summaryrefslogtreecommitdiff
path: root/src/ecdsa/ellipticcurve.py
blob: 57059b154d9be1eabfa2c431eb8ebb8b5db40f68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
#   Nomenclature:
#     - Q is a public key.
#     The "Elliptic Curve Domain Parameters" include:
#     - q is the "field size", which in our case equals p.
#     - p is a big prime.
#     - G is a point of prime order (5.1.1.1).
#     - n is the order of G (5.1.1.1).
#   Public-key validation (5.2.2):
#     - Verify that Q is not the point at infinity.
#     - Verify that X_Q and Y_Q are in [0,p-1].
#     - Verify that Q is on the curve.
#     - Verify that nQ is the point at infinity.
#   Signature generation (5.3):
#     - Pick random k from [1,n-1].
#   Signature checking (5.4.2):
#     - Verify that r and s are in [1,n-1].
#
# Revision history:
#    2005.12.31 - Initial version.
#    2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.
# Modified extensively as part of python-ecdsa.

from __future__ import division

try:
    from gmpy2 import mpz

    GMPY = True
except ImportError:  # pragma: no branch
    try:
        from gmpy import mpz

        GMPY = True
    except ImportError:
        GMPY = False


from six import python_2_unicode_compatible
from . import numbertheory
from ._rwlock import RWLock


@python_2_unicode_compatible
class CurveFp(object):
    """Elliptic Curve over the field of integers modulo a prime."""

    if GMPY:  # pragma: no branch

        def __init__(self, p, a, b, h=None):
            """
            The curve of points satisfying y^2 = x^3 + a*x + b (mod p).

            h is an integer that is the cofactor of the elliptic curve domain
            parameters; it is the number of points satisfying the elliptic
            curve equation divided by the order of the base point. It is used
            for selection of efficient algorithm for public point verification.
            """
            self.__p = mpz(p)
            self.__a = mpz(a)
            self.__b = mpz(b)
            # h is not used in calculations and it can be None, so don't use
            # gmpy with it
            self.__h = h

    else:  # pragma: no branch

        def __init__(self, p, a, b, h=None):
            """
            The curve of points satisfying y^2 = x^3 + a*x + b (mod p).

            h is an integer that is the cofactor of the elliptic curve domain
            parameters; it is the number of points satisfying the elliptic
            curve equation divided by the order of the base point. It is used
            for selection of efficient algorithm for public point verification.
            """
            self.__p = p
            self.__a = a
            self.__b = b
            self.__h = h

    def __eq__(self, other):
        """Return True if other is an identical curve, False otherwise.

        Note: the value of the cofactor of the curve is not taken into account
        when comparing curves, as it's derived from the base point and
        intrinsic curve characteristic (but it's complex to compute),
        only the prime and curve parameters are considered.
        """
        if isinstance(other, CurveFp):
            return (
                self.__p == other.__p
                and self.__a == other.__a
                and self.__b == other.__b
            )
        return NotImplemented

    def __ne__(self, other):
        """Return False if other is an identical curve, True otherwise."""
        return not self == other

    def __hash__(self):
        return hash((self.__p, self.__a, self.__b))

    def p(self):
        return self.__p

    def a(self):
        return self.__a

    def b(self):
        return self.__b

    def cofactor(self):
        return self.__h

    def contains_point(self, x, y):
        """Is the point (x,y) on this curve?"""
        return (y * y - ((x * x + self.__a) * x + self.__b)) % self.__p == 0

    def __str__(self):
        return "CurveFp(p=%d, a=%d, b=%d, h=%d)" % (
            self.__p,
            self.__a,
            self.__b,
            self.__h,
        )


class PointJacobi(object):
    """
    Point on an elliptic curve. Uses Jacobi coordinates.

    In Jacobian coordinates, there are three parameters, X, Y and Z.
    They correspond to affine parameters 'x' and 'y' like so:

    x = X / Z²
    y = Y / Z³
    """

    def __init__(self, curve, x, y, z, order=None, generator=False):
        """
        Initialise a point that uses Jacobi representation internally.

