summaryrefslogtreecommitdiff
path: root/src/backend/storage/buffer/bufmgr.c
blob: 3cb51204dcb6cf0a1f630c0e1098179121232384 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
/*-------------------------------------------------------------------------
 *
 * bufmgr.c
 *	  buffer manager interface routines
 *
 * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/storage/buffer/bufmgr.c
 *
 *-------------------------------------------------------------------------
 */
/*
 * Principal entry points:
 *
 * ReadBuffer() -- find or create a buffer holding the requested page,
 *		and pin it so that no one can destroy it while this process
 *		is using it.
 *
 * ReleaseBuffer() -- unpin a buffer
 *
 * MarkBufferDirty() -- mark a pinned buffer's contents as "dirty".
 *		The disk write is delayed until buffer replacement or checkpoint.
 *
 * See also these files:
 *		freelist.c -- chooses victim for buffer replacement
 *		buf_table.c -- manages the buffer lookup table
 */
#include "postgres.h"

#include <sys/file.h>
#include <unistd.h>

#include "access/xlog.h"
#include "catalog/catalog.h"
#include "catalog/storage.h"
#include "executor/instrument.h"
#include "lib/binaryheap.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "pgstat.h"
#include "postmaster/bgwriter.h"
#include "storage/buf_internals.h"
#include "storage/bufmgr.h"
#include "storage/ipc.h"
#include "storage/proc.h"
#include "storage/smgr.h"
#include "storage/standby.h"
#include "utils/rel.h"
#include "utils/resowner_private.h"
#include "utils/timestamp.h"


/* Note: these two macros only work on shared buffers, not local ones! */
#define BufHdrGetBlock(bufHdr)	((Block) (BufferBlocks + ((Size) (bufHdr)->buf_id) * BLCKSZ))
#define BufferGetLSN(bufHdr)	(PageGetLSN(BufHdrGetBlock(bufHdr)))

/* Note: this macro only works on local buffers, not shared ones! */
#define LocalBufHdrGetBlock(bufHdr) \
	LocalBufferBlockPointers[-((bufHdr)->buf_id + 2)]

/* Bits in SyncOneBuffer's return value */
#define BUF_WRITTEN				0x01
#define BUF_REUSABLE			0x02

#define DROP_RELS_BSEARCH_THRESHOLD		20

typedef struct PrivateRefCountEntry
{
	Buffer		buffer;
	int32		refcount;
} PrivateRefCountEntry;

/* 64 bytes, about the size of a cache line on common systems */
#define REFCOUNT_ARRAY_ENTRIES 8

/*
 * Status of buffers to checkpoint for a particular tablespace, used
 * internally in BufferSync.
 */
typedef struct CkptTsStatus
{
	/* oid of the tablespace */
	Oid			tsId;

	/*
	 * Checkpoint progress for this tablespace. To make progress comparable
	 * between tablespaces the progress is, for each tablespace, measured as a
	 * number between 0 and the total number of to-be-checkpointed pages. Each
	 * page checkpointed in this tablespace increments this space's progress
	 * by progress_slice.
	 */
	float8		progress;
	float8		progress_slice;

	/* number of to-be checkpointed pages in this tablespace */
	int			num_to_scan;
	/* already processed pages in this tablespace */
	int			num_scanned;

	/* current offset in CkptBufferIds for this tablespace */
	int			index;
} CkptTsStatus;

/* GUC variables */
bool		zero_damaged_pages = false;
int			bgwriter_lru_maxpages = 100;
double		bgwriter_lru_multiplier = 2.0;
bool		track_io_timing = false;
int			effective_io_concurrency = 0;

/*
 * GUC variables about triggering kernel writeback for buffers written; OS
 * dependent defaults are set via the GUC mechanism.
 */
int			checkpoint_flush_after = 0;
int			bgwriter_flush_after = 0;
int			backend_flush_after = 0;

/*
 * How many buffers PrefetchBuffer callers should try to stay ahead of their
 * ReadBuffer calls by.  This is maintained by the assign hook for
 * effective_io_concurrency.  Zero means "never prefetch".  This value is
 * only used for buffers not belonging to tablespaces that have their
 * effective_io_concurrency parameter set.
 */
int			target_prefetch_pages = 0;

/* local state for StartBufferIO and related functions */
static BufferDesc *InProgressBuf = NULL;
static bool IsForInput;

/* local state for LockBufferForCleanup */
static BufferDesc *PinCountWaitBuf = NULL;

