summaryrefslogtreecommitdiff
path: root/docs/ref/contrib/gis/geoquerysets.txt
blob: dfc86c4efb12a5ad5e28f33abb24d00b52adaa45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
==========================
GIS QuerySet API Reference
==========================

.. currentmodule:: django.contrib.gis.db.models

.. _spatial-lookups:

Spatial Lookups
===============

The spatial lookups in this section are available for :class:`GeometryField`
and :class:`RasterField`.

For an introduction, see the :ref:`spatial lookups introduction
<spatial-lookups-intro>`.  For an overview of what lookups are
compatible with a particular spatial backend, refer to the
:ref:`spatial lookup compatibility table <spatial-lookup-compatibility>`.

Lookups with rasters
--------------------

All examples in the reference below are given for geometry fields and inputs,
but the lookups can be used the same way with rasters on both sides. Whenever
a lookup doesn't support raster input, the input is automatically
converted to a geometry where necessary using the `ST_Polygon
<https://postgis.net/docs/RT_ST_Polygon.html>`_ function. See also the
:ref:`introduction to raster lookups <spatial-lookup-raster>`.

The database operators used by the lookups can be divided into three categories:

- Native raster support ``N``: the operator accepts rasters natively on both
  sides of the lookup, and raster input can be mixed with geometry inputs.

- Bilateral raster support ``B``: the operator supports rasters only if both
  sides of the lookup receive raster inputs. Raster data is automatically
  converted to geometries for mixed lookups.

- Geometry conversion support ``C``. The lookup does not have native raster
  support, all raster data is automatically converted to geometries.

The examples below show the SQL equivalent for the lookups in the different
types of raster support. The same pattern applies to all spatial lookups.

==== ============================== =======================================================
Case Lookup                         SQL Equivalent
==== ============================== =======================================================
N, B ``rast__contains=rst``         ``ST_Contains(rast, rst)``
N, B ``rast__1__contains=(rst, 2)`` ``ST_Contains(rast, 1, rst, 2)``
B, C ``rast__contains=geom``        ``ST_Contains(ST_Polygon(rast), geom)``
B, C ``rast__1__contains=geom``     ``ST_Contains(ST_Polygon(rast, 1), geom)``
B, C ``poly__contains=rst``         ``ST_Contains(poly, ST_Polygon(rst))``
B, C ``poly__contains=(rst, 1)``    ``ST_Contains(poly, ST_Polygon(rst, 1))``
C    ``rast__crosses=rst``          ``ST_Crosses(ST_Polygon(rast), ST_Polygon(rst))``
C    ``rast__1__crosses=(rst, 2)``  ``ST_Crosses(ST_Polygon(rast, 1), ST_Polygon(rst, 2))``
C    ``rast__crosses=geom``         ``ST_Crosses(ST_Polygon(rast), geom)``
C    ``poly__crosses=rst``          ``ST_Crosses(poly, ST_Polygon(rst))``
==== ============================== =======================================================

Spatial lookups with rasters are only supported for PostGIS backends
(denominated as PGRaster in this section).

.. fieldlookup:: bbcontains

``bbcontains``
--------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Contain.html>`__,
MySQL, SpatiaLite, PGRaster (Native)

Tests if the geometry or raster field's bounding box completely contains the
lookup geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__bbcontains=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``poly ~ geom``
MySQL       ``MBRContains(poly, geom)``
SpatiaLite  ``MbrContains(poly, geom)``
==========  ==========================

.. fieldlookup:: bboverlaps

``bboverlaps``
--------------

*Availability*: `PostGIS <https://postgis.net/docs/geometry_overlaps.html>`__,
MySQL, SpatiaLite, PGRaster (Native)

Tests if the geometry field's bounding box overlaps the lookup geometry's
bounding box.

