span class="o">=</span> <span class="mi">1</span>
            <span class="k">for</span> <span class="n">arb_count</span><span class="p">,</span> <span class="n">arborescence</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">minimum_1_arborescences</span><span class="p">):</span>
                <span class="n">n_count</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
                <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">deg</span> <span class="ow">in</span> <span class="n">arborescence</span><span class="o">.</span><span class="n">degree</span><span class="p">:</span>
                    <span class="n">a_eq</span><span class="p">[</span><span class="n">n_count</span><span class="p">][</span><span class="n">arb_count</span><span class="p">]</span> <span class="o">=</span> <span class="n">deg</span> <span class="o">-</span> <span class="mi">2</span>
                    <span class="n">n_count</span> <span class="o">-=</span> <span class="mi">1</span>
                <span class="n">a_eq</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)][</span><span class="n">arb_count</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
            <span class="n">program_result</span> <span class="o">=</span> <span class="n">optimize</span><span class="o">.</span><span class="n">linprog</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">A_eq</span><span class="o">=</span><span class="n">a_eq</span><span class="p">,</span> <span class="n">b_eq</span><span class="o">=</span><span class="n">b_eq</span><span class="p">)</span>
            <span class="c1"># If the constants exist, then the direction of ascent doesn&#39;t</span>
            <span class="k">if</span> <span class="n">program_result</span><span class="o">.</span><span class="n">success</span><span class="p">:</span>
                <span class="c1"># There is no direction of ascent</span>
                <span class="k">return</span> <span class="kc">None</span><span class="p">,</span> <span class="n">minimum_1_arborescences</span>

            <span class="c1"># 5. GO TO 2</span>

    <span class="k">def</span> <span class="nf">find_epsilon</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Given the direction of ascent at pi, find the maximum distance we can go</span>
<span class="sd">        in that direction.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        k_xy : set</span>
<span class="sd">            The set of 1-arborescences which have the minimum rate of increase</span>
<span class="sd">            in the direction of ascent</span>

<span class="sd">        d : dict</span>
<span class="sd">            The direction of ascent</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        float</span>
<span class="sd">            The distance we can travel in direction `d`</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">min_epsilon</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">inf</span>
        <span class="k">for</span> <span class="n">e_u</span><span class="p">,</span> <span class="n">e_v</span><span class="p">,</span> <span class="n">e_w</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">):</span>
            <span class="k">if</span> <span class="p">(</span><span class="n">e_u</span><span class="p">,</span> <span class="n">e_v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">k</span><span class="o">.</span><span class="n">edges</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="c1"># Now, I have found a condition which MUST be true for the edges to</span>
            <span class="c1"># be a valid substitute. The edge in the graph which is the</span>
            <span class="c1"># substitute is the one with the same terminated end. This can be</span>
            <span class="c1"># checked rather simply.</span>
            <span class="c1">#</span>
            <span class="c1"># Find the edge within k which is the substitute. Because k is a</span>
            <span class="c1"># 1-arborescence, we know that they is only one such edges</span>
            <span class="c1"># leading into every vertex.</span>
            <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">k</span><span class="o">.</span><span class="n">in_edges</span><span class="p">(</span><span class="n">e_v</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">))</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
                <span class="k">raise</span> <span class="ne">Exception</span>
            <span class="n">sub_u</span><span class="p">,</span> <span class="n">sub_v</span><span class="p">,</span> <span class="n">sub_w</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">k</span><span class="o">.</span><span class="n">in_edges</span><span class="p">(</span><span class="n">e_v</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span><span class="o">.</span><span class="fm">__iter__</span><span class="p">())</span>
            <span class="n">k</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">e_u</span><span class="p">,</span> <span class="n">e_v</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">e_w</span><span class="p">})</span>
            <span class="n">k</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="n">sub_u</span><span class="p">,</span> <span class="n">sub_v</span><span class="p">)</span>
            <span class="k">if</span> <span class="p">(</span>
                <span class="nb">max</span><span class="p">(</span><span class="n">d</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">k</span><span class="o">.</span><span class="n">in_degree</span><span class="p">())</span> <span class="o">&lt;=</span> <span class="mi">1</span>
                <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">==</span> <span class="n">k</span><span class="o">.</span><span class="n">number_of_edges</span><span class="p">()</span>
                <span class="ow">and</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_weakly_connected</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
            <span class="p">):</span>
                <span class="c1"># Ascent method calculation</span>
                <span class="k">if</span> <span class="n">d</span><span class="p">[</span><span class="n">sub_u</span><span class="p">]</span> <span class="o">==</span> <span class="n">d</span><span class="p">[</span><span class="n">e_u</span><span class="p">]</span> <span class="ow">or</span> <span class="n">sub_w</span> <span class="o">==</span> <span class="n">e_w</span><span class="p">:</span>
                    <span class="c1"># Revert to the original graph</span>
                    <span class="n">k</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="n">e_u</span><span class="p">,</span> <span class="n">e_v</span><span class="p">)</span>
                    <span class="n">k</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">sub_u</span><span class="p">,</span> <span class="n">sub_v</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">sub_w</span><span class="p">})</span>
                    <span class="k">continue</span>
                <span class="n">epsilon</span> <span class="o">=</span> <span class="p">(</span><span class="n">sub_w</span> <span class="o">-</span> <span class="n">e_w</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">d</span><span class="p">[</span><span class="n">e_u</span><span class="p">]</span> <span class="o">-</span> <span class="n">d</span><span class="p">[</span><span class="n">sub_u</span><span class="p">])</span>
                <span class="k">if</span> <span class="mi">0</span> <span class="o">&lt;</span> <span class="n">epsilon</span> <span class="o">&lt;</span> <span class="n">min_epsilon</span><span class="p">:</span>
                    <span class="n">min_epsilon</span> <span class="o">=</span> <span class="n">epsilon</span>
            <span class="c1"># Revert to the original graph</span>
            <span class="n">k</span><span class="o">.</span><span class="n">remove_edge</span><span class="p">(</span><span class="n">e_u</span><span class="p">,</span> <span class="n">e_v</span><span class="p">)</span>
            <span class="n">k</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">sub_u</span><span class="p">,</span> <span class="n">sub_v</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="n">weight</span><span class="p">:</span> <span class="n">sub_w</span><span class="p">})</span>