/*
 * Backend-Private refcount management:
 *
 * Each buffer also has a private refcount that keeps track of the number of
 * times the buffer is pinned in the current process.  This is so that the
 * shared refcount needs to be modified only once if a buffer is pinned more
 * than once by an individual backend.  It's also used to check that no buffers
 * are still pinned at the end of transactions and when exiting.
 *
 *
 * To avoid - as we used to - requiring an array with NBuffers entries to keep
 * track of local buffers, we use a small sequentially searched array
 * (PrivateRefCountArray) and an overflow hash table (PrivateRefCountHash) to
 * keep track of backend local pins.
 *
 * Until no more than REFCOUNT_ARRAY_ENTRIES buffers are pinned at once, all
 * refcounts are kept track of in the array; after that, new array entries
 * displace old ones into the hash table. That way a frequently used entry
 * can't get "stuck" in the hashtable while infrequent ones clog the array.
 *
 * Note that in most scenarios the number of pinned buffers will not exceed
 * REFCOUNT_ARRAY_ENTRIES.
 *
 *
 * To enter a buffer into the refcount tracking mechanism first reserve a free
 * entry using ReservePrivateRefCountEntry() and then later, if necessary,
 * fill it with NewPrivateRefCountEntry(). That split lets us avoid doing
 * memory allocations in NewPrivateRefCountEntry() which can be important
 * because in some scenarios it's called with a spinlock held...
 */
static struct PrivateRefCountEntry PrivateRefCountArray[REFCOUNT_ARRAY_ENTRIES];
static HTAB *PrivateRefCountHash = NULL;
static int32 PrivateRefCountOverflowed = 0;
static uint32 PrivateRefCountClock = 0;
static PrivateRefCountEntry *ReservedRefCountEntry = NULL;

static void ReservePrivateRefCountEntry(void);
static PrivateRefCountEntry *NewPrivateRefCountEntry(Buffer buffer);
static PrivateRefCountEntry *GetPrivateRefCountEntry(Buffer buffer, bool do_move);
static inline int32 GetPrivateRefCount(Buffer buffer);
static void ForgetPrivateRefCountEntry(PrivateRefCountEntry *ref);

/*
 * Ensure that the PrivateRefCountArray has sufficient space to store one more
 * entry. This has to be called before using NewPrivateRefCountEntry() to fill
 * a new entry - but it's perfectly fine to not use a reserved entry.
 */
static void
ReservePrivateRefCountEntry(void)
{
	/* Already reserved (or freed), nothing to do */
	if (ReservedRefCountEntry != NULL)
		return;

	/*
	 * First search for a free entry the array, that'll be sufficient in the
	 * majority of cases.
	 */
	{
		int			i;

		for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
		{
			PrivateRefCountEntry *res;

			res = &PrivateRefCountArray[i];

			if (res->buffer == InvalidBuffer)
			{
				ReservedRefCountEntry = res;
				return;
			}
		}
	}

	/*
	 * No luck. All array entries are full. Move one array entry into the hash
	 * table.
	 */
	{
		/*
		 * Move entry from the current clock position in the array into the
		 * hashtable. Use that slot.
		 */
		PrivateRefCountEntry *hashent;
		bool		found;

		/* select victim slot */
		ReservedRefCountEntry =
			&PrivateRefCountArray[PrivateRefCountClock++ % REFCOUNT_ARRAY_ENTRIES];

		/* Better be used, otherwise we shouldn't get here. */
		Assert(ReservedRefCountEntry->buffer != InvalidBuffer);

		/* enter victim array entry into hashtable */
		hashent = hash_search(PrivateRefCountHash,
							  (void *) &(ReservedRefCountEntry->buffer),
							  HASH_ENTER,
							  &found);
		Assert(!found);
		hashent->refcount = ReservedRefCountEntry->refcount;

		/* clear the now free array slot */
		ReservedRefCountEntry->buffer = InvalidBuffer;
		ReservedRefCountEntry->refcount = 0;

		PrivateRefCountOverflowed++;
	}
}

/*
 * Fill a previously reserved refcount entry.
 */
static PrivateRefCountEntry *
NewPrivateRefCountEntry(Buffer buffer)
{
	PrivateRefCountEntry *res;

	/* only allowed to be called when a reservation has been made */
	Assert(ReservedRefCountEntry != NULL);

	/* use up the reserved entry */
	res = ReservedRefCountEntry;
	ReservedRefCountEntry = NULL;

	/* and fill it */
	res->buffer = buffer;
	res->refcount = 0;

	return res;
}

/*
 * Return the PrivateRefCount entry for the passed buffer.
 *
 * Returns NULL if a buffer doesn't have a refcount entry. Otherwise, if
 * do_move is true, and the entry resides in the hashtable the entry is
 * optimized for frequent access by moving it to the array.
 */
static PrivateRefCountEntry *
GetPrivateRefCountEntry(Buffer buffer, bool do_move)
{
	PrivateRefCountEntry *res;
	int			i;

	Assert(BufferIsValid(buffer));
	Assert(!BufferIsLocal(buffer));

	/*
	 * First search for references in the array, that'll be sufficient in the
	 * majority of cases.
	 */
	for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
	{
		res = &PrivateRefCountArray[i];

		if (res->buffer == buffer)
			return res;
	}

	/*
	 * By here we know that the buffer, if already pinned, isn't residing in
	 * the array.
	 *
	 * Only look up the buffer in the hashtable if we've previously overflowed
	 * into it.
	 */
	if (PrivateRefCountOverflowed == 0)
		return NULL;

	res = hash_search(PrivateRefCountHash,
					  (void *) &buffer,
					  HASH_FIND,
					  NULL);

	if (res == NULL)
		return NULL;
	else if (!do_move)
	{
		/* caller doesn't want us to move the hash entry into the array */
		return res;
	}
	else
	{
		/* move buffer from hashtable into the free array slot */
		bool		found;
		PrivateRefCountEntry *free;