Example::

    Zipcode.objects.filter(poly__bboverlaps=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``poly && geom``
MySQL       ``MBROverlaps(poly, geom)``
SpatiaLite  ``MbrOverlaps(poly, geom)``
==========  ==========================

.. fieldlookup:: contained

``contained``
-------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Contained.html>`__,
MySQL, SpatiaLite, PGRaster (Native)

Tests if the geometry field's bounding box is completely contained by the
lookup geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__contained=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``poly @ geom``
MySQL       ``MBRWithin(poly, geom)``
SpatiaLite  ``MbrWithin(poly, geom)``
==========  ==========================

.. fieldlookup:: gis-contains

``contains``
------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Contains.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field spatially contains the lookup geometry.

Example::

    Zipcode.objects.filter(poly__contains=geom)

==========  ============================
Backend     SQL Equivalent
==========  ============================
PostGIS     ``ST_Contains(poly, geom)``
Oracle      ``SDO_CONTAINS(poly, geom)``
MySQL       ``MBRContains(poly, geom)``
SpatiaLite  ``Contains(poly, geom)``
==========  ============================

.. fieldlookup:: contains_properly

``contains_properly``
---------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_ContainsProperly.html>`__,
PGRaster (Bilateral)

Returns true if the lookup geometry intersects the interior of the
geometry field, but not the boundary (or exterior).

Example::

    Zipcode.objects.filter(poly__contains_properly=geom)

==========  ===================================
Backend     SQL Equivalent
==========  ===================================
PostGIS     ``ST_ContainsProperly(poly, geom)``
==========  ===================================

.. fieldlookup:: coveredby

``coveredby``
-------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_CoveredBy.html>`__,
Oracle, PGRaster (Bilateral)

Tests if no point in the geometry field is outside the lookup geometry.
[#fncovers]_

Example::

    Zipcode.objects.filter(poly__coveredby=geom)

==========  =============================
Backend     SQL Equivalent
==========  =============================
PostGIS     ``ST_CoveredBy(poly, geom)``
Oracle      ``SDO_COVEREDBY(poly, geom)``
==========  =============================

.. fieldlookup:: covers

``covers``
----------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Covers.html>`__,
Oracle, PGRaster (Bilateral)

Tests if no point in the lookup geometry is outside the geometry field.
[#fncovers]_

Example::

    Zipcode.objects.filter(poly__covers=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``ST_Covers(poly, geom)``
Oracle      ``SDO_COVERS(poly, geom)``
==========  ==========================

.. fieldlookup:: crosses

``crosses``
-----------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Crosses.html>`__,
SpatiaLite, PGRaster (Conversion)

Tests if the geometry field spatially crosses the lookup geometry.

Example::

    Zipcode.objects.filter(poly__crosses=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``ST_Crosses(poly, geom)``
SpatiaLite  ``Crosses(poly, geom)``
==========  ==========================

.. fieldlookup:: disjoint

``disjoint``
------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Disjoint.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field is spatially disjoint from the lookup geometry.

Example::

    Zipcode.objects.filter(poly__disjoint=geom)

==========  =================================================
Backend     SQL Equivalent
==========  =================================================
PostGIS     ``ST_Disjoint(poly, geom)``
Oracle      ``SDO_GEOM.RELATE(poly, 'DISJOINT', geom, 0.05)``
MySQL       ``MBRDisjoint(poly, geom)``
SpatiaLite  ``Disjoint(poly, geom)``
==========  =================================================

.. fieldlookup:: equals

``equals``
----------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Equals.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Conversion)

.. fieldlookup:: exact
.. fieldlookup:: same_as

``exact``, ``same_as``
----------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Same.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

.. fieldlookup:: intersects

``intersects``
--------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Intersects.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field spatially intersects the lookup geometry.

Example::

    Zipcode.objects.filter(poly__intersects=geom)

==========  =================================================
Backend     SQL Equivalent
==========  =================================================
PostGIS     ``ST_Intersects(poly, geom)``
Oracle      ``SDO_OVERLAPBDYINTERSECT(poly, geom)``
MySQL       ``MBRIntersects(poly, geom)``
SpatiaLite  ``Intersects(poly, geom)``
==========  =================================================

.. fieldlookup:: isvalid

``isvalid``
-----------

*Availability*: MySQL (≥ 5.7.5), `PostGIS
<https://postgis.net/docs/ST_IsValid.html>`__, Oracle, SpatiaLite

Tests if the geometry is valid.