        <span class="k">return</span> <span class="n">min_epsilon</span>

    <span class="c1"># I have to know that the elements in pi correspond to the correct elements</span>
    <span class="c1"># in the direction of ascent, even if the node labels are not integers.</span>
    <span class="c1"># Thus, I will use dictionaries to made that mapping.</span>
    <span class="n">pi_dict</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="n">pi_dict</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="k">del</span> <span class="n">n</span>
    <span class="n">original_edge_weights</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
        <span class="n">original_edge_weights</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span>
    <span class="n">dir_ascent</span><span class="p">,</span> <span class="n">k_d</span> <span class="o">=</span> <span class="n">direction_of_ascent</span><span class="p">()</span>
    <span class="k">while</span> <span class="n">dir_ascent</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">max_distance</span> <span class="o">=</span> <span class="n">find_epsilon</span><span class="p">(</span><span class="n">k_d</span><span class="p">,</span> <span class="n">dir_ascent</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">dir_ascent</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
            <span class="n">pi_dict</span><span class="p">[</span><span class="n">n</span><span class="p">]</span> <span class="o">+=</span> <span class="n">max_distance</span> <span class="o">*</span> <span class="n">v</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
            <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_edge_weights</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span> <span class="o">+</span> <span class="n">pi_dict</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
        <span class="n">dir_ascent</span><span class="p">,</span> <span class="n">k_d</span> <span class="o">=</span> <span class="n">direction_of_ascent</span><span class="p">()</span>
    <span class="c1"># k_d is no longer an individual 1-arborescence but rather a set of</span>
    <span class="c1"># minimal 1-arborescences at the maximum point of the polytope and should</span>
    <span class="c1"># be reflected as such</span>
    <span class="n">k_max</span> <span class="o">=</span> <span class="n">k_d</span>

    <span class="c1"># Search for a cycle within k_max. If a cycle exists, return it as the</span>
    <span class="c1"># solution</span>
    <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">k_max</span><span class="p">:</span>
        <span class="k">if</span> <span class="nb">len</span><span class="p">([</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">k</span> <span class="k">if</span> <span class="n">k</span><span class="o">.</span><span class="n">degree</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">])</span> <span class="o">==</span> <span class="n">G</span><span class="o">.</span><span class="n">order</span><span class="p">():</span>
            <span class="c1"># Tour found</span>
            <span class="k">return</span> <span class="n">k</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="n">weight</span><span class="p">),</span> <span class="n">k</span>

    <span class="c1"># Write the original edge weights back to G and every member of k_max at</span>
    <span class="c1"># the maximum point. Also average the number of times that edge appears in</span>
    <span class="c1"># the set of minimal 1-arborescences.</span>
    <span class="n">x_star</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">size_k_max</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">k_max</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
        <span class="n">edge_count</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="n">d</span><span class="p">[</span><span class="n">weight</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_edge_weights</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span>
        <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">k_max</span><span class="p">:</span>
            <span class="k">if</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">k</span><span class="o">.</span><span class="n">edges</span><span class="p">():</span>
                <span class="n">edge_count</span> <span class="o">+=</span> <span class="mi">1</span>
                <span class="n">k</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">][</span><span class="n">weight</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_edge_weights</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span>
        <span class="n">x_star</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span> <span class="o">=</span> <span class="n">edge_count</span> <span class="o">/</span> <span class="n">size_k_max</span>
    <span class="c1"># Now symmetrize the edges in x_star and scale them according to (5) in</span>
    <span class="c1"># reference [1]</span>
    <span class="n">z_star</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">scale_factor</span> <span class="o">=</span> <span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">order</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="n">G</span><span class="o">.</span><span class="n">order</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">x_star</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
        <span class="n">frequency</span> <span class="o">=</span> <span class="n">x_star</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span> <span class="o">+</span> <span class="n">x_star</span><span class="p">[(</span><span class="n">v</span><span class="p">,</span> <span class="n">u</span><span class="p">)]</span>
        <span class="k">if</span> <span class="n">frequency</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
            <span class="n">z_star</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span> <span class="o">=</span> <span class="n">scale_factor</span> <span class="o">*</span> <span class="n">frequency</span>
    <span class="k">del</span> <span class="n">x_star</span>
    <span class="c1"># Return the optimal weight and the z dict</span>
    <span class="k">return</span> <span class="nb">next</span><span class="p">(</span><span class="n">k_max</span><span class="o">.</span><span class="fm">__iter__</span><span class="p">())</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="n">weight</span><span class="p">),</span> <span class="n">z_star</span>


<span class="k">def</span> <span class="nf">spanning_tree_distribution</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Find the asadpour exponential distribution of spanning trees.</span>

<span class="sd">    Solves the Maximum Entropy Convex Program in the Asadpour algorithm [1]_</span>
<span class="sd">    using the approach in section 7 to build an exponential distribution of</span>
<span class="sd">    undirected spanning trees.</span>

<span class="sd">    This algorithm ensures that the probability of any edge in a spanning</span>
<span class="sd">    tree is proportional to the sum of the probabilities of the tress</span>
<span class="sd">    containing that edge over the sum of the probabilities of all spanning</span>
<span class="sd">    trees of the graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : nx.MultiGraph</span>
<span class="sd">        The undirected support graph for the Held Karp relaxation</span>

<span class="sd">    z : dict</span>
<span class="sd">        The output of `held_karp_ascent()`, a scaled version of the Held-Karp</span>
<span class="sd">        solution.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    gamma : dict</span>
<span class="sd">        The probability distribution which approximately preserves the marginal</span>
<span class="sd">        probabilities of `z`.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">exp</span>
    <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">log</span> <span class="k">as</span> <span class="n">ln</span>

    <span class="k">def</span> <span class="nf">q</span><span class="p">(</span><span class="n">e</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        The value of q(e) is described in the Asadpour paper is &quot;the</span>
<span class="sd">        probability that edge e will be included in a spanning tree T that is</span>
<span class="sd">        chosen with probability proportional to exp(gamma(T))&quot; which</span>
<span class="sd">        basically means that it is the total probability of the edge appearing</span>
<span class="sd">        across the whole distribution.</span>

<span class="sd">        Parameters</span>
<span class="sd">        ----------</span>
<span class="sd">        e : tuple</span>
<span class="sd">            The `(u, v)` tuple describing the edge we are interested in</span>