		/* Ensure there's a free array slot */
		ReservePrivateRefCountEntry();

		/* Use up the reserved slot */
		Assert(ReservedRefCountEntry != NULL);
		free = ReservedRefCountEntry;
		ReservedRefCountEntry = NULL;
		Assert(free->buffer == InvalidBuffer);

		/* and fill it */
		free->buffer = buffer;
		free->refcount = res->refcount;

		/* delete from hashtable */
		hash_search(PrivateRefCountHash,
					(void *) &buffer,
					HASH_REMOVE,
					&found);
		Assert(found);
		Assert(PrivateRefCountOverflowed > 0);
		PrivateRefCountOverflowed--;

		return free;
	}
}

/*
 * Returns how many times the passed buffer is pinned by this backend.
 *
 * Only works for shared memory buffers!
 */
static inline int32
GetPrivateRefCount(Buffer buffer)
{
	PrivateRefCountEntry *ref;

	Assert(BufferIsValid(buffer));
	Assert(!BufferIsLocal(buffer));

	/*
	 * Not moving the entry - that's ok for the current users, but we might
	 * want to change this one day.
	 */
	ref = GetPrivateRefCountEntry(buffer, false);

	if (ref == NULL)
		return 0;
	return ref->refcount;
}

/*
 * Release resources used to track the reference count of a buffer which we no
 * longer have pinned and don't want to pin again immediately.
 */
static void
ForgetPrivateRefCountEntry(PrivateRefCountEntry *ref)
{
	Assert(ref->refcount == 0);

	if (ref >= &PrivateRefCountArray[0] &&
		ref < &PrivateRefCountArray[REFCOUNT_ARRAY_ENTRIES])
	{
		ref->buffer = InvalidBuffer;

		/*
		 * Mark the just used entry as reserved - in many scenarios that
		 * allows us to avoid ever having to search the array/hash for free
		 * entries.
		 */
		ReservedRefCountEntry = ref;
	}
	else
	{
		bool		found;
		Buffer		buffer = ref->buffer;

		hash_search(PrivateRefCountHash,
					(void *) &buffer,
					HASH_REMOVE,
					&found);
		Assert(found);
		Assert(PrivateRefCountOverflowed > 0);
		PrivateRefCountOverflowed--;
	}
}

/*
 * BufferIsPinned
 *		True iff the buffer is pinned (also checks for valid buffer number).
 *
 *		NOTE: what we check here is that *this* backend holds a pin on
 *		the buffer.  We do not care whether some other backend does.
 */
#define BufferIsPinned(bufnum) \
( \
	!BufferIsValid(bufnum) ? \
		false \
	: \
		BufferIsLocal(bufnum) ? \
			(LocalRefCount[-(bufnum) - 1] > 0) \
		: \
	(GetPrivateRefCount(bufnum) > 0) \
)


static Buffer ReadBuffer_common(SMgrRelation reln, char relpersistence,
				  ForkNumber forkNum, BlockNumber blockNum,
				  ReadBufferMode mode, BufferAccessStrategy strategy,
				  bool *hit);
static bool PinBuffer(BufferDesc *buf, BufferAccessStrategy strategy);
static void PinBuffer_Locked(BufferDesc *buf);
static void UnpinBuffer(BufferDesc *buf, bool fixOwner);
static void BufferSync(int flags);
static uint32 WaitBufHdrUnlocked(BufferDesc *buf);
static int	SyncOneBuffer(int buf_id, bool skip_recently_used, WritebackContext *flush_context);
static void WaitIO(BufferDesc *buf);
static bool StartBufferIO(BufferDesc *buf, bool forInput);
static void TerminateBufferIO(BufferDesc *buf, bool clear_dirty,
				  uint32 set_flag_bits);
static void shared_buffer_write_error_callback(void *arg);
static void local_buffer_write_error_callback(void *arg);
static BufferDesc *BufferAlloc(SMgrRelation smgr,
			char relpersistence,
			ForkNumber forkNum,
			BlockNumber blockNum,
			BufferAccessStrategy strategy,
			bool *foundPtr);
static void FlushBuffer(BufferDesc *buf, SMgrRelation reln);
static void AtProcExit_Buffers(int code, Datum arg);
static void CheckForBufferLeaks(void);
static int	rnode_comparator(const void *p1, const void *p2);
static int	buffertag_comparator(const void *p1, const void *p2);
static int	ckpt_buforder_comparator(const void *pa, const void *pb);
static int	ts_ckpt_progress_comparator(Datum a, Datum b, void *arg);


/*
 * ComputeIoConcurrency -- get the number of pages to prefetch for a given
 *		number of spindles.
 */
bool
ComputeIoConcurrency(int io_concurrency, double *target)
{
	double		new_prefetch_pages = 0.0;
	int			i;

	/*
	 * Make sure the io_concurrency value is within valid range; it may have
	 * been forced with a manual pg_tablespace update.
	 */
	io_concurrency = Min(Max(io_concurrency, 0), MAX_IO_CONCURRENCY);

