summaryrefslogtreecommitdiff
path: root/dns/dnssec.py
blob: 4cfb75e3b62933b98db70106b2e8ee8c254acbb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license

# Copyright (C) 2003-2017 Nominum, Inc.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose with or without fee is hereby granted,
# provided that the above copyright notice and this permission notice
# appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""Common DNSSEC-related functions and constants."""

from typing import Any, cast, Dict, List, Optional, Tuple, Union

import hashlib
import math
import struct
import time
import base64
from datetime import datetime

from dns.dnssectypes import Algorithm, DSDigest, NSEC3Hash

import dns.exception
import dns.name
import dns.node
import dns.rdataset
import dns.rdata
import dns.rdatatype
import dns.rdataclass
import dns.rrset
from dns.rdtypes.ANY.DNSKEY import DNSKEY
from dns.rdtypes.ANY.DS import DS
from dns.rdtypes.ANY.RRSIG import RRSIG, sigtime_to_posixtime
from dns.rdtypes.dnskeybase import Flag


class UnsupportedAlgorithm(dns.exception.DNSException):
    """The DNSSEC algorithm is not supported."""


class AlgorithmKeyMismatch(UnsupportedAlgorithm):
    """The DNSSEC algorithm is not supported for the given key type."""


class ValidationFailure(dns.exception.DNSException):
    """The DNSSEC signature is invalid."""


class DeniedByPolicy(dns.exception.DNSException):
    """Denied by DNSSEC policy."""


PublicKey = Union[
    "rsa.RSAPublicKey",
    "ec.EllipticCurvePublicKey",
    "ed25519.Ed25519PublicKey",
    "ed448.Ed448PublicKey",
]

PrivateKey = Union[
    "rsa.RSAPrivateKey",
    "ec.EllipticCurvePrivateKey",
    "ed25519.Ed25519PrivateKey",
    "ed448.Ed448PrivateKey",
]


def algorithm_from_text(text: str) -> Algorithm:
    """Convert text into a DNSSEC algorithm value.

    *text*, a ``str``, the text to convert to into an algorithm value.

    Returns an ``int``.
    """

    return Algorithm.from_text(text)


def algorithm_to_text(value: Union[Algorithm, int]) -> str:
    """Convert a DNSSEC algorithm value to text

    *value*, a ``dns.dnssec.Algorithm``.

    Returns a ``str``, the name of a DNSSEC algorithm.
    """

    return Algorithm.to_text(value)


def to_timestamp(value: Union[datetime, str, float, int]) -> int:
    """Convert various format to a timestamp"""
    if isinstance(value, datetime):
        return int(value.timestamp())
    elif isinstance(value, str):
        return sigtime_to_posixtime(value)
    elif isinstance(value, float):
        return int(value)
    elif isinstance(value, int):
        return value
    else:
        raise TypeError("Unsupported timestamp type")


def key_id(key: DNSKEY) -> int:
    """Return the key id (a 16-bit number) for the specified key.

    *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY``

    Returns an ``int`` between 0 and 65535
    """

    rdata = key.to_wire()
    if key.algorithm == Algorithm.RSAMD5:
        return (rdata[-3] << 8) + rdata[-2]
    else:
        total = 0
        for i in range(len(rdata) // 2):
            total += (rdata[2 * i] << 8) + rdata[2 * i + 1]
        if len(rdata) % 2 != 0:
            total += rdata[len(rdata) - 1] << 8
        total += (total >> 16) & 0xFFFF
        return total & 0xFFFF


class Policy:
    def __init__(self):
        pass

    def ok_to_sign(self, _: DNSKEY) -> bool:  # pragma: no cover
        return False

    def ok_to_validate(self, _: DNSKEY) -> bool:  # pragma: no cover
        return False

    def ok_to_create_ds(self, _: DSDigest) -> bool:  # pragma: no cover
        return False

    def ok_to_validate_ds(self, _: DSDigest) -> bool:  # pragma: no cover
        return False


class SimpleDeny(Policy):
    def __init__(self, deny_sign, deny_validate, deny_create_ds, deny_validate_ds):
        super().__init__()
        self._deny_sign = deny_sign
        self._deny_validate = deny_validate
        self._deny_create_ds = deny_create_ds
        self._deny_validate_ds = deny_validate_ds

    def ok_to_sign(self, key: DNSKEY) -> bool:
        return key.algorithm not in self._deny_sign

    def ok_to_validate(self, key: DNSKEY) -> bool:
        return key.algorithm not in self._deny_validate

    def ok_to_create_ds(self, algorithm: DSDigest) -> bool:
        return algorithm not in self._deny_create_ds