<span class="sd">        Returns</span>
<span class="sd">        -------</span>
<span class="sd">        float</span>
<span class="sd">            The probability that a spanning tree chosen according to the</span>
<span class="sd">            current values of gamma will include edge `e`.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># Create the laplacian matrices</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
            <span class="n">d</span><span class="p">[</span><span class="n">lambda_key</span><span class="p">]</span> <span class="o">=</span> <span class="n">exp</span><span class="p">(</span><span class="n">gamma</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)])</span>
        <span class="n">G_Kirchhoff</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">total_spanning_tree_weight</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">lambda_key</span><span class="p">)</span>
        <span class="n">G_e</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">contracted_edge</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">e</span><span class="p">,</span> <span class="n">self_loops</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
        <span class="n">G_e_Kirchhoff</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">total_spanning_tree_weight</span><span class="p">(</span><span class="n">G_e</span><span class="p">,</span> <span class="n">lambda_key</span><span class="p">)</span>

        <span class="c1"># Multiply by the weight of the contracted edge since it is not included</span>
        <span class="c1"># in the total weight of the contracted graph.</span>
        <span class="k">return</span> <span class="n">exp</span><span class="p">(</span><span class="n">gamma</span><span class="p">[(</span><span class="n">e</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">e</span><span class="p">[</span><span class="mi">1</span><span class="p">])])</span> <span class="o">*</span> <span class="n">G_e_Kirchhoff</span> <span class="o">/</span> <span class="n">G_Kirchhoff</span>

    <span class="c1"># initialize gamma to the zero dict</span>
    <span class="n">gamma</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">:</span>
        <span class="n">gamma</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span> <span class="o">=</span> <span class="mi">0</span>

    <span class="c1"># set epsilon</span>
    <span class="n">EPSILON</span> <span class="o">=</span> <span class="mf">0.2</span>

    <span class="c1"># pick an edge attribute name that is unlikely to be in the graph</span>
    <span class="n">lambda_key</span> <span class="o">=</span> <span class="s2">&quot;spanning_tree_distribution&#39;s secret attribute name for lambda&quot;</span>

    <span class="k">while</span> <span class="kc">True</span><span class="p">:</span>
        <span class="c1"># We need to know that know that no values of q_e are greater than</span>
        <span class="c1"># (1 + epsilon) * z_e, however changing one gamma value can increase the</span>
        <span class="c1"># value of a different q_e, so we have to complete the for loop without</span>
        <span class="c1"># changing anything for the condition to be meet</span>
        <span class="n">in_range_count</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="c1"># Search for an edge with q_e &gt; (1 + epsilon) * z_e</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">gamma</span><span class="p">:</span>
            <span class="n">e</span> <span class="o">=</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
            <span class="n">q_e</span> <span class="o">=</span> <span class="n">q</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
            <span class="n">z_e</span> <span class="o">=</span> <span class="n">z</span><span class="p">[</span><span class="n">e</span><span class="p">]</span>
            <span class="k">if</span> <span class="n">q_e</span> <span class="o">&gt;</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">EPSILON</span><span class="p">)</span> <span class="o">*</span> <span class="n">z_e</span><span class="p">:</span>
                <span class="n">delta</span> <span class="o">=</span> <span class="n">ln</span><span class="p">(</span>
                    <span class="p">(</span><span class="n">q_e</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">EPSILON</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">z_e</span><span class="p">))</span>
                    <span class="o">/</span> <span class="p">((</span><span class="mi">1</span> <span class="o">-</span> <span class="n">q_e</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">EPSILON</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">z_e</span><span class="p">)</span>
                <span class="p">)</span>
                <span class="n">gamma</span><span class="p">[</span><span class="n">e</span><span class="p">]</span> <span class="o">-=</span> <span class="n">delta</span>
                <span class="c1"># Check that delta had the desired effect</span>
                <span class="n">new_q_e</span> <span class="o">=</span> <span class="n">q</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
                <span class="n">desired_q_e</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">EPSILON</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">z_e</span>
                <span class="k">if</span> <span class="nb">round</span><span class="p">(</span><span class="n">new_q_e</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">round</span><span class="p">(</span><span class="n">desired_q_e</span><span class="p">,</span> <span class="mi">8</span><span class="p">):</span>
                    <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span>
                        <span class="sa">f</span><span class="s2">&quot;Unable to modify probability for edge (</span><span class="si">{</span><span class="n">u</span><span class="si">}</span><span class="s2">, </span><span class="si">{</span><span class="n">v</span><span class="si">}</span><span class="s2">)&quot;</span>
                    <span class="p">)</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">in_range_count</span> <span class="o">+=</span> <span class="mi">1</span>
        <span class="c1"># Check if the for loop terminated without changing any gamma</span>
        <span class="k">if</span> <span class="n">in_range_count</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">gamma</span><span class="p">):</span>
            <span class="k">break</span>

    <span class="c1"># Remove the new edge attributes</span>
    <span class="k">for</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">lambda_key</span> <span class="ow">in</span> <span class="n">d</span><span class="p">:</span>
            <span class="k">del</span> <span class="n">d</span><span class="p">[</span><span class="n">lambda_key</span><span class="p">]</span>

    <span class="k">return</span> <span class="n">gamma</span>


<div class="viewcode-block" id="greedy_tsp"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.greedy_tsp.html#networkx.algorithms.approximation.traveling_salesman.greedy_tsp">[docs]</a><span class="k">def</span> <span class="nf">greedy_tsp</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Return a low cost cycle starting at `source` and its cost.</span>