	/*----------
	 * The user-visible GUC parameter is the number of drives (spindles),
	 * which we need to translate to a number-of-pages-to-prefetch target.
	 * The target value is stashed in *extra and then assigned to the actual
	 * variable by assign_effective_io_concurrency.
	 *
	 * The expected number of prefetch pages needed to keep N drives busy is:
	 *
	 * drives |   I/O requests
	 * -------+----------------
	 *		1 |   1
	 *		2 |   2/1 + 2/2 = 3
	 *		3 |   3/1 + 3/2 + 3/3 = 5 1/2
	 *		4 |   4/1 + 4/2 + 4/3 + 4/4 = 8 1/3
	 *		n |   n * H(n)
	 *
	 * This is called the "coupon collector problem" and H(n) is called the
	 * harmonic series.  This could be approximated by n * ln(n), but for
	 * reasonable numbers of drives we might as well just compute the series.
	 *
	 * Alternatively we could set the target to the number of pages necessary
	 * so that the expected number of active spindles is some arbitrary
	 * percentage of the total.  This sounds the same but is actually slightly
	 * different.  The result ends up being ln(1-P)/ln((n-1)/n) where P is
	 * that desired fraction.
	 *
	 * Experimental results show that both of these formulas aren't aggressive
	 * enough, but we don't really have any better proposals.
	 *
	 * Note that if io_concurrency = 0 (disabled), we must set target = 0.
	 *----------
	 */

	for (i = 1; i <= io_concurrency; i++)
		new_prefetch_pages += (double) io_concurrency / (double) i;

	*target = new_prefetch_pages;

	/* This range check shouldn't fail, but let's be paranoid */
	return (new_prefetch_pages >= 0.0 && new_prefetch_pages < (double) INT_MAX);
}

/*
 * PrefetchBuffer -- initiate asynchronous read of a block of a relation
 *
 * This is named by analogy to ReadBuffer but doesn't actually allocate a
 * buffer.  Instead it tries to ensure that a future ReadBuffer for the given
 * block will not be delayed by the I/O.  Prefetching is optional.
 * No-op if prefetching isn't compiled in.
 */
void
PrefetchBuffer(Relation reln, ForkNumber forkNum, BlockNumber blockNum)
{
#ifdef USE_PREFETCH
	Assert(RelationIsValid(reln));
	Assert(BlockNumberIsValid(blockNum));

	/* Open it at the smgr level if not already done */
	RelationOpenSmgr(reln);

	if (RelationUsesLocalBuffers(reln))
	{
		/* see comments in ReadBufferExtended */
		if (RELATION_IS_OTHER_TEMP(reln))
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				errmsg("cannot access temporary tables of other sessions")));

		/* pass it off to localbuf.c */
		LocalPrefetchBuffer(reln->rd_smgr, forkNum, blockNum);
	}
	else
	{
		BufferTag	newTag;		/* identity of requested block */
		uint32		newHash;	/* hash value for newTag */
		LWLock	   *newPartitionLock;	/* buffer partition lock for it */
		int			buf_id;

		/* create a tag so we can lookup the buffer */
		INIT_BUFFERTAG(newTag, reln->rd_smgr->smgr_rnode.node,
					   forkNum, blockNum);

		/* determine its hash code and partition lock ID */
		newHash = BufTableHashCode(&newTag);
		newPartitionLock = BufMappingPartitionLock(newHash);

		/* see if the block is in the buffer pool already */
		LWLockAcquire(newPartitionLock, LW_SHARED);
		buf_id = BufTableLookup(&newTag, newHash);
		LWLockRelease(newPartitionLock);

		/* If not in buffers, initiate prefetch */
		if (buf_id < 0)
			smgrprefetch(reln->rd_smgr, forkNum, blockNum);

		/*
		 * If the block *is* in buffers, we do nothing.  This is not really
		 * ideal: the block might be just about to be evicted, which would be
		 * stupid since we know we are going to need it soon.  But the only
		 * easy answer is to bump the usage_count, which does not seem like a
		 * great solution: when the caller does ultimately touch the block,
		 * usage_count would get bumped again, resulting in too much
		 * favoritism for blocks that are involved in a prefetch sequence. A
		 * real fix would involve some additional per-buffer state, and it's
		 * not clear that there's enough of a problem to justify that.
		 */
	}
#endif   /* USE_PREFETCH */
}


/*
 * ReadBuffer -- a shorthand for ReadBufferExtended, for reading from main
 *		fork with RBM_NORMAL mode and default strategy.
 */
Buffer
ReadBuffer(Relation reln, BlockNumber blockNum)
{
	return ReadBufferExtended(reln, MAIN_FORKNUM, blockNum, RBM_NORMAL, NULL);
}

