summaryrefslogtreecommitdiff
path: root/src/ecdsa/numbertheory.py
blob: 03577c72932e982e85b2f8de6f919c5b62deb0b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
#! /usr/bin/env python
#
# Provide some simple capabilities from number theory.
#
# Version of 2008.11.14.
#
# Written in 2005 and 2006 by Peter Pearson and placed in the public domain.
# Revision history:
#   2008.11.14: Use pow(base, exponent, modulus) for modular_exp.
#               Make gcd and lcm accept arbitrarly many arguments.

from __future__ import division

import sys
from six import integer_types, PY2
from six.moves import reduce

try:
    xrange
except NameError:
    xrange = range
try:
    from gmpy2 import powmod

    GMPY2 = True
    GMPY = False
except ImportError:
    GMPY2 = False
    try:
        from gmpy import mpz

        GMPY = True
    except ImportError:
        GMPY = False

import math
import warnings


class Error(Exception):
    """Base class for exceptions in this module."""

    pass


class SquareRootError(Error):
    pass


class NegativeExponentError(Error):
    pass


def modular_exp(base, exponent, modulus):  # pragma: no cover
    """Raise base to exponent, reducing by modulus"""
    # deprecated in 0.14
    warnings.warn(
        "Function is unused in library code. If you use this code, "
        "change to pow() builtin.",
        DeprecationWarning,
    )
    if exponent < 0:
        raise NegativeExponentError(
            "Negative exponents (%d) not allowed" % exponent
        )
    return pow(base, exponent, modulus)


def polynomial_reduce_mod(poly, polymod, p):
    """Reduce poly by polymod, integer arithmetic modulo p.

    Polynomials are represented as lists of coefficients
    of increasing powers of x."""

    # This module has been tested only by extensive use
    # in calculating modular square roots.

    # Just to make this easy, require a monic polynomial:
    assert polymod[-1] == 1

    assert len(polymod) > 1

    while len(poly) >= len(polymod):
        if poly[-1] != 0:
            for i in xrange(2, len(polymod) + 1):
                poly[-i] = (poly[-i] - poly[-1] * polymod[-i]) % p
        poly = poly[0:-1]

    return poly


def polynomial_multiply_mod(m1, m2, polymod, p):
    """Polynomial multiplication modulo a polynomial over ints mod p.

    Polynomials are represented as lists of coefficients
    of increasing powers of x."""

    # This is just a seat-of-the-pants implementation.

    # This module has been tested only by extensive use
    # in calculating modular square roots.

    # Initialize the product to zero:

    prod = (len(m1) + len(m2) - 1) * [0]

    # Add together all the cross-terms:

    for i in xrange(len(m1)):
        for j in xrange(len(m2)):
            prod[i + j] = (prod[i + j] + m1[i] * m2[j]) % p

    return polynomial_reduce_mod(prod, polymod, p)


def polynomial_exp_mod(base, exponent, polymod, p):
    """Polynomial exponentiation modulo a polynomial over ints mod p.

    Polynomials are represented as lists of coefficients
    of increasing powers of x."""

    # Based on the Handbook of Applied Cryptography, algorithm 2.227.

    # This module has been tested only by extensive use
    # in calculating modular square roots.

    assert exponent < p

    if exponent == 0:
        return [1]

    G = base
    k = exponent
    if k % 2 == 1:
        s = G
    else:
        s = [1]

    while k > 1:
        k = k // 2
        G = polynomial_multiply_mod(G, G, polymod, p)
        if k % 2 == 1:
            s = polynomial_multiply_mod(G, s, polymod, p)

    return s


def jacobi(a, n):
    """Jacobi symbol"""

    # Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149.

    # This function has been tested by comparison with a small
    # table printed in HAC, and by extensive use in calculating
    # modular square roots.

    assert n >= 3
    assert n % 2 == 1
    a = a % n
    if a == 0:
        return 0
    if a == 1:
        return 1
    a1, e = a, 0
    while a1 % 2 == 0:
        a1, e = a1 // 2, e + 1
    if e % 2 == 0 or n % 8 == 1 or n % 8 == 7:
        s = 1
    else:
        s = -1
    if a1 == 1:
        return s
    if n % 4 == 3 and a1 % 4 == 3:
        s = -s
    return s * jacobi(n % a1, a1)


def square_root_mod_prime(a, p):
    """Modular square root of a, mod p, p prime."""

    # Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39.

    # This module has been tested for all values in [0,p-1] for
    # every prime p from 3 to 1229.

    assert 0 <= a < p
    assert 1 < p

    if a == 0:
        return 0
    if p == 2:
        return a

    jac = jacobi(a, p)
    if jac == -1:
        raise SquareRootError("%d has no square root modulo %d" % (a, p))

    if p % 4 == 3:
        return pow(a, (p + 1) // 4, p)

    if p % 8 == 5:
        d = pow(a, (p - 1) // 4, p)
        if d == 1:
            return pow(a, (p + 3) // 8, p)
        if d == p - 1:
            return (2 * a * pow(4 * a, (p - 5) // 8, p)) % p
        raise RuntimeError("Shouldn't get here.")

    if PY2:
        # xrange on python2 can take integers representable as C long only
        range_top = min(0x7FFFFFFF, p)
    else:
        range_top = p
    for b in xrange(2, range_top):
        if jacobi(b * b - 4 * a, p) == -1:
            f = (a, -b, 1)
            ff = polynomial_exp_mod((0, 1), (p + 1) // 2, f, p)
            assert ff[1] == 0
            return ff[0]
    raise RuntimeError("No b found.")


# because all the inverse_mod code is arch/environment specific, and coveralls
# expects it to execute equal number of times, we need to waive it by
# adding the "no branch" pragma to all branches
if GMPY2:  # pragma: no branch

    def inverse_mod(a, m):
        """Inverse of a mod m."""
        if a == 0:  # pragma: no branch
            return 0
        return powmod(a, -1, m)


elif GMPY:  # pragma: no branch

    def inverse_mod(a, m):
        """Inverse of a mod m."""
        # while libgmp does support inverses modulo, it is accessible
        # only using the native `pow()` function, and `pow()` in gmpy sanity
        # checks the parameters before passing them on to underlying
        # implementation
        if a == 0:  # pragma: no branch
            return 0
        a = mpz(a)
        m = mpz(m)

        lm, hm = mpz(1), mpz(0)
        low, high = a % m, m
        while low > 1:  # pragma: no branch
            r = high // low
            lm, low, hm, high = hm - lm * r, high - low * r, lm, low

        return lm % m


elif sys.version_info >= (3, 8):  # pragma: no branch

    def inverse_mod(a, m):
        """Inverse of a mod m."""
        if a == 0:  # pragma: no branch
            return 0
        return pow(a, -1, m)


else:  # pragma: no branch

    def inverse_mod(a, m):
        """Inverse of a mod m."""

        if a == 0:  # pragma: no branch
            return 0

        lm, hm = 1, 0
        low, high = a % m, m
        while low > 1:  # pragma: no branch
            r = high // low
            lm, low, hm, high = hm - lm * r, high - low * r, lm, low

        return lm % m


try:
    gcd2 = math.gcd
except AttributeError:

    def gcd2(a, b):
        """Greatest common divisor using Euclid's algorithm."""
        while a:
            a, b = b % a, a
        return b


def gcd(*a):
    """Greatest common divisor.

    Usage: gcd([ 2, 4, 6 ])
    or:    gcd(2, 4, 6)
    """

    if len(a) > 1:
        return reduce(gcd2, a)
    if hasattr(a[0], "__iter__"):
        return reduce(gcd2, a[0])
    return a[0]


def lcm2(a, b):
    """Least common multiple of two integers."""

    return (a * b) // gcd(a, b)


def lcm(*a):
    """Least common multiple.