Example::

    Zipcode.objects.filter(poly__isvalid=True)

==========================  ================================================================
Backend                     SQL Equivalent
==========================  ================================================================
MySQL, PostGIS, SpatiaLite  ``ST_IsValid(poly)``
Oracle                      ``SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(poly, 0.05) = 'TRUE'``
==========================  ================================================================

.. versionchanged:: 2.0

    MySQL support was added.

.. fieldlookup:: overlaps

``overlaps``
------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Overlaps.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

.. fieldlookup:: relate

``relate``
----------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Relate.html>`__,
Oracle, SpatiaLite, PGRaster (Conversion)

Tests if the geometry field is spatially related to the lookup geometry by
the values given in the given pattern.  This lookup requires a tuple parameter,
``(geom, pattern)``; the form of ``pattern`` will depend on the spatial backend:

PostGIS & SpatiaLite
~~~~~~~~~~~~~~~~~~~~
On these spatial backends the intersection pattern is a string comprising
nine characters, which  define intersections between  the interior, boundary,
and exterior of the geometry field and the lookup geometry.
The intersection pattern matrix may only use the following characters:
``1``, ``2``, ``T``, ``F``, or ``*``.  This lookup type allows users to "fine tune"
a specific geometric relationship consistent with the DE-9IM model. [#fnde9im]_

Geometry example::

    # A tuple lookup parameter is used to specify the geometry and
    # the intersection pattern (the pattern here is for 'contains').
    Zipcode.objects.filter(poly__relate=(geom, 'T*T***FF*'))

PostGIS SQL equivalent::

    SELECT ... WHERE ST_Relate(poly, geom, 'T*T***FF*')

SpatiaLite SQL equivalent::

    SELECT ... WHERE Relate(poly, geom, 'T*T***FF*')

Raster example::

    Zipcode.objects.filter(poly__relate=(rast, 1, 'T*T***FF*'))
    Zipcode.objects.filter(rast__2__relate=(rast, 1, 'T*T***FF*'))

PostGIS SQL equivalent::

    SELECT ... WHERE ST_Relate(poly, ST_Polygon(rast, 1), 'T*T***FF*')
    SELECT ... WHERE ST_Relate(ST_Polygon(rast, 2), ST_Polygon(rast, 1), 'T*T***FF*')

Oracle
~~~~~~

Here the relation pattern is comprised of at least one of the nine relation
strings: ``TOUCH``, ``OVERLAPBDYDISJOINT``, ``OVERLAPBDYINTERSECT``,
``EQUAL``, ``INSIDE``, ``COVEREDBY``, ``CONTAINS``, ``COVERS``, ``ON``, and
``ANYINTERACT``.   Multiple strings may be combined with the logical Boolean
operator OR, for example, ``'inside+touch'``. [#fnsdorelate]_  The relation
strings are case-insensitive.

Example::

    Zipcode.objects.filter(poly__relate=(geom, 'anyinteract'))

Oracle SQL equivalent::

    SELECT ... WHERE SDO_RELATE(poly, geom, 'anyinteract')

.. fieldlookup:: touches

``touches``
-----------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Touches.html>`__,
Oracle, MySQL, SpatiaLite

Tests if the geometry field spatially touches the lookup geometry.

Example::

    Zipcode.objects.filter(poly__touches=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``ST_Touches(poly, geom)``
MySQL       ``MBRTouches(poly, geom)``
Oracle      ``SDO_TOUCH(poly, geom)``
SpatiaLite  ``Touches(poly, geom)``
==========  ==========================

.. fieldlookup:: within

``within``
----------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Within.html>`__,
Oracle, MySQL, SpatiaLite, PGRaster (Bilateral)

Tests if the geometry field is spatially within the lookup geometry.