<span class="sd">    This approximates a solution to the traveling salesman problem.</span>
<span class="sd">    It finds a cycle of all the nodes that a salesman can visit in order</span>
<span class="sd">    to visit many nodes while minimizing total distance.</span>
<span class="sd">    It uses a simple greedy algorithm.</span>
<span class="sd">    In essence, this function returns a large cycle given a source point</span>
<span class="sd">    for which the total cost of the cycle is minimized.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : Graph</span>
<span class="sd">        The Graph should be a complete weighted undirected graph.</span>
<span class="sd">        The distance between all pairs of nodes should be included.</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    source : node, optional (default: first node in list(G))</span>
<span class="sd">        Starting node.  If None, defaults to ``next(iter(G))``</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    cycle : list of nodes</span>
<span class="sd">        Returns the cycle (list of nodes) that a salesman</span>
<span class="sd">        can follow to minimize total weight of the trip.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If `G` is not complete, the algorithm raises an exception.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms import approximation as approx</span>
<span class="sd">    &gt;&gt;&gt; G = nx.DiGraph()</span>
<span class="sd">    &gt;&gt;&gt; G.add_weighted_edges_from({</span>
<span class="sd">    ...     (&quot;A&quot;, &quot;B&quot;, 3), (&quot;A&quot;, &quot;C&quot;, 17), (&quot;A&quot;, &quot;D&quot;, 14), (&quot;B&quot;, &quot;A&quot;, 3),</span>
<span class="sd">    ...     (&quot;B&quot;, &quot;C&quot;, 12), (&quot;B&quot;, &quot;D&quot;, 16), (&quot;C&quot;, &quot;A&quot;, 13),(&quot;C&quot;, &quot;B&quot;, 12),</span>
<span class="sd">    ...     (&quot;C&quot;, &quot;D&quot;, 4), (&quot;D&quot;, &quot;A&quot;, 14), (&quot;D&quot;, &quot;B&quot;, 15), (&quot;D&quot;, &quot;C&quot;, 2)</span>
<span class="sd">    ... })</span>
<span class="sd">    &gt;&gt;&gt; cycle = approx.greedy_tsp(G, source=&quot;D&quot;)</span>
<span class="sd">    &gt;&gt;&gt; cost = sum(G[n][nbr][&quot;weight&quot;] for n, nbr in nx.utils.pairwise(cycle))</span>
<span class="sd">    &gt;&gt;&gt; cycle</span>
<span class="sd">    [&#39;D&#39;, &#39;C&#39;, &#39;B&#39;, &#39;A&#39;, &#39;D&#39;]</span>
<span class="sd">    &gt;&gt;&gt; cost</span>
<span class="sd">    31</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This implementation of a greedy algorithm is based on the following:</span>

<span class="sd">    - The algorithm adds a node to the solution at every iteration.</span>
<span class="sd">    - The algorithm selects a node not already in the cycle whose connection</span>
<span class="sd">      to the previous node adds the least cost to the cycle.</span>

<span class="sd">    A greedy algorithm does not always give the best solution.</span>
<span class="sd">    However, it can construct a first feasible solution which can</span>
<span class="sd">    be passed as a parameter to an iterative improvement algorithm such</span>
<span class="sd">    as Simulated Annealing, or Threshold Accepting.</span>

<span class="sd">    Time complexity: It has a running time $O(|V|^2)$</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c1"># Check that G is a complete graph</span>
    <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
    <span class="c1"># This check ignores selfloops which is what we want here.</span>
    <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nbrdict</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">n</span> <span class="ow">in</span> <span class="n">nbrdict</span><span class="p">)</span> <span class="o">!=</span> <span class="n">N</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">nbrdict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="o">.</span><span class="n">items</span><span class="p">()):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G must be a complete graph.&quot;</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">source</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">source</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">arbitrary_element</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
        <span class="n">neighbor</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">neighbors</span><span class="p">(</span><span class="n">source</span><span class="p">))</span>
        <span class="k">return</span> <span class="p">[</span><span class="n">source</span><span class="p">,</span> <span class="n">neighbor</span><span class="p">,</span> <span class="n">source</span><span class="p">]</span>

    <span class="n">nodeset</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">nodeset</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">source</span><span class="p">)</span>
    <span class="n">cycle</span> <span class="o">=</span> <span class="p">[</span><span class="n">source</span><span class="p">]</span>
    <span class="n">next_node</span> <span class="o">=</span> <span class="n">source</span>
    <span class="k">while</span> <span class="n">nodeset</span><span class="p">:</span>
        <span class="n">nbrdict</span> <span class="o">=</span> <span class="n">G</span><span class="p">[</span><span class="n">next_node</span><span class="p">]</span>
        <span class="n">next_node</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">nodeset</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">n</span><span class="p">:</span> <span class="n">nbrdict</span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
        <span class="n">cycle</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">next_node</span><span class="p">)</span>
        <span class="n">nodeset</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">next_node</span><span class="p">)</span>
    <span class="n">cycle</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
    <span class="k">return</span> <span class="n">cycle</span></div>


<div class="viewcode-block" id="simulated_annealing_tsp"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.simulated_annealing_tsp.html#networkx.algorithms.approximation.traveling_salesman.simulated_annealing_tsp">[docs]</a><span class="nd">@py_random_state</span><span class="p">(</span><span class="mi">9</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">simulated_annealing_tsp</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span>
    <span class="n">init_cycle</span><span class="p">,</span>
    <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span>
    <span class="n">source</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">temp</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
    <span class="n">move</span><span class="o">=</span><span class="s2">&quot;1-1&quot;</span><span class="p">,</span>
    <span class="n">max_iterations</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
    <span class="n">N_inner</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
    <span class="n">alpha</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span>
    <span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Returns an approximate solution to the traveling salesman problem.</span>

<span class="sd">    This function uses simulated annealing to approximate the minimal cost</span>
<span class="sd">    cycle through the nodes. Starting from a suboptimal solution, simulated</span>
<span class="sd">    annealing perturbs that solution, occasionally accepting changes that make</span>
<span class="sd">    the solution worse to escape from a locally optimal solution. The chance</span>
<span class="sd">    of accepting such changes decreases over the iterations to encourage</span>
<span class="sd">    an optimal result.  In summary, the function returns a cycle starting</span>
<span class="sd">    at `source` for which the total cost is minimized. It also returns the cost.</span>

<span class="sd">    The chance of accepting a proposed change is related to a parameter called</span>
<span class="sd">    the temperature (annealing has a physical analogue of steel hardening</span>
<span class="sd">    as it cools). As the temperature is reduced, the chance of moves that</span>
<span class="sd">    increase cost goes down.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : Graph</span>
<span class="sd">        `G` should be a complete weighted undirected graph.</span>
<span class="sd">        The distance between all pairs of nodes should be included.</span>

<span class="sd">    init_cycle : list of all nodes or &quot;greedy&quot;</span>
<span class="sd">        The initial solution (a cycle through all nodes returning to the start).</span>
<span class="sd">        This argument has no default to make you think about it.</span>
<span class="sd">        If &quot;greedy&quot;, use `greedy_tsp(G, weight)`.</span>
<span class="sd">        Other common starting cycles are `list(G) + [next(iter(G))]` or the final</span>
<span class="sd">        result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`.</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    source : node, optional (default: first node in list(G))</span>
<span class="sd">        Starting node.  If None, defaults to ``next(iter(G))``</span>

<span class="sd">    temp : int, optional (default=100)</span>
<span class="sd">        The algorithm&#39;s temperature parameter. It represents the initial</span>
<span class="sd">        value of temperature</span>

<span class="sd">    move : &quot;1-1&quot; or &quot;1-0&quot; or function, optional (default=&quot;1-1&quot;)</span>
<span class="sd">        Indicator of what move to use when finding new trial solutions.</span>
<span class="sd">        Strings indicate two special built-in moves:</span>