    Usage: lcm([ 3, 4, 5 ])
    or:    lcm(3, 4, 5)
    """

    if len(a) > 1:
        return reduce(lcm2, a)
    if hasattr(a[0], "__iter__"):
        return reduce(lcm2, a[0])
    return a[0]


def factorization(n):
    """Decompose n into a list of (prime,exponent) pairs."""

    assert isinstance(n, integer_types)

    if n < 2:
        return []

    result = []
    d = 2

    # Test the small primes:

    for d in smallprimes:
        if d > n:
            break
        q, r = divmod(n, d)
        if r == 0:
            count = 1
            while d <= n:
                n = q
                q, r = divmod(n, d)
                if r != 0:
                    break
                count = count + 1
            result.append((d, count))

    # If n is still greater than the last of our small primes,
    # it may require further work:

    if n > smallprimes[-1]:
        if is_prime(n):  # If what's left is prime, it's easy:
            result.append((n, 1))
        else:  # Ugh. Search stupidly for a divisor:
            d = smallprimes[-1]
            while 1:
                d = d + 2  # Try the next divisor.
                q, r = divmod(n, d)
                if q < d:  # n < d*d means we're done, n = 1 or prime.
                    break
                if r == 0:  # d divides n. How many times?
                    count = 1
                    n = q
                    while d <= n:  # As long as d might still divide n,
                        q, r = divmod(n, d)  # see if it does.
                        if r != 0:
                            break
                        n = q  # It does. Reduce n, increase count.
                        count = count + 1
                    result.append((d, count))
            if n > 1:
                result.append((n, 1))

    return result


def phi(n):  # pragma: no cover
    """Return the Euler totient function of n."""
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    assert isinstance(n, integer_types)

    if n < 3:
        return 1

    result = 1
    ff = factorization(n)
    for f in ff:
        e = f[1]
        if e > 1:
            result = result * f[0] ** (e - 1) * (f[0] - 1)
        else:
            result = result * (f[0] - 1)
    return result


def carmichael(n):  # pragma: no cover
    """Return Carmichael function of n.

    Carmichael(n) is the smallest integer x such that
    m**x = 1 mod n for all m relatively prime to n.
    """
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    return carmichael_of_factorized(factorization(n))


def carmichael_of_factorized(f_list):  # pragma: no cover
    """Return the Carmichael function of a number that is
    represented as a list of (prime,exponent) pairs.
    """
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    if len(f_list) < 1:
        return 1

    result = carmichael_of_ppower(f_list[0])
    for i in xrange(1, len(f_list)):
        result = lcm(result, carmichael_of_ppower(f_list[i]))

    return result


def carmichael_of_ppower(pp):  # pragma: no cover
    """Carmichael function of the given power of the given prime."""
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    p, a = pp
    if p == 2 and a > 2:
        return 2 ** (a - 2)
    else:
        return (p - 1) * p ** (a - 1)


def order_mod(x, m):  # pragma: no cover
    """Return the order of x in the multiplicative group mod m."""
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    # Warning: this implementation is not very clever, and will
    # take a long time if m is very large.

    if m <= 1:
        return 0

    assert gcd(x, m) == 1

    z = x
    result = 1
    while z != 1:
        z = (z * x) % m
        result = result + 1
    return result


def largest_factor_relatively_prime(a, b):  # pragma: no cover
    """Return the largest factor of a relatively prime to b."""
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    while 1:
        d = gcd(a, b)
        if d <= 1:
            break
        b = d
        while 1:
            q, r = divmod(a, d)
            if r > 0:
                break
            a = q
    return a


def kinda_order_mod(x, m):  # pragma: no cover
    """Return the order of x in the multiplicative group mod m',
    where m' is the largest factor of m relatively prime to x.
    """
    # deprecated in 0.14
    warnings.warn(
        "Function is unused by library code. If you use this code, "
        "please open an issue in "
        "https://github.com/warner/python-ecdsa",
        DeprecationWarning,
    )

    return order_mod(x, largest_factor_relatively_prime(m, x))


def is_prime(n):
    """Return True if x is prime, False otherwise.

    We use the Miller-Rabin test, as given in Menezes et al. p. 138.
    This test is not exact: there are composite values n for which
    it returns True.