        :param CurveFp curve: curve on which the point resides
        :param int x: the X parameter of Jacobi representation (equal to x when
          converting from affine coordinates
        :param int y: the Y parameter of Jacobi representation (equal to y when
          converting from affine coordinates
        :param int z: the Z parameter of Jacobi representation (equal to 1 when
          converting from affine coordinates
        :param int order: the point order, must be non zero when using
          generator=True
        :param bool generator: the point provided is a curve generator, as
          such, it will be commonly used with scalar multiplication. This will
          cause to precompute multiplication table generation for it
        """
        self.__curve = curve
        # since it's generally better (faster) to use scaled points vs unscaled
        # ones, use writer-biased RWLock for locking:
        self._update_lock = RWLock()
        if GMPY:  # pragma: no branch
            self.__x = mpz(x)
            self.__y = mpz(y)
            self.__z = mpz(z)
            self.__order = order and mpz(order)
        else:  # pragma: no branch
            self.__x = x
            self.__y = y
            self.__z = z
            self.__order = order
        self.__generator = generator
        self.__precompute = []

    def _maybe_precompute(self):
        if self.__generator:
            # since we lack promotion of read-locks to write-locks, we do a
            # "acquire-read-lock, check, acquire-write-lock plus recheck" cycle
            try:
                self._update_lock.reader_acquire()
                if self.__precompute:
                    return
            finally:
                self._update_lock.reader_release()

            try:
                self._update_lock.writer_acquire()
                if self.__precompute:
                    return
                order = self.__order
                assert order
                i = 1
                order *= 2
                doubler = PointJacobi(
                    self.__curve, self.__x, self.__y, self.__z, order
                )
                order *= 2
                self.__precompute.append((doubler.x(), doubler.y()))

                while i < order:
                    i *= 2
                    doubler = doubler.double().scale()
                    self.__precompute.append((doubler.x(), doubler.y()))

            finally:
                self._update_lock.writer_release()

    def __getstate__(self):
        try:
            self._update_lock.reader_acquire()
            state = self.__dict__.copy()
        finally:
            self._update_lock.reader_release()
        del state["_update_lock"]
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)
        self._update_lock = RWLock()

    def __eq__(self, other):
        """Compare for equality two points with each-other.

        Note: only points that lay on the same curve can be equal.
        """
        try:
            self._update_lock.reader_acquire()
            if other is INFINITY:
                return not self.__y or not self.__z
            x1, y1, z1 = self.__x, self.__y, self.__z
        finally:
            self._update_lock.reader_release()
        if isinstance(other, Point):
            x2, y2, z2 = other.x(), other.y(), 1
        elif isinstance(other, PointJacobi):
            try:
                other._update_lock.reader_acquire()
                x2, y2, z2 = other.__x, other.__y, other.__z
            finally:
                other._update_lock.reader_release()
        else:
            return NotImplemented
        if self.__curve != other.curve():
            return False
        p = self.__curve.p()

        zz1 = z1 * z1 % p
        zz2 = z2 * z2 % p

        # compare the fractions by bringing them to the same denominator
        # depend on short-circuit to save 4 multiplications in case of
        # inequality
        return (x1 * zz2 - x2 * zz1) % p == 0 and (
            y1 * zz2 * z2 - y2 * zz1 * z1
        ) % p == 0

    def __ne__(self, other):
        """Compare for inequality two points with each-other."""
        return not self == other

    def order(self):
        """Return the order of the point.

        None if it is undefined.
        """
        return self.__order

    def curve(self):
        """Return curve over which the point is defined."""
        return self.__curve

    def x(self):
        """
        Return affine x coordinate.

        This method should be used only when the 'y' coordinate is not needed.
        It's computationally more efficient to use `to_affine()` and then
        call x() and y() on the returned instance. Or call `scale()`
        and then x() and y() on the returned instance.
        """
        try:
            self._update_lock.reader_acquire()
            if self.__z == 1:
                return self.__x
            x = self.__x
            z = self.__z
        finally:
            self._update_lock.reader_release()
        p = self.__curve.p()
        z = numbertheory.inverse_mod(z, p)
        return x * z ** 2 % p

    def y(self):
        """
        Return affine y coordinate.