    def ok_to_validate_ds(self, algorithm: DSDigest) -> bool:
        return algorithm not in self._deny_validate_ds


rfc_8624_policy = SimpleDeny(
    {Algorithm.RSAMD5, Algorithm.DSA, Algorithm.DSANSEC3SHA1, Algorithm.ECCGOST},
    {Algorithm.RSAMD5, Algorithm.DSA, Algorithm.DSANSEC3SHA1},
    {DSDigest.NULL, DSDigest.SHA1, DSDigest.GOST},
    {DSDigest.NULL},
)

allow_all_policy = SimpleDeny(set(), set(), set(), set())


default_policy = rfc_8624_policy


def make_ds(
    name: Union[dns.name.Name, str],
    key: dns.rdata.Rdata,
    algorithm: Union[DSDigest, str],
    origin: Optional[dns.name.Name] = None,
    policy: Optional[Policy] = None,
    validating: bool = False,
) -> DS:
    """Create a DS record for a DNSSEC key.

    *name*, a ``dns.name.Name`` or ``str``, the owner name of the DS record.

    *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY``, the key the DS is about.

    *algorithm*, a ``str`` or ``int`` specifying the hash algorithm.
    The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case
    does not matter for these strings.

    *origin*, a ``dns.name.Name`` or ``None``.  If `key` is a relative name,
    then it will be made absolute using the specified origin.

    *policy*, a ``dns.dnssec.Policy`` or ``None``.  If ``None``, the default policy,
    ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624.

    *validating*, a ``bool``.  If ``True``, then policy is checked in
    validating mode, i.e. "Is it ok to validate using this digest algorithm?".
    Otherwise the policy is checked in creating mode, i.e. "Is it ok to create a DS with
    this digest algorithm?".

    Raises ``UnsupportedAlgorithm`` if the algorithm is unknown.

    Raises ``DeniedByPolicy`` if the algorithm is denied by policy.

    Returns a ``dns.rdtypes.ANY.DS.DS``
    """

    if policy is None:
        policy = default_policy
    try:
        if isinstance(algorithm, str):
            algorithm = DSDigest[algorithm.upper()]
    except Exception:
        raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm)
    if validating:
        check = policy.ok_to_validate_ds
    else:
        check = policy.ok_to_create_ds
    if not check(algorithm):
        raise DeniedByPolicy
    if not isinstance(key, DNSKEY):
        raise ValueError("key is not a DNSKEY")
    if algorithm == DSDigest.SHA1:
        dshash = hashlib.sha1()
    elif algorithm == DSDigest.SHA256:
        dshash = hashlib.sha256()
    elif algorithm == DSDigest.SHA384:
        dshash = hashlib.sha384()
    else:
        raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm)

    if isinstance(name, str):
        name = dns.name.from_text(name, origin)
    wire = name.canonicalize().to_wire()
    assert wire is not None
    dshash.update(wire)
    dshash.update(key.to_wire(origin=origin))
    digest = dshash.digest()

    dsrdata = struct.pack("!HBB", key_id(key), key.algorithm, algorithm) + digest
    ds = dns.rdata.from_wire(
        dns.rdataclass.IN, dns.rdatatype.DS, dsrdata, 0, len(dsrdata)
    )
    return cast(DS, ds)


def _find_candidate_keys(
    keys: Dict[dns.name.Name, Union[dns.rdataset.Rdataset, dns.node.Node]], rrsig: RRSIG
) -> Optional[List[DNSKEY]]:
    value = keys.get(rrsig.signer)
    if isinstance(value, dns.node.Node):
        rdataset = value.get_rdataset(dns.rdataclass.IN, dns.rdatatype.DNSKEY)
    else:
        rdataset = value
    if rdataset is None:
        return None
    return [
        cast(DNSKEY, rd)
        for rd in rdataset
        if rd.algorithm == rrsig.algorithm and key_id(rd) == rrsig.key_tag
    ]


def _is_rsa(algorithm: int) -> bool:
    return algorithm in (
        Algorithm.RSAMD5,
        Algorithm.RSASHA1,
        Algorithm.RSASHA1NSEC3SHA1,
        Algorithm.RSASHA256,
        Algorithm.RSASHA512,
    )


def _is_dsa(algorithm: int) -> bool:
    return algorithm in (Algorithm.DSA, Algorithm.DSANSEC3SHA1)


def _is_ecdsa(algorithm: int) -> bool:
    return algorithm in (Algorithm.ECDSAP256SHA256, Algorithm.ECDSAP384SHA384)


def _is_eddsa(algorithm: int) -> bool:
    return algorithm in (Algorithm.ED25519, Algorithm.ED448)


