diff options
author | Mickaël Schoentgen <contact@tiger-222.fr> | 2019-01-08 20:23:20 +0100 |
---|---|---|
committer | Dan Schult <dschult@colgate.edu> | 2019-01-08 14:23:20 -0500 |
commit | 224bd0ce1cc1c5c55a038da72b399d8540055bd9 (patch) | |
tree | 6333e674c9cce12fb6bae0f683b1f09d88c56edc /networkx | |
parent | f7a6e0d6b1d9a692038ea827b5d0c578f771ddde (diff) | |
download | networkx-224bd0ce1cc1c5c55a038da72b399d8540055bd9.tar.gz |
Fix several DeprecationWarning: invalid escape sequence (#3284)
* Fix several DeprecationWarning: invalid escape sequence
Signed-off-by: Mickaël Schoentgen <contact@tiger-222.fr>
* Restore docstring of generalized_degree()
Diffstat (limited to 'networkx')
-rw-r--r-- | networkx/algorithms/approximation/clique.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/approximation/dominating_set.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/centrality/current_flow_betweenness.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/cluster.py | 5 | ||||
-rw-r--r-- | networkx/algorithms/connectivity/connectivity.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/connectivity/stoerwagner.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/flow/preflowpush.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/flow/shortestaugmentingpath.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/reciprocity.py | 2 | ||||
-rw-r--r-- | networkx/algorithms/shortest_paths/weighted.py | 2 | ||||
-rw-r--r-- | networkx/generators/expanders.py | 2 | ||||
-rw-r--r-- | networkx/generators/geometric.py | 4 | ||||
-rw-r--r-- | networkx/generators/lattice.py | 2 | ||||
-rw-r--r-- | networkx/generators/line.py | 2 | ||||
-rw-r--r-- | networkx/linalg/modularitymatrix.py | 2 |
15 files changed, 17 insertions, 18 deletions
diff --git a/networkx/algorithms/approximation/clique.py b/networkx/algorithms/approximation/clique.py index ad676659..a992e487 100644 --- a/networkx/algorithms/approximation/clique.py +++ b/networkx/algorithms/approximation/clique.py @@ -68,7 +68,7 @@ def max_clique(G): def clique_removal(G): - """ Repeatedly remove cliques from the graph. + r""" Repeatedly remove cliques from the graph. Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique and independent set. Returns the largest independent set found, along diff --git a/networkx/algorithms/approximation/dominating_set.py b/networkx/algorithms/approximation/dominating_set.py index 0edd31fe..adce8d40 100644 --- a/networkx/algorithms/approximation/dominating_set.py +++ b/networkx/algorithms/approximation/dominating_set.py @@ -29,7 +29,7 @@ __author__ = """Nicholas Mancuso (nick.mancuso@gmail.com)""" # TODO Why doesn't this algorithm work for directed graphs? @not_implemented_for('directed') def min_weighted_dominating_set(G, weight=None): - """Returns a dominating set that approximates the minimum weight node + r"""Returns a dominating set that approximates the minimum weight node dominating set. Parameters diff --git a/networkx/algorithms/centrality/current_flow_betweenness.py b/networkx/algorithms/centrality/current_flow_betweenness.py index 2510fc1e..7fe4e058 100644 --- a/networkx/algorithms/centrality/current_flow_betweenness.py +++ b/networkx/algorithms/centrality/current_flow_betweenness.py @@ -249,7 +249,7 @@ def current_flow_betweenness_centrality(G, normalized=True, weight=None, def edge_current_flow_betweenness_centrality(G, normalized=True, weight=None, dtype=float, solver='full'): - """Compute current-flow betweenness centrality for edges. + r"""Compute current-flow betweenness centrality for edges. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness diff --git a/networkx/algorithms/cluster.py b/networkx/algorithms/cluster.py index ca7c4f9a..524e4204 100644 --- a/networkx/algorithms/cluster.py +++ b/networkx/algorithms/cluster.py @@ -478,7 +478,7 @@ def square_clustering(G, nodes=None): @not_implemented_for('directed') def generalized_degree(G, nodes=None): - """ Compute the generalized degree for nodes. + r""" Compute the generalized degree for nodes. For each node, the generalized degree shows how many edges of given triangle multiplicity the node is connected to. The triangle multiplicity @@ -507,8 +507,7 @@ def generalized_degree(G, nodes=None): >>> print(nx.generalized_degree(G,0)) Counter({3: 4}) >>> print(nx.generalized_degree(G)) - {0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), \ -3: Counter({3: 4}), 4: Counter({3: 4})} + {0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter({3: 4}), 4: Counter({3: 4})} To recover the number of triangles attached to a node: diff --git a/networkx/algorithms/connectivity/connectivity.py b/networkx/algorithms/connectivity/connectivity.py index 6cee8dc7..90d56729 100644 --- a/networkx/algorithms/connectivity/connectivity.py +++ b/networkx/algorithms/connectivity/connectivity.py @@ -211,7 +211,7 @@ def local_node_connectivity(G, s, t, flow_func=None, auxiliary=None, def node_connectivity(G, s=None, t=None, flow_func=None): - """Returns node connectivity for a graph or digraph G. + r"""Returns node connectivity for a graph or digraph G. Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source diff --git a/networkx/algorithms/connectivity/stoerwagner.py b/networkx/algorithms/connectivity/stoerwagner.py index 6e017b11..2e70fb95 100644 --- a/networkx/algorithms/connectivity/stoerwagner.py +++ b/networkx/algorithms/connectivity/stoerwagner.py @@ -22,7 +22,7 @@ __all__ = ['stoer_wagner'] @not_implemented_for('directed') @not_implemented_for('multigraph') def stoer_wagner(G, weight='weight', heap=BinaryHeap): - """Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. + r"""Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases, all weights must be diff --git a/networkx/algorithms/flow/preflowpush.py b/networkx/algorithms/flow/preflowpush.py index aaa3acc0..3a5a5105 100644 --- a/networkx/algorithms/flow/preflowpush.py +++ b/networkx/algorithms/flow/preflowpush.py @@ -296,7 +296,7 @@ def preflow_push_impl(G, s, t, capacity, residual, global_relabel_freq, def preflow_push(G, s, t, capacity='capacity', residual=None, global_relabel_freq=1, value_only=False): - """Find a maximum single-commodity flow using the highest-label + r"""Find a maximum single-commodity flow using the highest-label preflow-push algorithm. This function returns the residual network resulting after computing diff --git a/networkx/algorithms/flow/shortestaugmentingpath.py b/networkx/algorithms/flow/shortestaugmentingpath.py index bc550efb..8b811ed7 100644 --- a/networkx/algorithms/flow/shortestaugmentingpath.py +++ b/networkx/algorithms/flow/shortestaugmentingpath.py @@ -175,7 +175,7 @@ def shortest_augmenting_path_impl(G, s, t, capacity, residual, two_phase, def shortest_augmenting_path(G, s, t, capacity='capacity', residual=None, value_only=False, two_phase=False, cutoff=None): - """Find a maximum single-commodity flow using the shortest augmenting path + r"""Find a maximum single-commodity flow using the shortest augmenting path algorithm. This function returns the residual network resulting after computing diff --git a/networkx/algorithms/reciprocity.py b/networkx/algorithms/reciprocity.py index 9eb5f1f0..9d010c45 100644 --- a/networkx/algorithms/reciprocity.py +++ b/networkx/algorithms/reciprocity.py @@ -16,7 +16,7 @@ __all__ = ['reciprocity', 'overall_reciprocity'] @not_implemented_for('undirected', 'multigraph') def reciprocity(G, nodes=None): - """Compute the reciprocity in a directed graph. + r"""Compute the reciprocity in a directed graph. The reciprocity of a directed graph is defined as the ratio of the number of edges pointing in both directions to the total diff --git a/networkx/algorithms/shortest_paths/weighted.py b/networkx/algorithms/shortest_paths/weighted.py index 92add3d2..084e775f 100644 --- a/networkx/algorithms/shortest_paths/weighted.py +++ b/networkx/algorithms/shortest_paths/weighted.py @@ -1922,7 +1922,7 @@ def negative_edge_cycle(G, weight='weight'): def bidirectional_dijkstra(G, source, target, weight='weight'): - """Dijkstra's algorithm for shortest paths using bidirectional search. + r"""Dijkstra's algorithm for shortest paths using bidirectional search. Parameters ---------- diff --git a/networkx/generators/expanders.py b/networkx/generators/expanders.py index 2767e021..815b2fa2 100644 --- a/networkx/generators/expanders.py +++ b/networkx/generators/expanders.py @@ -44,7 +44,7 @@ __all__ = ['margulis_gabber_galil_graph', 'chordal_cycle_graph'] # (x, (y + (2*x + 2)) % n), # def margulis_gabber_galil_graph(n, create_using=None): - """Return the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. + r"""Return the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. The undirected MultiGraph is regular with degree `8`. Nodes are integer pairs. The second-largest eigenvalue of the adjacency matrix of the graph diff --git a/networkx/generators/geometric.py b/networkx/generators/geometric.py index 27f0259e..66812407 100644 --- a/networkx/generators/geometric.py +++ b/networkx/generators/geometric.py @@ -175,7 +175,7 @@ def random_geometric_graph(n, radius, dim=2, pos=None, p=2, seed=None): @nodes_or_number(0) def soft_random_geometric_graph(n, radius, dim=2, pos=None, p=2, p_dist=None, seed=None): - """Returns a soft random geometric graph in the unit cube. + r"""Returns a soft random geometric graph in the unit cube. The soft random geometric graph [1] model places `n` nodes uniformly at random in the unit cube in dimension `dim`. Two nodes of distance, `dist`, @@ -666,7 +666,7 @@ def navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None): @nodes_or_number(0) def thresholded_random_geometric_graph(n, radius, theta, dim=2, pos=None, weight=None, p=2, seed=None): - """Returns a thresholded random geometric graph in the unit cube. + r"""Returns a thresholded random geometric graph in the unit cube. The thresholded random geometric graph [1] model places `n` nodes uniformly at random in the unit cube of dimensions `dim`. Each node diff --git a/networkx/generators/lattice.py b/networkx/generators/lattice.py index 3e7c03b6..8abf296b 100644 --- a/networkx/generators/lattice.py +++ b/networkx/generators/lattice.py @@ -171,7 +171,7 @@ def hypercube_graph(n): def triangular_lattice_graph(m, n, periodic=False, with_positions=True, create_using=None): - """Returns the $m$ by $n$ triangular lattice graph. + r"""Returns the $m$ by $n$ triangular lattice graph. The `triangular lattice graph`_ is a two-dimensional `grid graph`_ in which each square unit has a diagonal edge (each grid unit has a chord). diff --git a/networkx/generators/line.py b/networkx/generators/line.py index 535d10fb..7829d8fa 100644 --- a/networkx/generators/line.py +++ b/networkx/generators/line.py @@ -22,7 +22,7 @@ __all__ = ['line_graph', 'inverse_line_graph'] def line_graph(G, create_using=None): - """Returns the line graph of the graph or digraph `G`. + r"""Returns the line graph of the graph or digraph `G`. The line graph of a graph `G` has a node for each edge in `G` and an edge joining those nodes if the two edges in `G` share a common node. For diff --git a/networkx/linalg/modularitymatrix.py b/networkx/linalg/modularitymatrix.py index 56586820..c8b2c409 100644 --- a/networkx/linalg/modularitymatrix.py +++ b/networkx/linalg/modularitymatrix.py @@ -19,7 +19,7 @@ __all__ = ['modularity_matrix', 'directed_modularity_matrix'] @not_implemented_for('directed') @not_implemented_for('multigraph') def modularity_matrix(G, nodelist=None, weight=None): - """Return the modularity matrix of G. + r"""Return the modularity matrix of G. The modularity matrix is the matrix B = A - <A>, where A is the adjacency matrix and <A> is the average adjacency matrix, assuming that the graph |