Example::

    Zipcode.objects.filter(poly__within=geom)

==========  ==========================
Backend     SQL Equivalent
==========  ==========================
PostGIS     ``ST_Within(poly, geom)``
MySQL       ``MBRWithin(poly, geom)``
Oracle      ``SDO_INSIDE(poly, geom)``
SpatiaLite  ``Within(poly, geom)``
==========  ==========================

.. fieldlookup:: left

``left``
--------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Left.html>`__,
PGRaster (Conversion)

Tests if the geometry field's bounding box is strictly to the left of the
lookup geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__left=geom)

PostGIS equivalent::

    SELECT ... WHERE poly << geom

.. fieldlookup:: right

``right``
---------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Right.html>`__,
PGRaster (Conversion)

Tests if the geometry field's bounding box is strictly to the right of the
lookup geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__right=geom)

PostGIS equivalent::

    SELECT ... WHERE poly >> geom

.. fieldlookup:: overlaps_left

``overlaps_left``
-----------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Overleft.html>`__,
PGRaster (Bilateral)

Tests if the geometry field's bounding box overlaps or is to the left of the lookup
geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__overlaps_left=geom)

PostGIS equivalent::

    SELECT ... WHERE poly &< geom


.. fieldlookup:: overlaps_right

``overlaps_right``
------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Overright.html>`__,
PGRaster (Bilateral)

Tests if the geometry field's bounding box overlaps or is to the right of the lookup
geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__overlaps_right=geom)

PostGIS equivalent::

    SELECT ... WHERE poly &> geom

.. fieldlookup:: overlaps_above

``overlaps_above``
------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Overabove.html>`__,
PGRaster (Conversion)

Tests if the geometry field's bounding box overlaps or is above the lookup
geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__overlaps_above=geom)

PostGIS equivalent::

    SELECT ... WHERE poly |&> geom

.. fieldlookup:: overlaps_below

``overlaps_below``
------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Overbelow.html>`__,
PGRaster (Conversion)

Tests if the geometry field's bounding box overlaps or is below the lookup
geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__overlaps_below=geom)

PostGIS equivalent::

    SELECT ... WHERE poly &<| geom

.. fieldlookup:: strictly_above

``strictly_above``
------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Above.html>`__,
PGRaster (Conversion)

Tests if the geometry field's bounding box is strictly above the lookup
geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__strictly_above=geom)

PostGIS equivalent::

    SELECT ... WHERE poly |>> geom

.. fieldlookup:: strictly_below

``strictly_below``
------------------

*Availability*: `PostGIS <https://postgis.net/docs/ST_Geometry_Below.html>`__,
PGRaster (Conversion)

Tests if the geometry field's bounding box is strictly below the lookup
geometry's bounding box.

Example::

    Zipcode.objects.filter(poly__strictly_below=geom)

PostGIS equivalent::

    SELECT ... WHERE poly <<| geom


.. _distance-lookups:

Distance Lookups
================

*Availability*: PostGIS, Oracle, MySQL, SpatiaLite, PGRaster (Native)

For an overview on performing distance queries, please refer to
the :ref:`distance queries introduction <distance-queries>`.

Distance lookups take the following form::

    <field>__<distance lookup>=(<geometry/raster>, <distance value>[, 'spheroid'])
    <field>__<distance lookup>=(<raster>, <band_index>, <distance value>[, 'spheroid'])
    <field>__<band_index>__<distance lookup>=(<raster>, <band_index>, <distance value>[, 'spheroid'])

The value passed into a distance lookup is a tuple; the first two
values are mandatory, and are the geometry to calculate distances to,
and a distance value (either a number in units of the field, a
:class:`~django.contrib.gis.measure.Distance` object, or a `query expression
<ref/models/expressions>`). To pass a band index to the lookup, use a 3-tuple
where the second entry is the band index.

On every distance lookup except :lookup:`dwithin`, an optional element,
``'spheroid'``, may be included to use the more accurate spheroid distance
calculation functions on fields with a geodetic coordinate system.