def _is_gost(algorithm: int) -> bool:
    return algorithm == Algorithm.ECCGOST


def _is_md5(algorithm: int) -> bool:
    return algorithm == Algorithm.RSAMD5


def _is_sha1(algorithm: int) -> bool:
    return algorithm in (
        Algorithm.DSA,
        Algorithm.RSASHA1,
        Algorithm.DSANSEC3SHA1,
        Algorithm.RSASHA1NSEC3SHA1,
    )


def _is_sha256(algorithm: int) -> bool:
    return algorithm in (Algorithm.RSASHA256, Algorithm.ECDSAP256SHA256)


def _is_sha384(algorithm: int) -> bool:
    return algorithm == Algorithm.ECDSAP384SHA384


def _is_sha512(algorithm: int) -> bool:
    return algorithm == Algorithm.RSASHA512


def _ensure_algorithm_key_combination(algorithm: int, key: PublicKey) -> None:
    """Ensure algorithm is valid for key type, throwing an exception on
    mismatch."""
    if isinstance(key, rsa.RSAPublicKey):
        if _is_rsa(algorithm):
            return
        raise AlgorithmKeyMismatch('algorithm "%s" not valid for RSA key' % algorithm)
    if isinstance(key, dsa.DSAPublicKey):
        if _is_dsa(algorithm):
            return
        raise AlgorithmKeyMismatch('algorithm "%s" not valid for DSA key' % algorithm)
    if isinstance(key, ec.EllipticCurvePublicKey):
        if _is_ecdsa(algorithm):
            return
        raise AlgorithmKeyMismatch('algorithm "%s" not valid for ECDSA key' % algorithm)
    if isinstance(key, ed25519.Ed25519PublicKey):
        if algorithm == Algorithm.ED25519:
            return
        raise AlgorithmKeyMismatch(
            'algorithm "%s" not valid for ED25519 key' % algorithm
        )
    if isinstance(key, ed448.Ed448PublicKey):
        if algorithm == Algorithm.ED448:
            return
        raise AlgorithmKeyMismatch('algorithm "%s" not valid for ED448 key' % algorithm)

    raise TypeError("unsupported key type")


def _make_hash(algorithm: int) -> Any:
    if _is_md5(algorithm):
        return hashes.MD5()
    if _is_sha1(algorithm):
        return hashes.SHA1()
    if _is_sha256(algorithm):
        return hashes.SHA256()
    if _is_sha384(algorithm):
        return hashes.SHA384()
    if _is_sha512(algorithm):
        return hashes.SHA512()
    if algorithm == Algorithm.ED25519:
        return hashes.SHA512()
    if algorithm == Algorithm.ED448:
        return hashes.SHAKE256(114)

    raise ValidationFailure("unknown hash for algorithm %u" % algorithm)


def _bytes_to_long(b: bytes) -> int:
    return int.from_bytes(b, "big")


def _validate_signature(sig: bytes, data: bytes, key: DNSKEY, chosen_hash: Any) -> None:
    keyptr: bytes
    if _is_rsa(key.algorithm):
        # we ignore because mypy is confused and thinks key.key is a str for unknown
        # reasons.
        keyptr = key.key
        (bytes_,) = struct.unpack("!B", keyptr[0:1])
        keyptr = keyptr[1:]
        if bytes_ == 0:
            (bytes_,) = struct.unpack("!H", keyptr[0:2])
            keyptr = keyptr[2:]
        rsa_e = keyptr[0:bytes_]
        rsa_n = keyptr[bytes_:]
        try:
            rsa_public_key = rsa.RSAPublicNumbers(
                _bytes_to_long(rsa_e), _bytes_to_long(rsa_n)
            ).public_key(default_backend())
        except ValueError:
            raise ValidationFailure("invalid public key")
        rsa_public_key.verify(sig, data, padding.PKCS1v15(), chosen_hash)
    elif _is_dsa(key.algorithm):
        keyptr = key.key
        (t,) = struct.unpack("!B", keyptr[0:1])
        keyptr = keyptr[1:]
        octets = 64 + t * 8
        dsa_q = keyptr[0:20]
        keyptr = keyptr[20:]
        dsa_p = keyptr[0:octets]
        keyptr = keyptr[octets:]
        dsa_g = keyptr[0:octets]
        keyptr = keyptr[octets:]
        dsa_y = keyptr[0:octets]
        try:
            dsa_public_key = dsa.DSAPublicNumbers(  # type: ignore
                _bytes_to_long(dsa_y),
                dsa.DSAParameterNumbers(
                    _bytes_to_long(dsa_p), _bytes_to_long(dsa_q), _bytes_to_long(dsa_g)
                ),
            ).public_key(default_backend())
        except ValueError:
            raise ValidationFailure("invalid public key")
        dsa_public_key.verify(sig, data, chosen_hash)
    elif _is_ecdsa(key.algorithm):
        keyptr = key.key
        curve: Any
        if key.algorithm == Algorithm.ECDSAP256SHA256:
            curve = ec.SECP256R1()
            octets = 32
        else:
            curve = ec.SECP384R1()
            octets = 48
        ecdsa_x = keyptr[0:octets]
        ecdsa_y = keyptr[octets : octets * 2]
        try:
            ecdsa_public_key = ec.EllipticCurvePublicNumbers(
                curve=curve, x=_bytes_to_long(ecdsa_x), y=_bytes_to_long(ecdsa_y)
            ).public_key(default_backend())
        except ValueError:
            raise ValidationFailure("invalid public key")
        ecdsa_public_key.verify(sig, data, ec.ECDSA(chosen_hash))
    elif _is_eddsa(key.algorithm):
        keyptr = key.key
        loader: Any
        if key.algorithm == Algorithm.ED25519:
            loader = ed25519.Ed25519PublicKey
        else:
            loader = ed448.Ed448PublicKey
        try:
            eddsa_public_key = loader.from_public_bytes(keyptr)
        except ValueError:
            raise ValidationFailure("invalid public key")
        eddsa_public_key.verify(sig, data)
    elif _is_gost(key.algorithm):
        raise UnsupportedAlgorithm(
            'algorithm "%s" not supported by dnspython'
            % algorithm_to_text(key.algorithm)
        )
    else:
        raise ValidationFailure("unknown algorithm %u" % key.algorithm)