<span class="sd">        - &quot;1-1&quot;: 1-1 exchange which transposes the position</span>
<span class="sd">          of two elements of the current solution.</span>
<span class="sd">          The function called is :func:`swap_two_nodes`.</span>
<span class="sd">          For example if we apply 1-1 exchange in the solution</span>
<span class="sd">          ``A = [3, 2, 1, 4, 3]``</span>
<span class="sd">          we can get the following by the transposition of 1 and 4 elements:</span>
<span class="sd">          ``A&#39; = [3, 2, 4, 1, 3]``</span>
<span class="sd">        - &quot;1-0&quot;: 1-0 exchange which moves an node in the solution</span>
<span class="sd">          to a new position.</span>
<span class="sd">          The function called is :func:`move_one_node`.</span>
<span class="sd">          For example if we apply 1-0 exchange in the solution</span>
<span class="sd">          ``A = [3, 2, 1, 4, 3]``</span>
<span class="sd">          we can transfer the fourth element to the second position:</span>
<span class="sd">          ``A&#39; = [3, 4, 2, 1, 3]``</span>

<span class="sd">        You may provide your own functions to enact a move from</span>
<span class="sd">        one solution to a neighbor solution. The function must take</span>
<span class="sd">        the solution as input along with a `seed` input to control</span>
<span class="sd">        random number generation (see the `seed` input here).</span>
<span class="sd">        Your function should maintain the solution as a cycle with</span>
<span class="sd">        equal first and last node and all others appearing once.</span>
<span class="sd">        Your function should return the new solution.</span>

<span class="sd">    max_iterations : int, optional (default=10)</span>
<span class="sd">        Declared done when this number of consecutive iterations of</span>
<span class="sd">        the outer loop occurs without any change in the best cost solution.</span>

<span class="sd">    N_inner : int, optional (default=100)</span>
<span class="sd">        The number of iterations of the inner loop.</span>

<span class="sd">    alpha : float between (0, 1), optional (default=0.01)</span>
<span class="sd">        Percentage of temperature decrease in each iteration</span>
<span class="sd">        of outer loop</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    cycle : list of nodes</span>
<span class="sd">        Returns the cycle (list of nodes) that a salesman</span>
<span class="sd">        can follow to minimize total weight of the trip.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If `G` is not complete the algorithm raises an exception.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms import approximation as approx</span>
<span class="sd">    &gt;&gt;&gt; G = nx.DiGraph()</span>
<span class="sd">    &gt;&gt;&gt; G.add_weighted_edges_from({</span>
<span class="sd">    ...     (&quot;A&quot;, &quot;B&quot;, 3), (&quot;A&quot;, &quot;C&quot;, 17), (&quot;A&quot;, &quot;D&quot;, 14), (&quot;B&quot;, &quot;A&quot;, 3),</span>
<span class="sd">    ...     (&quot;B&quot;, &quot;C&quot;, 12), (&quot;B&quot;, &quot;D&quot;, 16), (&quot;C&quot;, &quot;A&quot;, 13),(&quot;C&quot;, &quot;B&quot;, 12),</span>
<span class="sd">    ...     (&quot;C&quot;, &quot;D&quot;, 4), (&quot;D&quot;, &quot;A&quot;, 14), (&quot;D&quot;, &quot;B&quot;, 15), (&quot;D&quot;, &quot;C&quot;, 2)</span>
<span class="sd">    ... })</span>
<span class="sd">    &gt;&gt;&gt; cycle = approx.simulated_annealing_tsp(G, &quot;greedy&quot;, source=&quot;D&quot;)</span>
<span class="sd">    &gt;&gt;&gt; cost = sum(G[n][nbr][&quot;weight&quot;] for n, nbr in nx.utils.pairwise(cycle))</span>
<span class="sd">    &gt;&gt;&gt; cycle</span>
<span class="sd">    [&#39;D&#39;, &#39;C&#39;, &#39;B&#39;, &#39;A&#39;, &#39;D&#39;]</span>
<span class="sd">    &gt;&gt;&gt; cost</span>
<span class="sd">    31</span>
<span class="sd">    &gt;&gt;&gt; incycle = [&quot;D&quot;, &quot;B&quot;, &quot;A&quot;, &quot;C&quot;, &quot;D&quot;]</span>
<span class="sd">    &gt;&gt;&gt; cycle = approx.simulated_annealing_tsp(G, incycle, source=&quot;D&quot;)</span>
<span class="sd">    &gt;&gt;&gt; cost = sum(G[n][nbr][&quot;weight&quot;] for n, nbr in nx.utils.pairwise(cycle))</span>
<span class="sd">    &gt;&gt;&gt; cycle</span>
<span class="sd">    [&#39;D&#39;, &#39;C&#39;, &#39;B&#39;, &#39;A&#39;, &#39;D&#39;]</span>
<span class="sd">    &gt;&gt;&gt; cost</span>
<span class="sd">    31</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Simulated Annealing is a metaheuristic local search algorithm.</span>
<span class="sd">    The main characteristic of this algorithm is that it accepts</span>
<span class="sd">    even solutions which lead to the increase of the cost in order</span>
<span class="sd">    to escape from low quality local optimal solutions.</span>

<span class="sd">    This algorithm needs an initial solution. If not provided, it is</span>
<span class="sd">    constructed by a simple greedy algorithm. At every iteration, the</span>
<span class="sd">    algorithm selects thoughtfully a neighbor solution.</span>
<span class="sd">    Consider $c(x)$ cost of current solution and $c(x&#39;)$ cost of a</span>
<span class="sd">    neighbor solution.</span>
<span class="sd">    If $c(x&#39;) - c(x) &lt;= 0$ then the neighbor solution becomes the current</span>
<span class="sd">    solution for the next iteration. Otherwise, the algorithm accepts</span>
<span class="sd">    the neighbor solution with probability $p = exp - ([c(x&#39;) - c(x)] / temp)$.</span>
<span class="sd">    Otherwise the current solution is retained.</span>

<span class="sd">    `temp` is a parameter of the algorithm and represents temperature.</span>

<span class="sd">    Time complexity:</span>
<span class="sd">    For $N_i$ iterations of the inner loop and $N_o$ iterations of the</span>
<span class="sd">    outer loop, this algorithm has running time $O(N_i * N_o * |V|)$.</span>