        This method should be used only when the 'x' coordinate is not needed.
        It's computationally more efficient to use `to_affine()` and then
        call x() and y() on the returned instance. Or call `scale()`
        and then x() and y() on the returned instance.
        """
        try:
            self._update_lock.reader_acquire()
            if self.__z == 1:
                return self.__y
            y = self.__y
            z = self.__z
        finally:
            self._update_lock.reader_release()
        p = self.__curve.p()
        z = numbertheory.inverse_mod(z, p)
        return y * z ** 3 % p

    def scale(self):
        """
        Return point scaled so that z == 1.

        Modifies point in place, returns self.
        """
        try:
            self._update_lock.reader_acquire()
            if self.__z == 1:
                return self
        finally:
            self._update_lock.reader_release()

        try:
            self._update_lock.writer_acquire()
            # scaling already scaled point is safe (as inverse of 1 is 1) and
            # quick so we don't need to optimise for the unlikely event when
            # two threads hit the lock at the same time
            p = self.__curve.p()
            z_inv = numbertheory.inverse_mod(self.__z, p)
            zz_inv = z_inv * z_inv % p
            self.__x = self.__x * zz_inv % p
            self.__y = self.__y * zz_inv * z_inv % p
            # we are setting the z last so that the check above will return
            # true only after all values were already updated
            self.__z = 1
        finally:
            self._update_lock.writer_release()
        return self

    def to_affine(self):
        """Return point in affine form."""
        if not self.__y or not self.__z:
            return INFINITY
        self.scale()
        # after point is scaled, it's immutable, so no need to perform locking
        return Point(self.__curve, self.__x, self.__y, self.__order)

    @staticmethod
    def from_affine(point, generator=False):
        """Create from an affine point.

        :param bool generator: set to True to make the point to precalculate
          multiplication table - useful for public point when verifying many
          signatures (around 100 or so) or for generator points of a curve.
        """
        return PointJacobi(
            point.curve(), point.x(), point.y(), 1, point.order(), generator
        )

    # please note that all the methods that use the equations from
    # hyperelliptic
    # are formatted in a way to maximise performance.
    # Things that make code faster: multiplying instead of taking to the power
    # (`xx = x * x; xxxx = xx * xx % p` is faster than `xxxx = x**4 % p` and
    # `pow(x, 4, p)`),
    # multiple assignments at the same time (`x1, x2 = self.x1, self.x2` is
    # faster than `x1 = self.x1; x2 = self.x2`),
    # similarly, sometimes the `% p` is skipped if it makes the calculation
    # faster and the result of calculation is later reduced modulo `p`

    def _double_with_z_1(self, X1, Y1, p, a):
        """Add a point to itself with z == 1."""
        # after:
        # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl
        XX, YY = X1 * X1 % p, Y1 * Y1 % p
        if not YY:
            return 0, 0, 1
        YYYY = YY * YY % p
        S = 2 * ((X1 + YY) ** 2 - XX - YYYY) % p
        M = 3 * XX + a
        T = (M * M - 2 * S) % p
        # X3 = T
        Y3 = (M * (S - T) - 8 * YYYY) % p
        Z3 = 2 * Y1 % p
        return T, Y3, Z3

    def _double(self, X1, Y1, Z1, p, a):
        """Add a point to itself, arbitrary z."""
        if Z1 == 1:
            return self._double_with_z_1(X1, Y1, p, a)
        if not Y1 or not Z1:
            return 0, 0, 1
        # after:
        # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
        XX, YY = X1 * X1 % p, Y1 * Y1 % p
        if not YY:
            return 0, 0, 1
        YYYY = YY * YY % p
        ZZ = Z1 * Z1 % p
        S = 2 * ((X1 + YY) ** 2 - XX - YYYY) % p
        M = (3 * XX + a * ZZ * ZZ) % p
        T = (M * M - 2 * S) % p
        # X3 = T
        Y3 = (M * (S - T) - 8 * YYYY) % p
        Z3 = ((Y1 + Z1) ** 2 - YY - ZZ) % p