def _validate_rrsig(
    rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]],
    rrsig: RRSIG,
    keys: Dict[dns.name.Name, Union[dns.node.Node, dns.rdataset.Rdataset]],
    origin: Optional[dns.name.Name] = None,
    now: Optional[float] = None,
    policy: Optional[Policy] = None,
) -> None:
    """Validate an RRset against a single signature rdata, throwing an
    exception if validation is not successful.

    *rrset*, the RRset to validate.  This can be a
    ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
    tuple.

    *rrsig*, a ``dns.rdata.Rdata``, the signature to validate.

    *keys*, the key dictionary, used to find the DNSKEY associated
    with a given name.  The dictionary is keyed by a
    ``dns.name.Name``, and has ``dns.node.Node`` or
    ``dns.rdataset.Rdataset`` values.

    *origin*, a ``dns.name.Name`` or ``None``, the origin to use for relative
    names.

    *now*, a ``float`` or ``None``, the time, in seconds since the epoch, to
    use as the current time when validating.  If ``None``, the actual current
    time is used.

    *policy*, a ``dns.dnssec.Policy`` or ``None``.  If ``None``, the default policy,
    ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624.

    Raises ``ValidationFailure`` if the signature is expired, not yet valid,
    the public key is invalid, the algorithm is unknown, the verification
    fails, etc.

    Raises ``UnsupportedAlgorithm`` if the algorithm is recognized by
    dnspython but not implemented.
    """

    if policy is None:
        policy = default_policy

    candidate_keys = _find_candidate_keys(keys, rrsig)
    if candidate_keys is None:
        raise ValidationFailure("unknown key")

    if now is None:
        now = time.time()
    if rrsig.expiration < now:
        raise ValidationFailure("expired")
    if rrsig.inception > now:
        raise ValidationFailure("not yet valid")

    if _is_dsa(rrsig.algorithm):
        sig_r = rrsig.signature[1:21]
        sig_s = rrsig.signature[21:]
        sig = utils.encode_dss_signature(_bytes_to_long(sig_r), _bytes_to_long(sig_s))
    elif _is_ecdsa(rrsig.algorithm):
        if rrsig.algorithm == Algorithm.ECDSAP256SHA256:
            octets = 32
        else:
            octets = 48
        sig_r = rrsig.signature[0:octets]
        sig_s = rrsig.signature[octets:]
        sig = utils.encode_dss_signature(_bytes_to_long(sig_r), _bytes_to_long(sig_s))
    else:
        sig = rrsig.signature

    data = _make_rrsig_signature_data(rrset, rrsig, origin)
    chosen_hash = _make_hash(rrsig.algorithm)

    for candidate_key in candidate_keys:
        if not policy.ok_to_validate(candidate_key):
            continue
        try:
            _validate_signature(sig, data, candidate_key, chosen_hash)
            return
        except (InvalidSignature, ValidationFailure):
            # this happens on an individual validation failure
            continue
    # nothing verified -- raise failure:
    raise ValidationFailure("verify failure")


def _validate(
    rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]],
    rrsigset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]],
    keys: Dict[dns.name.Name, Union[dns.node.Node, dns.rdataset.Rdataset]],
    origin: Optional[dns.name.Name] = None,
    now: Optional[float] = None,
    policy: Optional[Policy] = None,
) -> None:
    """Validate an RRset against a signature RRset, throwing an exception
    if none of the signatures validate.