On PostgreSQL, the ``'spheroid'`` option uses `ST_DistanceSpheroid
<https://postgis.net/docs/ST_Distance_Spheroid.html>`__ instead of
`ST_DistanceSphere <https://postgis.net/docs/ST_DistanceSphere.html>`__. The
simpler `ST_Distance <https://postgis.net/docs/ST_Distance.html>`__ function is
used with projected coordinate systems. Rasters are converted to geometries for
spheroid based lookups.

.. versionadded:: 2.0

    MySQL support was added.

.. fieldlookup:: distance_gt

``distance_gt``
---------------

Returns models where the distance to the geometry field from the lookup
geometry is greater than the given distance value.

Example::

    Zipcode.objects.filter(poly__distance_gt=(geom, D(m=5)))

==========  ==================================================
Backend     SQL Equivalent
==========  ==================================================
PostGIS     ``ST_Distance/ST_Distance_Sphere(poly, geom) > 5``
Oracle      ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) > 5``
SpatiaLite  ``Distance(poly, geom) > 5``
==========  ==================================================

.. fieldlookup:: distance_gte

``distance_gte``
----------------

Returns models where the distance to the geometry field from the lookup
geometry is greater than or equal to the given distance value.

Example::

    Zipcode.objects.filter(poly__distance_gte=(geom, D(m=5)))

==========  ===================================================
Backend     SQL Equivalent
==========  ===================================================
PostGIS     ``ST_Distance/ST_Distance_Sphere(poly, geom) >= 5``
Oracle      ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) >= 5``
SpatiaLite  ``Distance(poly, geom) >= 5``
==========  ===================================================

.. fieldlookup:: distance_lt

``distance_lt``
---------------

Returns models where the distance to the geometry field from the lookup
geometry is less than the given distance value.

Example::

    Zipcode.objects.filter(poly__distance_lt=(geom, D(m=5)))

==========  ==================================================
Backend     SQL Equivalent
==========  ==================================================
PostGIS     ``ST_Distance/ST_Distance_Sphere(poly, geom) < 5``
Oracle      ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) < 5``
SpatiaLite  ``Distance(poly, geom) < 5``
==========  ==================================================

.. fieldlookup:: distance_lte

``distance_lte``
----------------

Returns models where the distance to the geometry field from the lookup
geometry is less than or equal to the given distance value.

Example::

    Zipcode.objects.filter(poly__distance_lte=(geom, D(m=5)))

==========  ===================================================
Backend     SQL Equivalent
==========  ===================================================
PostGIS     ``ST_Distance/ST_Distance_Sphere(poly, geom) <= 5``
Oracle      ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) <= 5``
SpatiaLite  ``Distance(poly, geom) <= 5``
==========  ===================================================

.. fieldlookup:: dwithin

``dwithin``
-----------

Returns models where the distance to the geometry field from the lookup
geometry are within the given distance from one another. Note that you can only
provide :class:`~django.contrib.gis.measure.Distance` objects if the targeted
geometries are in a projected system. For geographic geometries, you should use
units of the geometry field (e.g. degrees for ``WGS84``) .

Example::

    Zipcode.objects.filter(poly__dwithin=(geom, D(m=5)))

==========  ======================================
Backend     SQL Equivalent
==========  ======================================
PostGIS     ``ST_DWithin(poly, geom, 5)``
Oracle      ``SDO_WITHIN_DISTANCE(poly, geom, 5)``
SpatiaLite  ``PtDistWithin(poly, geom, 5)``
==========  ======================================

Aggregate Functions
-------------------

Django provides some GIS-specific aggregate functions. For details on how to
use these aggregate functions, see :doc:`the topic guide on aggregation
</topics/db/aggregation>`.