/*
 * ReadBufferExtended -- returns a buffer containing the requested
 *		block of the requested relation.  If the blknum
 *		requested is P_NEW, extend the relation file and
 *		allocate a new block.  (Caller is responsible for
 *		ensuring that only one backend tries to extend a
 *		relation at the same time!)
 *
 * Returns: the buffer number for the buffer containing
 *		the block read.  The returned buffer has been pinned.
 *		Does not return on error --- elog's instead.
 *
 * Assume when this function is called, that reln has been opened already.
 *
 * In RBM_NORMAL mode, the page is read from disk, and the page header is
 * validated.  An error is thrown if the page header is not valid.  (But
 * note that an all-zero page is considered "valid"; see PageIsVerified().)
 *
 * RBM_ZERO_ON_ERROR is like the normal mode, but if the page header is not
 * valid, the page is zeroed instead of throwing an error. This is intended
 * for non-critical data, where the caller is prepared to repair errors.
 *
 * In RBM_ZERO_AND_LOCK mode, if the page isn't in buffer cache already, it's
 * filled with zeros instead of reading it from disk.  Useful when the caller
 * is going to fill the page from scratch, since this saves I/O and avoids
 * unnecessary failure if the page-on-disk has corrupt page headers.
 * The page is returned locked to ensure that the caller has a chance to
 * initialize the page before it's made visible to others.
 * Caution: do not use this mode to read a page that is beyond the relation's
 * current physical EOF; that is likely to cause problems in md.c when
 * the page is modified and written out. P_NEW is OK, though.
 *
 * RBM_ZERO_AND_CLEANUP_LOCK is the same as RBM_ZERO_AND_LOCK, but acquires
 * a cleanup-strength lock on the page.
 *
 * RBM_NORMAL_NO_LOG mode is treated the same as RBM_NORMAL here.
 *
 * If strategy is not NULL, a nondefault buffer access strategy is used.
 * See buffer/README for details.
 */
Buffer
ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum,
				   ReadBufferMode mode, BufferAccessStrategy strategy)
{
	bool		hit;
	Buffer		buf;

	/* Open it at the smgr level if not already done */
	RelationOpenSmgr(reln);

	/*
	 * Reject attempts to read non-local temporary relations; we would be
	 * likely to get wrong data since we have no visibility into the owning
	 * session's local buffers.
	 */
	if (RELATION_IS_OTHER_TEMP(reln))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot access temporary tables of other sessions")));

	/*
	 * Read the buffer, and update pgstat counters to reflect a cache hit or
	 * miss.
	 */
	pgstat_count_buffer_read(reln);
	buf = ReadBuffer_common(reln->rd_smgr, reln->rd_rel->relpersistence,
							forkNum, blockNum, mode, strategy, &hit);
	if (hit)
		pgstat_count_buffer_hit(reln);
	return buf;
}


/*
 * ReadBufferWithoutRelcache -- like ReadBufferExtended, but doesn't require
 *		a relcache entry for the relation.
 *
 * NB: At present, this function may only be used on permanent relations, which
 * is OK, because we only use it during XLOG replay.  If in the future we
 * want to use it on temporary or unlogged relations, we could pass additional
 * parameters.
 */
Buffer
ReadBufferWithoutRelcache(RelFileNode rnode, ForkNumber forkNum,
						  BlockNumber blockNum, ReadBufferMode mode,
						  BufferAccessStrategy strategy)
{
	bool		hit;

	SMgrRelation smgr = smgropen(rnode, InvalidBackendId);

	Assert(InRecovery);

	return ReadBuffer_common(smgr, RELPERSISTENCE_PERMANENT, forkNum, blockNum,
							 mode, strategy, &hit);
}


/*
 * ReadBuffer_common -- common logic for all ReadBuffer variants
 *
 * *hit is set to true if the request was satisfied from shared buffer cache.
 */
static Buffer
ReadBuffer_common(SMgrRelation smgr, char relpersistence, ForkNumber forkNum,
				  BlockNumber blockNum, ReadBufferMode mode,
				  BufferAccessStrategy strategy, bool *hit)
{
	BufferDesc *bufHdr;
	Block		bufBlock;
	bool		found;
	bool		isExtend;
	bool		isLocalBuf = SmgrIsTemp(smgr);

	*hit = false;

	/* Make sure we will have room to remember the buffer pin */
	ResourceOwnerEnlargeBuffers(CurrentResourceOwner);

	isExtend = (blockNum == P_NEW);

	TRACE_POSTGRESQL_BUFFER_READ_START(forkNum, blockNum,
									   smgr->smgr_rnode.node.spcNode,
									   smgr->smgr_rnode.node.dbNode,
									   smgr->smgr_rnode.node.relNode,
									   smgr->smgr_rnode.backend,
									   isExtend);

	/* Substitute proper block number if caller asked for P_NEW */
	if (isExtend)
		blockNum = smgrnblocks(smgr, forkNum);

	if (isLocalBuf)
	{
		bufHdr = LocalBufferAlloc(smgr, forkNum, blockNum, &found);
		if (found)
			pgBufferUsage.local_blks_hit++;
		else
			pgBufferUsage.local_blks_read++;
	}
	else
	{
		/*
		 * lookup the buffer.  IO_IN_PROGRESS is set if the requested block is
		 * not currently in memory.
		 */
		bufHdr = BufferAlloc(smgr, relpersistence, forkNum, blockNum,
							 strategy, &found);
		if (found)
			pgBufferUsage.shared_blks_hit++;
		else
			pgBufferUsage.shared_blks_read++;
	}