    *rrset*, the RRset to validate.  This can be a
    ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
    tuple.

    *rrsigset*, the signature RRset.  This can be a
    ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
    tuple.

    *keys*, the key dictionary, used to find the DNSKEY associated
    with a given name.  The dictionary is keyed by a
    ``dns.name.Name``, and has ``dns.node.Node`` or
    ``dns.rdataset.Rdataset`` values.

    *origin*, a ``dns.name.Name``, the origin to use for relative names;
    defaults to None.

    *now*, an ``int`` or ``None``, the time, in seconds since the epoch, to
    use as the current time when validating.  If ``None``, the actual current
    time is used.

    *policy*, a ``dns.dnssec.Policy`` or ``None``.  If ``None``, the default policy,
    ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624.

    Raises ``ValidationFailure`` if the signature is expired, not yet valid,
    the public key is invalid, the algorithm is unknown, the verification
    fails, etc.
    """

    if policy is None:
        policy = default_policy

    if isinstance(origin, str):
        origin = dns.name.from_text(origin, dns.name.root)

    if isinstance(rrset, tuple):
        rrname = rrset[0]
    else:
        rrname = rrset.name

    if isinstance(rrsigset, tuple):
        rrsigname = rrsigset[0]
        rrsigrdataset = rrsigset[1]
    else:
        rrsigname = rrsigset.name
        rrsigrdataset = rrsigset

    rrname = rrname.choose_relativity(origin)
    rrsigname = rrsigname.choose_relativity(origin)
    if rrname != rrsigname:
        raise ValidationFailure("owner names do not match")

    for rrsig in rrsigrdataset:
        if not isinstance(rrsig, RRSIG):
            raise ValidationFailure("expected an RRSIG")
        try:
            _validate_rrsig(rrset, rrsig, keys, origin, now, policy)
            return
        except (ValidationFailure, UnsupportedAlgorithm):
            pass
    raise ValidationFailure("no RRSIGs validated")


def _sign(
    rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]],
    private_key: PrivateKey,
    signer: dns.name.Name,
    dnskey: DNSKEY,
    inception: Optional[Union[datetime, str, int, float]] = None,
    expiration: Optional[Union[datetime, str, int, float]] = None,
    lifetime: Optional[int] = None,
    verify: bool = False,
    policy: Optional[Policy] = None,
) -> RRSIG:
    """Sign RRset using private key.

    *rrset*, the RRset to validate.  This can be a
    ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
    tuple.

    *private_key*, the private key to use for signing, a
    ``cryptography.hazmat.primitives.asymmetric`` private key class applicable
    for DNSSEC.

    *signer*, a ``dns.name.Name``, the Signer's name.

    *dnskey*, a ``DNSKEY`` matching ``private_key``.

    *inception*, a ``datetime``, ``str``, ``int``, ``float`` or ``None``, the
    signature inception time.  If ``None``, the current time is used.  If a ``str``, the
    format is "YYYYMMDDHHMMSS" or alternatively the number of seconds since the UNIX
    epoch in text form; this is the same the RRSIG rdata's text form.
    Values of type `int` or `float` are interpreted as seconds since the UNIX epoch.

    *expiration*, a ``datetime``, ``str``, ``int``, ``float`` or ``None``, the signature
    expiration time.  If ``None``, the expiration time will be the inception time plus
    the value of the *lifetime* parameter.  See the description of *inception* above
    for how the various parameter types are interpreted.

    *lifetime*, an ``int`` or ``None``, the signature lifetime in seconds.  This
    parameter is only meaningful if *expiration* is ``None``.

    *verify*, a ``bool``.  If set to ``True``, the signer will verify signatures
    after they are created; the default is ``False``.

    *policy*, a ``dns.dnssec.Policy`` or ``None``.  If ``None``, the default policy,
    ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624.