<span class="sd">    For more information and how the algorithm is inspired see:</span>
<span class="sd">    http://en.wikipedia.org/wiki/Simulated_annealing</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">move</span> <span class="o">==</span> <span class="s2">&quot;1-1&quot;</span><span class="p">:</span>
        <span class="n">move</span> <span class="o">=</span> <span class="n">swap_two_nodes</span>
    <span class="k">elif</span> <span class="n">move</span> <span class="o">==</span> <span class="s2">&quot;1-0&quot;</span><span class="p">:</span>
        <span class="n">move</span> <span class="o">=</span> <span class="n">move_one_node</span>
    <span class="k">if</span> <span class="n">init_cycle</span> <span class="o">==</span> <span class="s2">&quot;greedy&quot;</span><span class="p">:</span>
        <span class="c1"># Construct an initial solution using a greedy algorithm.</span>
        <span class="n">cycle</span> <span class="o">=</span> <span class="n">greedy_tsp</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="n">source</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">cycle</span>

    <span class="k">else</span><span class="p">:</span>
        <span class="n">cycle</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">init_cycle</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">source</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">source</span> <span class="o">=</span> <span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
        <span class="k">elif</span> <span class="n">source</span> <span class="o">!=</span> <span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;source must be first node in init_cycle&quot;</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">!=</span> <span class="n">cycle</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;init_cycle must be a cycle. (return to start)&quot;</span><span class="p">)</span>

        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">cycle</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">len</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nbunch_iter</span><span class="p">(</span><span class="n">cycle</span><span class="p">)))</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;init_cycle should be a cycle over all nodes in G.&quot;</span><span class="p">)</span>

        <span class="c1"># Check that G is a complete graph</span>
        <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
        <span class="c1"># This check ignores selfloops which is what we want here.</span>
        <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nbrdict</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">n</span> <span class="ow">in</span> <span class="n">nbrdict</span><span class="p">)</span> <span class="o">!=</span> <span class="n">N</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">nbrdict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="o">.</span><span class="n">items</span><span class="p">()):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G must be a complete graph.&quot;</span><span class="p">)</span>

        <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
            <span class="n">neighbor</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">neighbors</span><span class="p">(</span><span class="n">source</span><span class="p">))</span>
            <span class="k">return</span> <span class="p">[</span><span class="n">source</span><span class="p">,</span> <span class="n">neighbor</span><span class="p">,</span> <span class="n">source</span><span class="p">]</span>

    <span class="c1"># Find the cost of initial solution</span>
    <span class="n">cost</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pairwise</span><span class="p">(</span><span class="n">cycle</span><span class="p">))</span>

    <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="n">best_cycle</span> <span class="o">=</span> <span class="n">cycle</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">best_cost</span> <span class="o">=</span> <span class="n">cost</span>
    <span class="k">while</span> <span class="n">count</span> <span class="o">&lt;=</span> <span class="n">max_iterations</span> <span class="ow">and</span> <span class="n">temp</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
        <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_inner</span><span class="p">):</span>
            <span class="n">adj_sol</span> <span class="o">=</span> <span class="n">move</span><span class="p">(</span><span class="n">cycle</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span>
            <span class="n">adj_cost</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pairwise</span><span class="p">(</span><span class="n">adj_sol</span><span class="p">))</span>
            <span class="n">delta</span> <span class="o">=</span> <span class="n">adj_cost</span> <span class="o">-</span> <span class="n">cost</span>
            <span class="k">if</span> <span class="n">delta</span> <span class="o">&lt;=</span> <span class="mi">0</span><span class="p">:</span>
                <span class="c1"># Set current solution the adjacent solution.</span>
                <span class="n">cycle</span> <span class="o">=</span> <span class="n">adj_sol</span>
                <span class="n">cost</span> <span class="o">=</span> <span class="n">adj_cost</span>

                <span class="k">if</span> <span class="n">cost</span> <span class="o">&lt;</span> <span class="n">best_cost</span><span class="p">:</span>
                    <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
                    <span class="n">best_cycle</span> <span class="o">=</span> <span class="n">cycle</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
                    <span class="n">best_cost</span> <span class="o">=</span> <span class="n">cost</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="c1"># Accept even a worse solution with probability p.</span>
                <span class="n">p</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">delta</span> <span class="o">/</span> <span class="n">temp</span><span class="p">)</span>
                <span class="k">if</span> <span class="n">p</span> <span class="o">&gt;=</span> <span class="n">seed</span><span class="o">.</span><span class="n">random</span><span class="p">():</span>
                    <span class="n">cycle</span> <span class="o">=</span> <span class="n">adj_sol</span>
                    <span class="n">cost</span> <span class="o">=</span> <span class="n">adj_cost</span>
        <span class="n">temp</span> <span class="o">-=</span> <span class="n">temp</span> <span class="o">*</span> <span class="n">alpha</span>

    <span class="k">return</span> <span class="n">best_cycle</span></div>


<div class="viewcode-block" id="threshold_accepting_tsp"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.threshold_accepting_tsp.html#networkx.algorithms.approximation.traveling_salesman.threshold_accepting_tsp">[docs]</a><span class="nd">@py_random_state</span><span class="p">(</span><span class="mi">9</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">threshold_accepting_tsp</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span>
    <span class="n">init_cycle</span><span class="p">,</span>
    <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span>
    <span class="n">source</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">threshold</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
    <span class="n">move</span><span class="o">=</span><span class="s2">&quot;1-1&quot;</span><span class="p">,</span>
    <span class="n">max_iterations</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
    <span class="n">N_inner</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
    <span class="n">alpha</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
    <span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Returns an approximate solution to the traveling salesman problem.</span>

<span class="sd">    This function uses threshold accepting methods to approximate the minimal cost</span>
<span class="sd">    cycle through the nodes. Starting from a suboptimal solution, threshold</span>
<span class="sd">    accepting methods perturb that solution, accepting any changes that make</span>
<span class="sd">    the solution no worse than increasing by a threshold amount. Improvements</span>
<span class="sd">    in cost are accepted, but so are changes leading to small increases in cost.</span>
<span class="sd">    This allows the solution to leave suboptimal local minima in solution space.</span>
<span class="sd">    The threshold is decreased slowly as iterations proceed helping to ensure</span>
<span class="sd">    an optimum. In summary, the function returns a cycle starting at `source`</span>
<span class="sd">    for which the total cost is minimized.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : Graph</span>
<span class="sd">        `G` should be a complete weighted undirected graph.</span>
<span class="sd">        The distance between all pairs of nodes should be included.</span>