        return T, Y3, Z3

    def double(self):
        """Add a point to itself."""
        if not self.__y:
            return INFINITY

        p, a = self.__curve.p(), self.__curve.a()

        try:
            self._update_lock.reader_acquire()
            X1, Y1, Z1 = self.__x, self.__y, self.__z
        finally:
            self._update_lock.reader_release()

        X3, Y3, Z3 = self._double(X1, Y1, Z1, p, a)

        if not Y3 or not Z3:
            return INFINITY
        return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)

    def _add_with_z_1(self, X1, Y1, X2, Y2, p):
        """add points when both Z1 and Z2 equal 1"""
        # after:
        # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl
        H = X2 - X1
        HH = H * H
        I = 4 * HH % p
        J = H * I
        r = 2 * (Y2 - Y1)
        if not H and not r:
            return self._double_with_z_1(X1, Y1, p, self.__curve.a())
        V = X1 * I
        X3 = (r ** 2 - J - 2 * V) % p
        Y3 = (r * (V - X3) - 2 * Y1 * J) % p
        Z3 = 2 * H % p
        return X3, Y3, Z3

    def _add_with_z_eq(self, X1, Y1, Z1, X2, Y2, p):
        """add points when Z1 == Z2"""
        # after:
        # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-zadd-2007-m
        A = (X2 - X1) ** 2 % p
        B = X1 * A % p
        C = X2 * A
        D = (Y2 - Y1) ** 2 % p
        if not A and not D:
            return self._double(X1, Y1, Z1, p, self.__curve.a())
        X3 = (D - B - C) % p
        Y3 = ((Y2 - Y1) * (B - X3) - Y1 * (C - B)) % p
        Z3 = Z1 * (X2 - X1) % p
        return X3, Y3, Z3

    def _add_with_z2_1(self, X1, Y1, Z1, X2, Y2, p):
        """add points when Z2 == 1"""
        # after:
        # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-madd-2007-bl
        Z1Z1 = Z1 * Z1 % p
        U2, S2 = X2 * Z1Z1 % p, Y2 * Z1 * Z1Z1 % p
        H = (U2 - X1) % p
        HH = H * H % p
        I = 4 * HH % p
        J = H * I
        r = 2 * (S2 - Y1) % p
        if not r and not H:
            return self._double_with_z_1(X2, Y2, p, self.__curve.a())
        V = X1 * I
        X3 = (r * r - J - 2 * V) % p
        Y3 = (r * (V - X3) - 2 * Y1 * J) % p
        Z3 = ((Z1 + H) ** 2 - Z1Z1 - HH) % p
        return X3, Y3, Z3

    def _add_with_z_ne(self, X1, Y1, Z1, X2, Y2, Z2, p):
        """add points with arbitrary z"""
        # after:
        # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
        Z1Z1 = Z1 * Z1 % p
        Z2Z2 = Z2 * Z2 % p
        U1 = X1 * Z2Z2 % p
        U2 = X2 * Z1Z1 % p
        S1 = Y1 * Z2 * Z2Z2 % p
        S2 = Y2 * Z1 * Z1Z1 % p
        H = U2 - U1
        I = 4 * H * H % p
        J = H * I % p
        r = 2 * (S2 - S1) % p
        if not H and not r:
            return self._double(X1, Y1, Z1, p, self.__curve.a())
        V = U1 * I
        X3 = (r * r - J - 2 * V) % p
        Y3 = (r * (V - X3) - 2 * S1 * J) % p
        Z3 = ((Z1 + Z2) ** 2 - Z1Z1 - Z2Z2) * H % p

        return X3, Y3, Z3

    def __radd__(self, other):
        """Add other to self."""
        return self + other