    Raises ``DeniedByPolicy`` if the signature is denied by policy.
    """

    if policy is None:
        policy = default_policy
    if not policy.ok_to_sign(dnskey):
        raise DeniedByPolicy

    if isinstance(rrset, tuple):
        rdclass = rrset[1].rdclass
        rdtype = rrset[1].rdtype
        rrname = rrset[0]
        original_ttl = rrset[1].ttl
    else:
        rdclass = rrset.rdclass
        rdtype = rrset.rdtype
        rrname = rrset.name
        original_ttl = rrset.ttl

    if inception is not None:
        rrsig_inception = to_timestamp(inception)
    else:
        rrsig_inception = int(time.time())

    if expiration is not None:
        rrsig_expiration = to_timestamp(expiration)
    elif lifetime is not None:
        rrsig_expiration = int(time.time()) + lifetime
    else:
        raise ValueError("expiration or lifetime must be specified")

    rrsig_template = RRSIG(
        rdclass=rdclass,
        rdtype=dns.rdatatype.RRSIG,
        type_covered=rdtype,
        algorithm=dnskey.algorithm,
        labels=len(rrname) - 1,
        original_ttl=original_ttl,
        expiration=rrsig_expiration,
        inception=rrsig_inception,
        key_tag=key_id(dnskey),
        signer=signer,
        signature=b"",
    )

    data = dns.dnssec._make_rrsig_signature_data(rrset, rrsig_template)
    chosen_hash = _make_hash(rrsig_template.algorithm)
    signature = None

    if isinstance(private_key, rsa.RSAPrivateKey):
        if not _is_rsa(dnskey.algorithm):
            raise ValueError("Invalid DNSKEY algorithm for RSA key")
        signature = private_key.sign(data, padding.PKCS1v15(), chosen_hash)
        if verify:
            private_key.public_key().verify(
                signature, data, padding.PKCS1v15(), chosen_hash
            )
    elif isinstance(private_key, dsa.DSAPrivateKey):
        if not _is_dsa(dnskey.algorithm):
            raise ValueError("Invalid DNSKEY algorithm for DSA key")
        public_dsa_key = private_key.public_key()
        if public_dsa_key.key_size > 1024:
            raise ValueError("DSA key size overflow")
        der_signature = private_key.sign(data, chosen_hash)
        if verify:
            public_dsa_key.verify(der_signature, data, chosen_hash)
        dsa_r, dsa_s = utils.decode_dss_signature(der_signature)
        dsa_t = (public_dsa_key.key_size // 8 - 64) // 8
        octets = 20
        signature = (
            struct.pack("!B", dsa_t)
            + int.to_bytes(dsa_r, length=octets, byteorder="big")
            + int.to_bytes(dsa_s, length=octets, byteorder="big")
        )
    elif isinstance(private_key, ec.EllipticCurvePrivateKey):
        if not _is_ecdsa(dnskey.algorithm):
            raise ValueError("Invalid DNSKEY algorithm for EC key")
        der_signature = private_key.sign(data, ec.ECDSA(chosen_hash))
        if verify:
            private_key.public_key().verify(der_signature, data, ec.ECDSA(chosen_hash))
        if dnskey.algorithm == Algorithm.ECDSAP256SHA256:
            octets = 32
        else:
            octets = 48
        dsa_r, dsa_s = utils.decode_dss_signature(der_signature)
        signature = int.to_bytes(dsa_r, length=octets, byteorder="big") + int.to_bytes(
            dsa_s, length=octets, byteorder="big"
        )
    elif isinstance(private_key, ed25519.Ed25519PrivateKey):
        if dnskey.algorithm != Algorithm.ED25519:
            raise ValueError("Invalid DNSKEY algorithm for ED25519 key")
        signature = private_key.sign(data)
        if verify:
            private_key.public_key().verify(signature, data)
    elif isinstance(private_key, ed448.Ed448PrivateKey):
        if dnskey.algorithm != Algorithm.ED448:
            raise ValueError("Invalid DNSKEY algorithm for ED448 key")
        signature = private_key.sign(data)
        if verify:
            private_key.public_key().verify(signature, data)
    else:
        raise TypeError("Unsupported key algorithm")

    return cast(RRSIG, rrsig_template.replace(signature=signature))


def _make_rrsig_signature_data(
    rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]],
    rrsig: RRSIG,
    origin: Optional[dns.name.Name] = None,
) -> bytes:
    """Create signature rdata.

    *rrset*, the RRset to sign/validate.  This can be a
    ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
    tuple.

    *rrsig*, a ``dns.rdata.Rdata``, the signature to validate, or the
    signature template used when signing.

    *origin*, a ``dns.name.Name`` or ``None``, the origin to use for relative
    names.