<span class="sd">    init_cycle : list or &quot;greedy&quot;</span>
<span class="sd">        The initial solution (a cycle through all nodes returning to the start).</span>
<span class="sd">        This argument has no default to make you think about it.</span>
<span class="sd">        If &quot;greedy&quot;, use `greedy_tsp(G, weight)`.</span>
<span class="sd">        Other common starting cycles are `list(G) + [next(iter(G))]` or the final</span>
<span class="sd">        result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`.</span>

<span class="sd">    weight : string, optional (default=&quot;weight&quot;)</span>
<span class="sd">        Edge data key corresponding to the edge weight.</span>
<span class="sd">        If any edge does not have this attribute the weight is set to 1.</span>

<span class="sd">    source : node, optional (default: first node in list(G))</span>
<span class="sd">        Starting node.  If None, defaults to ``next(iter(G))``</span>

<span class="sd">    threshold : int, optional (default=1)</span>
<span class="sd">        The algorithm&#39;s threshold parameter. It represents the initial</span>
<span class="sd">        threshold&#39;s value</span>

<span class="sd">    move : &quot;1-1&quot; or &quot;1-0&quot; or function, optional (default=&quot;1-1&quot;)</span>
<span class="sd">        Indicator of what move to use when finding new trial solutions.</span>
<span class="sd">        Strings indicate two special built-in moves:</span>

<span class="sd">        - &quot;1-1&quot;: 1-1 exchange which transposes the position</span>
<span class="sd">          of two elements of the current solution.</span>
<span class="sd">          The function called is :func:`swap_two_nodes`.</span>
<span class="sd">          For example if we apply 1-1 exchange in the solution</span>
<span class="sd">          ``A = [3, 2, 1, 4, 3]``</span>
<span class="sd">          we can get the following by the transposition of 1 and 4 elements:</span>
<span class="sd">          ``A&#39; = [3, 2, 4, 1, 3]``</span>
<span class="sd">        - &quot;1-0&quot;: 1-0 exchange which moves an node in the solution</span>
<span class="sd">          to a new position.</span>
<span class="sd">          The function called is :func:`move_one_node`.</span>
<span class="sd">          For example if we apply 1-0 exchange in the solution</span>
<span class="sd">          ``A = [3, 2, 1, 4, 3]``</span>
<span class="sd">          we can transfer the fourth element to the second position:</span>
<span class="sd">          ``A&#39; = [3, 4, 2, 1, 3]``</span>

<span class="sd">        You may provide your own functions to enact a move from</span>
<span class="sd">        one solution to a neighbor solution. The function must take</span>
<span class="sd">        the solution as input along with a `seed` input to control</span>
<span class="sd">        random number generation (see the `seed` input here).</span>
<span class="sd">        Your function should maintain the solution as a cycle with</span>
<span class="sd">        equal first and last node and all others appearing once.</span>
<span class="sd">        Your function should return the new solution.</span>

<span class="sd">    max_iterations : int, optional (default=10)</span>
<span class="sd">        Declared done when this number of consecutive iterations of</span>
<span class="sd">        the outer loop occurs without any change in the best cost solution.</span>

<span class="sd">    N_inner : int, optional (default=100)</span>
<span class="sd">        The number of iterations of the inner loop.</span>

<span class="sd">    alpha : float between (0, 1), optional (default=0.1)</span>
<span class="sd">        Percentage of threshold decrease when there is at</span>
<span class="sd">        least one acceptance of a neighbor solution.</span>
<span class="sd">        If no inner loop moves are accepted the threshold remains unchanged.</span>

<span class="sd">    seed : integer, random_state, or None (default)</span>
<span class="sd">        Indicator of random number generation state.</span>
<span class="sd">        See :ref:`Randomness&lt;randomness&gt;`.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    cycle : list of nodes</span>
<span class="sd">        Returns the cycle (list of nodes) that a salesman</span>
<span class="sd">        can follow to minimize total weight of the trip.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If `G` is not complete the algorithm raises an exception.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; from networkx.algorithms import approximation as approx</span>
<span class="sd">    &gt;&gt;&gt; G = nx.DiGraph()</span>
<span class="sd">    &gt;&gt;&gt; G.add_weighted_edges_from({</span>
<span class="sd">    ...     (&quot;A&quot;, &quot;B&quot;, 3), (&quot;A&quot;, &quot;C&quot;, 17), (&quot;A&quot;, &quot;D&quot;, 14), (&quot;B&quot;, &quot;A&quot;, 3),</span>
<span class="sd">    ...     (&quot;B&quot;, &quot;C&quot;, 12), (&quot;B&quot;, &quot;D&quot;, 16), (&quot;C&quot;, &quot;A&quot;, 13),(&quot;C&quot;, &quot;B&quot;, 12),</span>
<span class="sd">    ...     (&quot;C&quot;, &quot;D&quot;, 4), (&quot;D&quot;, &quot;A&quot;, 14), (&quot;D&quot;, &quot;B&quot;, 15), (&quot;D&quot;, &quot;C&quot;, 2)</span>
<span class="sd">    ... })</span>
<span class="sd">    &gt;&gt;&gt; cycle = approx.threshold_accepting_tsp(G, &quot;greedy&quot;, source=&quot;D&quot;)</span>
<span class="sd">    &gt;&gt;&gt; cost = sum(G[n][nbr][&quot;weight&quot;] for n, nbr in nx.utils.pairwise(cycle))</span>
<span class="sd">    &gt;&gt;&gt; cycle</span>
<span class="sd">    [&#39;D&#39;, &#39;C&#39;, &#39;B&#39;, &#39;A&#39;, &#39;D&#39;]</span>
<span class="sd">    &gt;&gt;&gt; cost</span>
<span class="sd">    31</span>
<span class="sd">    &gt;&gt;&gt; incycle = [&quot;D&quot;, &quot;B&quot;, &quot;A&quot;, &quot;C&quot;, &quot;D&quot;]</span>
<span class="sd">    &gt;&gt;&gt; cycle = approx.threshold_accepting_tsp(G, incycle, source=&quot;D&quot;)</span>
<span class="sd">    &gt;&gt;&gt; cost = sum(G[n][nbr][&quot;weight&quot;] for n, nbr in nx.utils.pairwise(cycle))</span>
<span class="sd">    &gt;&gt;&gt; cycle</span>
<span class="sd">    [&#39;D&#39;, &#39;C&#39;, &#39;B&#39;, &#39;A&#39;, &#39;D&#39;]</span>
<span class="sd">    &gt;&gt;&gt; cost</span>
<span class="sd">    31</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Threshold Accepting is a metaheuristic local search algorithm.</span>
<span class="sd">    The main characteristic of this algorithm is that it accepts</span>
<span class="sd">    even solutions which lead to the increase of the cost in order</span>
<span class="sd">    to escape from low quality local optimal solutions.</span>