	/* At this point we do NOT hold any locks. */

	/* if it was already in the buffer pool, we're done */
	if (found)
	{
		if (!isExtend)
		{
			/* Just need to update stats before we exit */
			*hit = true;
			VacuumPageHit++;

			if (VacuumCostActive)
				VacuumCostBalance += VacuumCostPageHit;

			TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum,
											  smgr->smgr_rnode.node.spcNode,
											  smgr->smgr_rnode.node.dbNode,
											  smgr->smgr_rnode.node.relNode,
											  smgr->smgr_rnode.backend,
											  isExtend,
											  found);

			/*
			 * In RBM_ZERO_AND_LOCK mode the caller expects the page to be
			 * locked on return.
			 */
			if (!isLocalBuf)
			{
				if (mode == RBM_ZERO_AND_LOCK)
					LWLockAcquire(BufferDescriptorGetContentLock(bufHdr),
								  LW_EXCLUSIVE);
				else if (mode == RBM_ZERO_AND_CLEANUP_LOCK)
					LockBufferForCleanup(BufferDescriptorGetBuffer(bufHdr));
			}

			return BufferDescriptorGetBuffer(bufHdr);
		}

		/*
		 * We get here only in the corner case where we are trying to extend
		 * the relation but we found a pre-existing buffer marked BM_VALID.
		 * This can happen because mdread doesn't complain about reads beyond
		 * EOF (when zero_damaged_pages is ON) and so a previous attempt to
		 * read a block beyond EOF could have left a "valid" zero-filled
		 * buffer.  Unfortunately, we have also seen this case occurring
		 * because of buggy Linux kernels that sometimes return an
		 * lseek(SEEK_END) result that doesn't account for a recent write. In
		 * that situation, the pre-existing buffer would contain valid data
		 * that we don't want to overwrite.  Since the legitimate case should
		 * always have left a zero-filled buffer, complain if not PageIsNew.
		 */
		bufBlock = isLocalBuf ? LocalBufHdrGetBlock(bufHdr) : BufHdrGetBlock(bufHdr);
		if (!PageIsNew((Page) bufBlock))
			ereport(ERROR,
			 (errmsg("unexpected data beyond EOF in block %u of relation %s",
					 blockNum, relpath(smgr->smgr_rnode, forkNum)),
			  errhint("This has been seen to occur with buggy kernels; consider updating your system.")));

		/*
		 * We *must* do smgrextend before succeeding, else the page will not
		 * be reserved by the kernel, and the next P_NEW call will decide to
		 * return the same page.  Clear the BM_VALID bit, do the StartBufferIO
		 * call that BufferAlloc didn't, and proceed.
		 */
		if (isLocalBuf)
		{
			/* Only need to adjust flags */
			uint32		buf_state = pg_atomic_read_u32(&bufHdr->state);

			Assert(buf_state & BM_VALID);
			buf_state &= ~BM_VALID;
			pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state);
		}
		else
		{
			/*
			 * Loop to handle the very small possibility that someone re-sets
			 * BM_VALID between our clearing it and StartBufferIO inspecting
			 * it.
			 */
			do
			{
				uint32		buf_state = LockBufHdr(bufHdr);

				Assert(buf_state & BM_VALID);
				buf_state &= ~BM_VALID;
				UnlockBufHdr(bufHdr, buf_state);
			} while (!StartBufferIO(bufHdr, true));
		}
	}

	/*
	 * if we have gotten to this point, we have allocated a buffer for the
	 * page but its contents are not yet valid.  IO_IN_PROGRESS is set for it,
	 * if it's a shared buffer.
	 *
	 * Note: if smgrextend fails, we will end up with a buffer that is
	 * allocated but not marked BM_VALID.  P_NEW will still select the same
	 * block number (because the relation didn't get any longer on disk) and
	 * so future attempts to extend the relation will find the same buffer (if
	 * it's not been recycled) but come right back here to try smgrextend
	 * again.
	 */
	Assert(!(pg_atomic_read_u32(&bufHdr->state) & BM_VALID));	/* spinlock not needed */

	bufBlock = isLocalBuf ? LocalBufHdrGetBlock(bufHdr) : BufHdrGetBlock(bufHdr);

	if (isExtend)
	{
		/* new buffers are zero-filled */
		MemSet((char *) bufBlock, 0, BLCKSZ);
		/* don't set checksum for all-zero page */
		smgrextend(smgr, forkNum, blockNum, (char *) bufBlock, false);

		/*
		 * NB: we're *not* doing a ScheduleBufferTagForWriteback here;
		 * although we're essentially performing a write. At least on linux
		 * doing so defeats the 'delayed allocation' mechanism, leading to
		 * increased file fragmentation.
		 */
	}
	else
	{
		/*
		 * Read in the page, unless the caller intends to overwrite it and
		 * just wants us to allocate a buffer.
		 */
		if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK)
			MemSet((char *) bufBlock, 0, BLCKSZ);
		else
		{
			instr_time	io_start,
						io_time;

			if (track_io_timing)
				INSTR_TIME_SET_CURRENT(io_start);

			smgrread(smgr, forkNum, blockNum, (char *) bufBlock);

			if (track_io_timing)
			{
				INSTR_TIME_SET_CURRENT(io_time);
				INSTR_TIME_SUBTRACT(io_time, io_start);
				pgstat_count_buffer_read_time(INSTR_TIME_GET_MICROSEC(io_time));
				INSTR_TIME_ADD(pgBufferUsage.blk_read_time, io_time);
			}