    Raises ``UnsupportedAlgorithm`` if the algorithm is recognized by
    dnspython but not implemented.
    """

    if isinstance(origin, str):
        origin = dns.name.from_text(origin, dns.name.root)

    signer = rrsig.signer
    if not signer.is_absolute():
        if origin is None:
            raise ValidationFailure("relative RR name without an origin specified")
        signer = signer.derelativize(origin)

    # For convenience, allow the rrset to be specified as a (name,
    # rdataset) tuple as well as a proper rrset
    if isinstance(rrset, tuple):
        rrname = rrset[0]
        rdataset = rrset[1]
    else:
        rrname = rrset.name
        rdataset = rrset

    data = b""
    data += rrsig.to_wire(origin=signer)[:18]
    data += rrsig.signer.to_digestable(signer)

    # Derelativize the name before considering labels.
    if not rrname.is_absolute():
        if origin is None:
            raise ValidationFailure("relative RR name without an origin specified")
        rrname = rrname.derelativize(origin)

    if len(rrname) - 1 < rrsig.labels:
        raise ValidationFailure("owner name longer than RRSIG labels")
    elif rrsig.labels < len(rrname) - 1:
        suffix = rrname.split(rrsig.labels + 1)[1]
        rrname = dns.name.from_text("*", suffix)
    rrnamebuf = rrname.to_digestable()
    rrfixed = struct.pack("!HHI", rdataset.rdtype, rdataset.rdclass, rrsig.original_ttl)
    rdatas = [rdata.to_digestable(origin) for rdata in rdataset]
    for rdata in sorted(rdatas):
        data += rrnamebuf
        data += rrfixed
        rrlen = struct.pack("!H", len(rdata))
        data += rrlen
        data += rdata

    return data


def _make_dnskey(
    public_key: PublicKey,
    algorithm: Union[int, str],
    flags: int = Flag.ZONE,
    protocol: int = 3,
) -> DNSKEY:
    """Convert a public key to DNSKEY Rdata

    *public_key*, the public key to convert, a
    ``cryptography.hazmat.primitives.asymmetric`` public key class applicable
    for DNSSEC.

    *algorithm*, a ``str`` or ``int`` specifying the DNSKEY algorithm.

    *flags: DNSKEY flags field as an integer.

    *protocol*: DNSKEY protocol field as an integer.

    Raises ``ValueError`` if the specified key algorithm parameters are not
    unsupported, ``TypeError`` if the key type is unsupported,
    `UnsupportedAlgorithm` if the algorithm is unknown and
    `AlgorithmKeyMismatch` if the algorithm does not match the key type.

    Return DNSKEY ``Rdata``.
    """

    def encode_rsa_public_key(public_key: "rsa.RSAPublicKey") -> bytes:
        """Encode a public key per RFC 3110, section 2."""
        pn = public_key.public_numbers()
        _exp_len = math.ceil(int.bit_length(pn.e) / 8)
        exp = int.to_bytes(pn.e, length=_exp_len, byteorder="big")
        if _exp_len > 255:
            exp_header = b"\0" + struct.pack("!H", _exp_len)
        else:
            exp_header = struct.pack("!B", _exp_len)
        if pn.n.bit_length() < 512 or pn.n.bit_length() > 4096:
            raise ValueError("unsupported RSA key length")
        return exp_header + exp + pn.n.to_bytes((pn.n.bit_length() + 7) // 8, "big")

    def encode_dsa_public_key(public_key: "dsa.DSAPublicKey") -> bytes:
        """Encode a public key per RFC 2536, section 2."""
        pn = public_key.public_numbers()
        dsa_t = (public_key.key_size // 8 - 64) // 8
        if dsa_t > 8:
            raise ValueError("unsupported DSA key size")
        octets = 64 + dsa_t * 8
        res = struct.pack("!B", dsa_t)
        res += pn.parameter_numbers.q.to_bytes(20, "big")
        res += pn.parameter_numbers.p.to_bytes(octets, "big")
        res += pn.parameter_numbers.g.to_bytes(octets, "big")
        res += pn.y.to_bytes(octets, "big")
        return res

    def encode_ecdsa_public_key(public_key: "ec.EllipticCurvePublicKey") -> bytes:
        """Encode a public key per RFC 6605, section 4."""
        pn = public_key.public_numbers()
        if isinstance(public_key.curve, ec.SECP256R1):
            return pn.x.to_bytes(32, "big") + pn.y.to_bytes(32, "big")
        elif isinstance(public_key.curve, ec.SECP384R1):
            return pn.x.to_bytes(48, "big") + pn.y.to_bytes(48, "big")
        else:
            raise ValueError("unsupported ECDSA curve")

    the_algorithm = Algorithm.make(algorithm)

