1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
from __future__ import absolute_import
from itertools import cycle
import logging
import random
from kafka.vendor.six.moves import xrange # pylint: disable=import-error
from .base import Producer
log = logging.getLogger(__name__)
class SimpleProducer(Producer):
"""A simple, round-robin producer.
See Producer class for Base Arguments
Additional Arguments:
random_start (bool, optional): randomize the initial partition which
the first message block will be published to, otherwise
if false, the first message block will always publish
to partition 0 before cycling through each partition,
defaults to True.
"""
def __init__(self, *args, **kwargs):
self.partition_cycles = {}
self.random_start = kwargs.pop('random_start', True)
super(SimpleProducer, self).__init__(*args, **kwargs)
def _next_partition(self, topic):
if topic not in self.partition_cycles:
if not self.client.has_metadata_for_topic(topic):
self.client.ensure_topic_exists(topic)
self.partition_cycles[topic] = cycle(self.client.get_partition_ids_for_topic(topic))
# Randomize the initial partition that is returned
if self.random_start:
num_partitions = len(self.client.get_partition_ids_for_topic(topic))
for _ in xrange(random.randint(0, num_partitions-1)):
next(self.partition_cycles[topic])
return next(self.partition_cycles[topic])
def send_messages(self, topic, *msg):
partition = self._next_partition(topic)
return super(SimpleProducer, self).send_messages(
topic, partition, *msg
)
def __repr__(self):
return '<SimpleProducer batch=%s>' % self.async
|