			/* check for garbage data */
			if (!PageIsVerified((Page) bufBlock, blockNum))
			{
				if (mode == RBM_ZERO_ON_ERROR || zero_damaged_pages)
				{
					ereport(WARNING,
							(errcode(ERRCODE_DATA_CORRUPTED),
							 errmsg("invalid page in block %u of relation %s; zeroing out page",
									blockNum,
									relpath(smgr->smgr_rnode, forkNum))));
					MemSet((char *) bufBlock, 0, BLCKSZ);
				}
				else
					ereport(ERROR,
							(errcode(ERRCODE_DATA_CORRUPTED),
							 errmsg("invalid page in block %u of relation %s",
									blockNum,
									relpath(smgr->smgr_rnode, forkNum))));
			}
		}
	}

	/*
	 * In RBM_ZERO_AND_LOCK mode, grab the buffer content lock before marking
	 * the page as valid, to make sure that no other backend sees the zeroed
	 * page before the caller has had a chance to initialize it.
	 *
	 * Since no-one else can be looking at the page contents yet, there is no
	 * difference between an exclusive lock and a cleanup-strength lock. (Note
	 * that we cannot use LockBuffer() or LockBufferForCleanup() here, because
	 * they assert that the buffer is already valid.)
	 */
	if ((mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK) &&
		!isLocalBuf)
	{
		LWLockAcquire(BufferDescriptorGetContentLock(bufHdr), LW_EXCLUSIVE);
	}

	if (isLocalBuf)
	{
		/* Only need to adjust flags */
		uint32		buf_state = pg_atomic_read_u32(&bufHdr->state);

		buf_state |= BM_VALID;
		pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state);
	}
	else
	{
		/* Set BM_VALID, terminate IO, and wake up any waiters */
		TerminateBufferIO(bufHdr, false, BM_VALID);
	}

	VacuumPageMiss++;
	if (VacuumCostActive)
		VacuumCostBalance += VacuumCostPageMiss;

	TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum,
									  smgr->smgr_rnode.node.spcNode,
									  smgr->smgr_rnode.node.dbNode,
									  smgr->smgr_rnode.node.relNode,
									  smgr->smgr_rnode.backend,
									  isExtend,
									  found);

	return BufferDescriptorGetBuffer(bufHdr);
}

/*
 * BufferAlloc -- subroutine for ReadBuffer.  Handles lookup of a shared
 *		buffer.  If no buffer exists already, selects a replacement
 *		victim and evicts the old page, but does NOT read in new page.
 *
 * "strategy" can be a buffer replacement strategy object, or NULL for
 * the default strategy.  The selected buffer's usage_count is advanced when
 * using the default strategy, but otherwise possibly not (see PinBuffer).
 *
 * The returned buffer is pinned and is already marked as holding the
 * desired page.  If it already did have the desired page, *foundPtr is
 * set TRUE.  Otherwise, *foundPtr is set FALSE and the buffer is marked
 * as IO_IN_PROGRESS; ReadBuffer will now need to do I/O to fill it.
 *
 * *foundPtr is actually redundant with the buffer's BM_VALID flag, but
 * we keep it for simplicity in ReadBuffer.
 *
 * No locks are held either at entry or exit.
 */
static BufferDesc *
BufferAlloc(SMgrRelation smgr, char relpersistence, ForkNumber forkNum,
			BlockNumber blockNum,
			BufferAccessStrategy strategy,
			bool *foundPtr)
{
	BufferTag	newTag;			/* identity of requested block */
	uint32		newHash;		/* hash value for newTag */
	LWLock	   *newPartitionLock;		/* buffer partition lock for it */
	BufferTag	oldTag;			/* previous identity of selected buffer */
	uint32		oldHash;		/* hash value for oldTag */
	LWLock	   *oldPartitionLock;		/* buffer partition lock for it */
	uint32		oldFlags;
	int			buf_id;
	BufferDesc *buf;
	bool		valid;
	uint32		buf_state;

	/* create a tag so we can lookup the buffer */
	INIT_BUFFERTAG(newTag, smgr->smgr_rnode.node, forkNum, blockNum);

	/* determine its hash code and partition lock ID */
	newHash = BufTableHashCode(&newTag);
	newPartitionLock = BufMappingPartitionLock(newHash);

	/* see if the block is in the buffer pool already */
	LWLockAcquire(newPartitionLock, LW_SHARED);
	buf_id = BufTableLookup(&newTag, newHash);
	if (buf_id >= 0)
	{
		/*
		 * Found it.  Now, pin the buffer so no one can steal it from the
		 * buffer pool, and check to see if the correct data has been loaded
		 * into the buffer.
		 */
		buf = GetBufferDescriptor(buf_id);

		valid = PinBuffer(buf, strategy);

		/* Can release the mapping lock as soon as we've pinned it */
		LWLockRelease(newPartitionLock);