    _ensure_algorithm_key_combination(the_algorithm, public_key)

    if isinstance(public_key, rsa.RSAPublicKey):
        key_bytes = encode_rsa_public_key(public_key)
    elif isinstance(public_key, dsa.DSAPublicKey):
        key_bytes = encode_dsa_public_key(public_key)
    elif isinstance(public_key, ec.EllipticCurvePublicKey):
        key_bytes = encode_ecdsa_public_key(public_key)
    elif isinstance(public_key, ed25519.Ed25519PublicKey):
        key_bytes = public_key.public_bytes(
            encoding=serialization.Encoding.Raw, format=serialization.PublicFormat.Raw
        )
    elif isinstance(public_key, ed448.Ed448PublicKey):
        key_bytes = public_key.public_bytes(
            encoding=serialization.Encoding.Raw, format=serialization.PublicFormat.Raw
        )
    else:
        raise TypeError("unsupported key algorithm")

    return DNSKEY(
        rdclass=dns.rdataclass.IN,
        rdtype=dns.rdatatype.DNSKEY,
        flags=flags,
        protocol=protocol,
        algorithm=the_algorithm,
        key=key_bytes,
    )


def nsec3_hash(
    domain: Union[dns.name.Name, str],
    salt: Optional[Union[str, bytes]],
    iterations: int,
    algorithm: Union[int, str],
) -> str:
    """
    Calculate the NSEC3 hash, according to
    https://tools.ietf.org/html/rfc5155#section-5

    *domain*, a ``dns.name.Name`` or ``str``, the name to hash.

    *salt*, a ``str``, ``bytes``, or ``None``, the hash salt.  If a
    string, it is decoded as a hex string.

    *iterations*, an ``int``, the number of iterations.

    *algorithm*, a ``str`` or ``int``, the hash algorithm.
    The only defined algorithm is SHA1.

    Returns a ``str``, the encoded NSEC3 hash.
    """

    b32_conversion = str.maketrans(
        "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567", "0123456789ABCDEFGHIJKLMNOPQRSTUV"
    )

    try:
        if isinstance(algorithm, str):
            algorithm = NSEC3Hash[algorithm.upper()]
    except Exception:
        raise ValueError("Wrong hash algorithm (only SHA1 is supported)")

    if algorithm != NSEC3Hash.SHA1:
        raise ValueError("Wrong hash algorithm (only SHA1 is supported)")

    if salt is None:
        salt_encoded = b""
    elif isinstance(salt, str):
        if len(salt) % 2 == 0:
            salt_encoded = bytes.fromhex(salt)
        else:
            raise ValueError("Invalid salt length")
    else:
        salt_encoded = salt

    if not isinstance(domain, dns.name.Name):
        domain = dns.name.from_text(domain)
    domain_encoded = domain.canonicalize().to_wire()
    assert domain_encoded is not None

    digest = hashlib.sha1(domain_encoded + salt_encoded).digest()
    for _ in range(iterations):
        digest = hashlib.sha1(digest + salt_encoded).digest()

    output = base64.b32encode(digest).decode("utf-8")
    output = output.translate(b32_conversion)

    return output


def _need_pyca(*args, **kwargs):
    raise ImportError(
        "DNSSEC validation requires " + "python cryptography"
    )  # pragma: no cover


try:
    from cryptography.exceptions import InvalidSignature
    from cryptography.hazmat.backends import default_backend
    from cryptography.hazmat.primitives import hashes, serialization
    from cryptography.hazmat.primitives.asymmetric import padding
    from cryptography.hazmat.primitives.asymmetric import utils
    from cryptography.hazmat.primitives.asymmetric import dsa
    from cryptography.hazmat.primitives.asymmetric import ec
    from cryptography.hazmat.primitives.asymmetric import ed25519
    from cryptography.hazmat.primitives.asymmetric import ed448
    from cryptography.hazmat.primitives.asymmetric import rsa
except ImportError:  # pragma: no cover
    validate = _need_pyca
    validate_rrsig = _need_pyca
    sign = _need_pyca
    make_dnskey = _need_pyca
    _have_pyca = False
else:
    validate = _validate  # type: ignore
    validate_rrsig = _validate_rrsig  # type: ignore
    sign = _sign
    make_dnskey = _make_dnskey
    _have_pyca = True

### BEGIN generated Algorithm constants

RSAMD5 = Algorithm.RSAMD5
DH = Algorithm.DH
DSA = Algorithm.DSA
ECC = Algorithm.ECC
RSASHA1 = Algorithm.RSASHA1
DSANSEC3SHA1 = Algorithm.DSANSEC3SHA1
RSASHA1NSEC3SHA1 = Algorithm.RSASHA1NSEC3SHA1
RSASHA256 = Algorithm.RSASHA256
RSASHA512 = Algorithm.RSASHA512
ECCGOST = Algorithm.ECCGOST
ECDSAP256SHA256 = Algorithm.ECDSAP256SHA256
ECDSAP384SHA384 = Algorithm.ECDSAP384SHA384
ED25519 = Algorithm.ED25519
ED448 = Algorithm.ED448
INDIRECT = Algorithm.INDIRECT
PRIVATEDNS = Algorithm.PRIVATEDNS
PRIVATEOID = Algorithm.PRIVATEOID

### END generated Algorithm constants