    def _add(self, X1, Y1, Z1, X2, Y2, Z2, p):
        """add two points, select fastest method."""
        if not Y1 or not Z1:
            return X2, Y2, Z2
        if not Y2 or not Z2:
            return X1, Y1, Z1
        if Z1 == Z2:
            if Z1 == 1:
                return self._add_with_z_1(X1, Y1, X2, Y2, p)
            return self._add_with_z_eq(X1, Y1, Z1, X2, Y2, p)
        if Z1 == 1:
            return self._add_with_z2_1(X2, Y2, Z2, X1, Y1, p)
        if Z2 == 1:
            return self._add_with_z2_1(X1, Y1, Z1, X2, Y2, p)
        return self._add_with_z_ne(X1, Y1, Z1, X2, Y2, Z2, p)

    def __add__(self, other):
        """Add two points on elliptic curve."""
        if self == INFINITY:
            return other
        if other == INFINITY:
            return self
        if isinstance(other, Point):
            other = PointJacobi.from_affine(other)
        if self.__curve != other.__curve:
            raise ValueError("The other point is on different curve")

        p = self.__curve.p()
        try:
            self._update_lock.reader_acquire()
            X1, Y1, Z1 = self.__x, self.__y, self.__z
        finally:
            self._update_lock.reader_release()
        try:
            other._update_lock.reader_acquire()
            X2, Y2, Z2 = other.__x, other.__y, other.__z
        finally:
            other._update_lock.reader_release()
        X3, Y3, Z3 = self._add(X1, Y1, Z1, X2, Y2, Z2, p)

        if not Y3 or not Z3:
            return INFINITY
        return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)

    def __rmul__(self, other):
        """Multiply point by an integer."""
        return self * other

    def _mul_precompute(self, other):
        """Multiply point by integer with precomputation table."""
        X3, Y3, Z3, p = 0, 0, 1, self.__curve.p()
        _add = self._add
        for X2, Y2 in self.__precompute:
            if other % 2:
                if other % 4 >= 2:
                    other = (other + 1) // 2
                    X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p)
                else:
                    other = (other - 1) // 2
                    X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p)
            else:
                other //= 2

        if not Y3 or not Z3:
            return INFINITY
        return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)

    @staticmethod
    def _naf(mult):
        """Calculate non-adjacent form of number."""
        ret = []
        while mult:
            if mult % 2:
                nd = mult % 4
                if nd >= 2:
                    nd -= 4
                ret.append(nd)
                mult -= nd
            else:
                ret.append(0)
            mult //= 2
        return ret

    def __mul__(self, other):
        """Multiply point by an integer."""
        if not self.__y or not other:
            return INFINITY
        if other == 1:
            return self
        if self.__order:
            # order*2 as a protection for Minerva
            other = other % (self.__order * 2)
        self._maybe_precompute()
        if self.__precompute:
            return self._mul_precompute(other)

        self = self.scale()
        # once scaled, point is immutable, not need to lock
        X2, Y2 = self.__x, self.__y
        X3, Y3, Z3 = 0, 0, 1
        p, a = self.__curve.p(), self.__curve.a()
        _double = self._double
        _add = self._add
        # since adding points when at least one of them is scaled
        # is quicker, reverse the NAF order
        for i in reversed(self._naf(other)):
            X3, Y3, Z3 = _double(X3, Y3, Z3, p, a)
            if i < 0:
                X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p)
            elif i > 0:
                X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p)

        if not Y3 or not Z3:
            return INFINITY

        return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)

    def mul_add(self, self_mul, other, other_mul):
        """
        Do two multiplications at the same time, add results.

        calculates self*self_mul + other*other_mul
        """
        if other == INFINITY or other_mul == 0:
            return self * self_mul
        if self_mul == 0:
            return other * other_mul
        if not isinstance(other, PointJacobi):
            other = PointJacobi.from_affine(other)
        # when the points have precomputed answers, then multiplying them alone
        # is faster (as it uses NAF and no point doublings)
        self._maybe_precompute()
        other._maybe_precompute()
        if self.__precompute and other.__precompute:
            return self * self_mul + other * other_mul

        if self.__order:
            self_mul = self_mul % self.__order
            other_mul = other_mul % self.__order