=====================  =====================================================
Keyword Argument       Description
=====================  =====================================================
``tolerance``          This keyword is for Oracle only.  It is for the
                       tolerance value used by the ``SDOAGGRTYPE``
                       procedure; the  `Oracle documentation`__ has more
                       details.
=====================  =====================================================

__ https://docs.oracle.com/database/121/SPATL/GUID-3BD00273-E74F-4830-9444-A3BB15AA0AC4.htm#SPATL466

Example::

    >>> from django.contrib.gis.db.models import Extent, Union
    >>> WorldBorder.objects.aggregate(Extent('mpoly'), Union('mpoly'))

``Collect``
~~~~~~~~~~~

.. class:: Collect(geo_field)

*Availability*: `PostGIS <https://postgis.net/docs/ST_Collect.html>`__,
SpatiaLite

Returns a ``GEOMETRYCOLLECTION`` or a ``MULTI`` geometry object from the geometry
column. This is analogous to a simplified version of the :class:`Union`
aggregate, except it can be several orders of magnitude faster than performing
a union because it simply rolls up geometries into a collection or multi object,
not caring about dissolving boundaries.

``Extent``
~~~~~~~~~~

.. class:: Extent(geo_field)

*Availability*: `PostGIS <https://postgis.net/docs/ST_Extent.html>`__,
Oracle, SpatiaLite

Returns the extent of all ``geo_field`` in the ``QuerySet`` as a four-tuple,
comprising the lower left coordinate and the upper right coordinate.

Example::

    >>> qs = City.objects.filter(name__in=('Houston', 'Dallas')).aggregate(Extent('poly'))
    >>> print(qs['poly__extent'])
    (-96.8016128540039, 29.7633724212646, -95.3631439208984, 32.782058715820)

``Extent3D``
~~~~~~~~~~~~

.. class:: Extent3D(geo_field)

*Availability*: `PostGIS <https://postgis.net/docs/ST_3DExtent.html>`__

Returns the 3D extent of all ``geo_field`` in the ``QuerySet`` as a six-tuple,
comprising the lower left coordinate and upper right coordinate (each with x, y,
and z coordinates).

Example::

    >>> qs = City.objects.filter(name__in=('Houston', 'Dallas')).aggregate(Extent3D('poly'))
    >>> print(qs['poly__extent3d'])
    (-96.8016128540039, 29.7633724212646, 0, -95.3631439208984, 32.782058715820, 0)

``MakeLine``
~~~~~~~~~~~~

.. class:: MakeLine(geo_field)

*Availability*: `PostGIS <https://postgis.net/docs/ST_MakeLine.html>`__,
SpatiaLite

Returns a ``LineString`` constructed from the point field geometries in the
``QuerySet``. Currently, ordering the queryset has no effect.

Example::

    >>> qs = City.objects.filter(name__in=('Houston', 'Dallas')).aggregate(MakeLine('poly'))
    >>> print(qs['poly__makeline'])
    LINESTRING (-95.3631510000000020 29.7633739999999989, -96.8016109999999941 32.7820570000000018)

``Union``
~~~~~~~~~

.. class:: Union(geo_field)

*Availability*: `PostGIS <https://postgis.net/docs/ST_Union.html>`__,
Oracle, SpatiaLite

This method returns a :class:`~django.contrib.gis.geos.GEOSGeometry` object
comprising the union of every geometry in the queryset. Please note that use of
``Union`` is processor intensive and may take a significant amount of time on
large querysets.

.. note::

    If the computation time for using this method is too expensive, consider
    using :class:`Collect` instead.

Example::

    >>> u = Zipcode.objects.aggregate(Union(poly))  # This may take a long time.
    >>> u = Zipcode.objects.filter(poly__within=bbox).aggregate(Union(poly))  # A more sensible approach.

.. rubric:: Footnotes
.. [#fnde9im] *See* `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, at Ch. 2.1.13.2, p. 2-13 (The Dimensionally Extended Nine-Intersection Model).
.. [#fnsdorelate] *See* `SDO_RELATE documentation <https://docs.oracle.com/database/121/SPATL/sdo_relate.htm#SPATL1039>`_, from the Oracle Spatial and Graph Developer's Guide.
.. [#fncovers] For an explanation of this routine, read `Quirks of the "Contains" Spatial Predicate <https://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html>`_ by Martin Davis (a PostGIS developer).