<span class="sd">    This algorithm needs an initial solution. This solution can be</span>
<span class="sd">    constructed by a simple greedy algorithm. At every iteration, it</span>
<span class="sd">    selects thoughtfully a neighbor solution.</span>
<span class="sd">    Consider $c(x)$ cost of current solution and $c(x&#39;)$ cost of</span>
<span class="sd">    neighbor solution.</span>
<span class="sd">    If $c(x&#39;) - c(x) &lt;= threshold$ then the neighbor solution becomes the current</span>
<span class="sd">    solution for the next iteration, where the threshold is named threshold.</span>

<span class="sd">    In comparison to the Simulated Annealing algorithm, the Threshold</span>
<span class="sd">    Accepting algorithm does not accept very low quality solutions</span>
<span class="sd">    (due to the presence of the threshold value). In the case of</span>
<span class="sd">    Simulated Annealing, even a very low quality solution can</span>
<span class="sd">    be accepted with probability $p$.</span>

<span class="sd">    Time complexity:</span>
<span class="sd">    It has a running time $O(m * n * |V|)$ where $m$ and $n$ are the number</span>
<span class="sd">    of times the outer and inner loop run respectively.</span>

<span class="sd">    For more information and how algorithm is inspired see:</span>
<span class="sd">    https://doi.org/10.1016/0021-9991(90)90201-B</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    simulated_annealing_tsp</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">move</span> <span class="o">==</span> <span class="s2">&quot;1-1&quot;</span><span class="p">:</span>
        <span class="n">move</span> <span class="o">=</span> <span class="n">swap_two_nodes</span>
    <span class="k">elif</span> <span class="n">move</span> <span class="o">==</span> <span class="s2">&quot;1-0&quot;</span><span class="p">:</span>
        <span class="n">move</span> <span class="o">=</span> <span class="n">move_one_node</span>
    <span class="k">if</span> <span class="n">init_cycle</span> <span class="o">==</span> <span class="s2">&quot;greedy&quot;</span><span class="p">:</span>
        <span class="c1"># Construct an initial solution using a greedy algorithm.</span>
        <span class="n">cycle</span> <span class="o">=</span> <span class="n">greedy_tsp</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="n">source</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
            <span class="k">return</span> <span class="n">cycle</span>

    <span class="k">else</span><span class="p">:</span>
        <span class="n">cycle</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">init_cycle</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">source</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="n">source</span> <span class="o">=</span> <span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
        <span class="k">elif</span> <span class="n">source</span> <span class="o">!=</span> <span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;source must be first node in init_cycle&quot;</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">cycle</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">!=</span> <span class="n">cycle</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;init_cycle must be a cycle. (return to start)&quot;</span><span class="p">)</span>

        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">cycle</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="ow">or</span> <span class="nb">len</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nbunch_iter</span><span class="p">(</span><span class="n">cycle</span><span class="p">)))</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;init_cycle is not all and only nodes.&quot;</span><span class="p">)</span>

        <span class="c1"># Check that G is a complete graph</span>
        <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
        <span class="c1"># This check ignores selfloops which is what we want here.</span>
        <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nbrdict</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">n</span> <span class="ow">in</span> <span class="n">nbrdict</span><span class="p">)</span> <span class="o">!=</span> <span class="n">N</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span> <span class="n">nbrdict</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">adj</span><span class="o">.</span><span class="n">items</span><span class="p">()):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;G must be a complete graph.&quot;</span><span class="p">)</span>

        <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
            <span class="n">neighbor</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">neighbors</span><span class="p">(</span><span class="n">source</span><span class="p">))[</span><span class="mi">0</span><span class="p">]</span>
            <span class="k">return</span> <span class="p">[</span><span class="n">source</span><span class="p">,</span> <span class="n">neighbor</span><span class="p">,</span> <span class="n">source</span><span class="p">]</span>

    <span class="c1"># Find the cost of initial solution</span>
    <span class="n">cost</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pairwise</span><span class="p">(</span><span class="n">cycle</span><span class="p">))</span>

    <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="n">best_cycle</span> <span class="o">=</span> <span class="n">cycle</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">best_cost</span> <span class="o">=</span> <span class="n">cost</span>
    <span class="k">while</span> <span class="n">count</span> <span class="o">&lt;=</span> <span class="n">max_iterations</span><span class="p">:</span>
        <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
        <span class="n">accepted</span> <span class="o">=</span> <span class="kc">False</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N_inner</span><span class="p">):</span>
            <span class="n">adj_sol</span> <span class="o">=</span> <span class="n">move</span><span class="p">(</span><span class="n">cycle</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span>
            <span class="n">adj_cost</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pairwise</span><span class="p">(</span><span class="n">adj_sol</span><span class="p">))</span>
            <span class="n">delta</span> <span class="o">=</span> <span class="n">adj_cost</span> <span class="o">-</span> <span class="n">cost</span>
            <span class="k">if</span> <span class="n">delta</span> <span class="o">&lt;=</span> <span class="n">threshold</span><span class="p">:</span>
                <span class="n">accepted</span> <span class="o">=</span> <span class="kc">True</span>

                <span class="c1"># Set current solution the adjacent solution.</span>
                <span class="n">cycle</span> <span class="o">=</span> <span class="n">adj_sol</span>
                <span class="n">cost</span> <span class="o">=</span> <span class="n">adj_cost</span>

                <span class="k">if</span> <span class="n">cost</span> <span class="o">&lt;</span> <span class="n">best_cost</span><span class="p">:</span>
                    <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
                    <span class="n">best_cycle</span> <span class="o">=</span> <span class="n">cycle</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
                    <span class="n">best_cost</span> <span class="o">=</span> <span class="n">cost</span>
        <span class="k">if</span> <span class="n">accepted</span><span class="p">:</span>
            <span class="n">threshold</span> <span class="o">-=</span> <span class="n">threshold</span> <span class="o">*</span> <span class="n">alpha</span>

    <span class="k">return</span> <span class="n">best_cycle</span></div>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<div id="searchbox"></div>
</div>

<div class="toc-item">
  
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2023, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>