        # (X3, Y3, Z3) is the accumulator
        X3, Y3, Z3 = 0, 0, 1
        p, a = self.__curve.p(), self.__curve.a()

        # as we have 6 unique points to work with, we can't scale all of them,
        # but do scale the ones that are used most often
        # (post scale() points are immutable so no need for locking)
        self.scale()
        X1, Y1, Z1 = self.__x, self.__y, self.__z
        other.scale()
        X2, Y2, Z2 = other.__x, other.__y, other.__z

        _double = self._double
        _add = self._add

        # with NAF we have 3 options: no add, subtract, add
        # so with 2 points, we have 9 combinations:
        # 0, -A, +A, -B, -A-B, +A-B, +B, -A+B, +A+B
        # so we need 4 combined points:
        mAmB_X, mAmB_Y, mAmB_Z = _add(X1, -Y1, Z1, X2, -Y2, Z2, p)
        pAmB_X, pAmB_Y, pAmB_Z = _add(X1, Y1, Z1, X2, -Y2, Z2, p)
        mApB_X, mApB_Y, mApB_Z = _add(X1, -Y1, Z1, X2, Y2, Z2, p)
        pApB_X, pApB_Y, pApB_Z = _add(X1, Y1, Z1, X2, Y2, Z2, p)
        # when the self and other sum to infinity, we need to add them
        # one by one to get correct result but as that's very unlikely to
        # happen in regular operation, we don't need to optimise this case
        if not pApB_Y or not pApB_Z:
            return self * self_mul + other * other_mul

        # gmp object creation has cumulatively higher overhead than the
        # speedup we get from calculating the NAF using gmp so ensure use
        # of int()
        self_naf = list(reversed(self._naf(int(self_mul))))
        other_naf = list(reversed(self._naf(int(other_mul))))
        # ensure that the lists are the same length (zip() will truncate
        # longer one otherwise)
        if len(self_naf) < len(other_naf):
            self_naf = [0] * (len(other_naf) - len(self_naf)) + self_naf
        elif len(self_naf) > len(other_naf):
            other_naf = [0] * (len(self_naf) - len(other_naf)) + other_naf

        for A, B in zip(self_naf, other_naf):
            X3, Y3, Z3 = _double(X3, Y3, Z3, p, a)

            # conditions ordered from most to least likely
            if A == 0:
                if B == 0:
                    pass
                elif B < 0:
                    X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, Z2, p)
                else:
                    assert B > 0
                    X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, Z2, p)
            elif A < 0:
                if B == 0:
                    X3, Y3, Z3 = _add(X3, Y3, Z3, X1, -Y1, Z1, p)
                elif B < 0:
                    X3, Y3, Z3 = _add(X3, Y3, Z3, mAmB_X, mAmB_Y, mAmB_Z, p)
                else:
                    assert B > 0
                    X3, Y3, Z3 = _add(X3, Y3, Z3, mApB_X, mApB_Y, mApB_Z, p)
            else:
                assert A > 0
                if B == 0:
                    X3, Y3, Z3 = _add(X3, Y3, Z3, X1, Y1, Z1, p)
                elif B < 0:
                    X3, Y3, Z3 = _add(X3, Y3, Z3, pAmB_X, pAmB_Y, pAmB_Z, p)
                else:
                    assert B > 0
                    X3, Y3, Z3 = _add(X3, Y3, Z3, pApB_X, pApB_Y, pApB_Z, p)

        if not Y3 or not Z3:
            return INFINITY

        return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)

    def __neg__(self):
        """Return negated point."""
        try:
            self._update_lock.reader_acquire()
            return PointJacobi(
                self.__curve, self.__x, -self.__y, self.__z, self.__order
            )
        finally:
            self._update_lock.reader_release()


class Point(object):
    """A point on an elliptic curve. Altering x and y is forbidding,
     but they can be read by the x() and y() methods."""