    In testing the odd numbers from 10000001 to 19999999,
    about 66 composites got past the first test,
    5 got past the second test, and none got past the third.
    Since factors of 2, 3, 5, 7, and 11 were detected during
    preliminary screening, the number of numbers tested by
    Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7)
    = 4.57 million.
    """

    # (This is used to study the risk of false positives:)
    global miller_rabin_test_count

    miller_rabin_test_count = 0

    if n <= smallprimes[-1]:
        if n in smallprimes:
            return True
        else:
            return False

    if gcd(n, 2 * 3 * 5 * 7 * 11) != 1:
        return False

    # Choose a number of iterations sufficient to reduce the
    # probability of accepting a composite below 2**-80
    # (from Menezes et al. Table 4.4):

    t = 40
    n_bits = 1 + int(math.log(n, 2))
    for k, tt in (
        (100, 27),
        (150, 18),
        (200, 15),
        (250, 12),
        (300, 9),
        (350, 8),
        (400, 7),
        (450, 6),
        (550, 5),
        (650, 4),
        (850, 3),
        (1300, 2),
    ):
        if n_bits < k:
            break
        t = tt

    # Run the test t times:

    s = 0
    r = n - 1
    while (r % 2) == 0:
        s = s + 1
        r = r // 2
    for i in xrange(t):
        a = smallprimes[i]
        y = pow(a, r, n)
        if y != 1 and y != n - 1:
            j = 1
            while j <= s - 1 and y != n - 1:
                y = pow(y, 2, n)
                if y == 1:
                    miller_rabin_test_count = i + 1
                    return False
                j = j + 1
            if y != n - 1:
                miller_rabin_test_count = i + 1
                return False
    return True


def next_prime(starting_value):
    """Return the smallest prime larger than the starting value."""

    if starting_value < 2:
        return 2
    result = (starting_value + 1) | 1
    while not is_prime(result):
        result = result + 2
    return result


smallprimes = [
    2,
    3,
    5,
    7,
    11,
    13,
    17,
    19,
    23,
    29,
    31,
    37,
    41,
    43,
    47,
    53,
    59,
    61,
    67,
    71,
    73,
    79,
    83,
    89,
    97,
    101,
    103,
    107,
    109,
    113,
    127,
    131,
    137,
    139,
    149,
    151,
    157,
    163,
    167,
    173,
    179,
    181,
    191,
    193,
    197,
    199,
    211,
    223,
    227,
    229,
    233,
    239,
    241,
    251,
    257,
    263,
    269,
    271,
    277,
    281,
    283,
    293,
    307,
    311,
    313,
    317,
    331,
    337,
    347,
    349,
    353,
    359,
    367,
    373,
    379,
    383,
    389,
    397,
    401,
    409,
    419,
    421,
    431,
    433,
    439,
    443,
    449,
    457,
    461,
    463,
    467,
    479,
    487,
    491,
    499,
    503,
    509,
    521,
    523,
    541,
    547,
    557,
    563,
    569,
    571,
    577,
    587,
    593,
    599,
    601,
    607,
    613,
    617,
    619,
    631,
    641,
    643,
    647,
    653,
    659,
    661,
    673,
    677,
    683,
    691,
    701,
    709,
    719,
    727,
    733,
    739,
    743,
    751,
    757,
    761,
    769,
    773,
    787,
    797,
    809,
    811,
    821,
    823,
    827,
    829,
    839,
    853,
    857,
    859,
    863,
    877,
    881,
    883,
    887,
    907,
    911,
    919,
    929,
    937,
    941,
    947,
    953,
    967,
    971,
    977,
    983,
    991,
    997,
    1009,
    1013,
    1019,
    1021,
    1031,
    1033,
    1039,
    1049,
    1051,
    1061,
    1063,
    1069,
    1087,
    1091,
    1093,
    1097,
    1103,
    1109,
    1117,
    1123,
    1129,
    1151,
    1153,
    1163,
    1171,
    1181,
    1187,
    1193,
    1201,
    1213,
    1217,
    1223,
    1229,
]

miller_rabin_test_count = 0