    def __init__(self, curve, x, y, order=None):
        """curve, x, y, order; order (optional) is the order of this point."""
        self.__curve = curve
        if GMPY:
            self.__x = x and mpz(x)
            self.__y = y and mpz(y)
            self.__order = order and mpz(order)
        else:
            self.__x = x
            self.__y = y
            self.__order = order
        # self.curve is allowed to be None only for INFINITY:
        if self.__curve:
            assert self.__curve.contains_point(x, y)
        # for curves with cofactor 1, all points that are on the curve are
        # scalar multiples of the base point, so performing multiplication is
        # not necessary to verify that. See Section 3.2.2.1 of SEC 1 v2
        if curve and curve.cofactor() != 1 and order:
            assert self * order == INFINITY

    def __eq__(self, other):
        """Return True if the points are identical, False otherwise.

        Note: only points that lay on the same curve can be equal.
        """
        if isinstance(other, Point):
            return (
                self.__curve == other.__curve
                and self.__x == other.__x
                and self.__y == other.__y
            )
        return NotImplemented

    def __ne__(self, other):
        """Returns False if points are identical, True otherwise."""
        return not self == other

    def __neg__(self):
        return Point(self.__curve, self.__x, self.__curve.p() - self.__y)

    def __add__(self, other):
        """Add one point to another point."""

        # X9.62 B.3:

        if not isinstance(other, Point):
            return NotImplemented
        if other == INFINITY:
            return self
        if self == INFINITY:
            return other
        assert self.__curve == other.__curve
        if self.__x == other.__x:
            if (self.__y + other.__y) % self.__curve.p() == 0:
                return INFINITY
            else:
                return self.double()

        p = self.__curve.p()

        l = (
            (other.__y - self.__y)
            * numbertheory.inverse_mod(other.__x - self.__x, p)
        ) % p

        x3 = (l * l - self.__x - other.__x) % p
        y3 = (l * (self.__x - x3) - self.__y) % p

        return Point(self.__curve, x3, y3)

    def __mul__(self, other):
        """Multiply a point by an integer."""

        def leftmost_bit(x):
            assert x > 0
            result = 1
            while result <= x:
                result = 2 * result
            return result // 2

        e = other
        if e == 0 or (self.__order and e % self.__order == 0):
            return INFINITY
        if self == INFINITY:
            return INFINITY
        if e < 0:
            return (-self) * (-e)

        # From X9.62 D.3.2:

        e3 = 3 * e
        negative_self = Point(self.__curve, self.__x, -self.__y, self.__order)
        i = leftmost_bit(e3) // 2
        result = self
        # print_("Multiplying %s by %d (e3 = %d):" % (self, other, e3))
        while i > 1:
            result = result.double()
            if (e3 & i) != 0 and (e & i) == 0:
                result = result + self
            if (e3 & i) == 0 and (e & i) != 0:
                result = result + negative_self
            # print_(". . . i = %d, result = %s" % ( i, result ))
            i = i // 2

        return result

    def __rmul__(self, other):
        """Multiply a point by an integer."""

        return self * other

    def __str__(self):
        if self == INFINITY:
            return "infinity"
        return "(%d,%d)" % (self.__x, self.__y)

    def double(self):
        """Return a new point that is twice the old."""

        if self == INFINITY:
            return INFINITY

        # X9.62 B.3:

        p = self.__curve.p()
        a = self.__curve.a()

        l = (
            (3 * self.__x * self.__x + a)
            * numbertheory.inverse_mod(2 * self.__y, p)
        ) % p

        x3 = (l * l - 2 * self.__x) % p
        y3 = (l * (self.__x - x3) - self.__y) % p

        return Point(self.__curve, x3, y3)

    def x(self):
        return self.__x

    def y(self):
        return self.__y

    def curve(self):
        return self.__curve

    def order(self):
        return self.__order


# This one point is the Point At Infinity for all purposes:
INFINITY = Point(None, None, None)