		*foundPtr = TRUE;

		if (!valid)
		{
			/*
			 * We can only get here if (a) someone else is still reading in
			 * the page, or (b) a previous read attempt failed.  We have to
			 * wait for any active read attempt to finish, and then set up our
			 * own read attempt if the page is still not BM_VALID.
			 * StartBufferIO does it all.
			 */
			if (StartBufferIO(buf, true))
			{
				/*
				 * If we get here, previous attempts to read the buffer must
				 * have failed ... but we shall bravely try again.
				 */
				*foundPtr = FALSE;
			}
		}

		return buf;
	}

	/*
	 * Didn't find it in the buffer pool.  We'll have to initialize a new
	 * buffer.  Remember to unlock the mapping lock while doing the work.
	 */
	LWLockRelease(newPartitionLock);

	/* Loop here in case we have to try another victim buffer */
	for (;;)
	{
		/*
		 * Ensure, while the spinlock's not yet held, that there's a free
		 * refcount entry.
		 */
		ReservePrivateRefCountEntry();

		/*
		 * Select a victim buffer.  The buffer is returned with its header
		 * spinlock still held!
		 */
		buf = StrategyGetBuffer(strategy, &buf_state);

		Assert(BUF_STATE_GET_REFCOUNT(buf_state) == 0);

		/* Must copy buffer flags while we still hold the spinlock */
		oldFlags = buf_state & BUF_FLAG_MASK;

		/* Pin the buffer and then release the buffer spinlock */
		PinBuffer_Locked(buf);

		/*
		 * If the buffer was dirty, try to write it out.  There is a race
		 * condition here, in that someone might dirty it after we released it
		 * above, or even while we are writing it out (since our share-lock
		 * won't prevent hint-bit updates).  We will recheck the dirty bit
		 * after re-locking the buffer header.
		 */
		if (oldFlags & BM_DIRTY)
		{
			/*
			 * We need a share-lock on the buffer contents to write it out
			 * (else we might write invalid data, eg because someone else is
			 * compacting the page contents while we write).  We must use a
			 * conditional lock acquisition here to avoid deadlock.  Even
			 * though the buffer was not pinned (and therefore surely not
			 * locked) when StrategyGetBuffer returned it, someone else could
			 * have pinned and exclusive-locked it by the time we get here. If
			 * we try to get the lock unconditionally, we'd block waiting for
			 * them; if they later block waiting for us, deadlock ensues.
			 * (This has been observed to happen when two backends are both
			 * trying to split btree index pages, and the second one just
			 * happens to be trying to split the page the first one got from
			 * StrategyGetBuffer.)
			 */
			if (LWLockConditionalAcquire(BufferDescriptorGetContentLock(buf),
										 LW_SHARED))
			{
				/*
				 * If using a nondefault strategy, and writing the buffer
				 * would require a WAL flush, let the strategy decide whether
				 * to go ahead and write/reuse the buffer or to choose another
				 * victim.  We need lock to inspect the page LSN, so this
				 * can't be done inside StrategyGetBuffer.
				 */
				if (strategy != NULL)
				{
					XLogRecPtr	lsn;

					/* Read the LSN while holding buffer header lock */
					buf_state = LockBufHdr(buf);
					lsn = BufferGetLSN(buf);
					UnlockBufHdr(buf, buf_state);

					if (XLogNeedsFlush(lsn) &&
						StrategyRejectBuffer(strategy, buf))
					{
						/* Drop lock/pin and loop around for another buffer */
						LWLockRelease(BufferDescriptorGetContentLock(buf));
						UnpinBuffer(buf, true);
						continue;
					}
				}

				/* OK, do the I/O */
				TRACE_POSTGRESQL_BUFFER_WRITE_DIRTY_START(forkNum, blockNum,
											   smgr->smgr_rnode.node.spcNode,
												smgr->smgr_rnode.node.dbNode,
											  smgr->smgr_rnode.node.relNode);

				FlushBuffer(buf, NULL);
				LWLockRelease(BufferDescriptorGetContentLock(buf));

				ScheduleBufferTagForWriteback(&BackendWritebackContext,
											  &buf->tag);

				TRACE_POSTGRESQL_BUFFER_WRITE_DIRTY_DONE(forkNum, blockNum,
											   smgr->smgr_rnode.node.spcNode,
												smgr->smgr_rnode.node.dbNode,
											  smgr->smgr_rnode.node.relNode);
			}
			else
			{
				/*
				 * Someone else has locked the buffer, so give it up and loop
				 * back to get another one.
				 */
				UnpinBuffer(buf, true);
				continue;
			}
		}

		/*
		 * To change the association of a valid buffer, we'll need to have
		 * exclusive lock on both the old and new mapping partitions.
		 */
		if (oldFlags & BM_TAG_VALID)
		{
			/*
			 * Need to compute the old tag's hashcode and partition lock ID.
			 * XXX is it worth storing the hashcode in BufferDesc so we need
			 * not recompute it here?  Probably not.
			 */
			oldTag = buf->tag;
			oldHash = BufTableHashCode(&oldTag);
			oldPartitionLock = BufMappingPartitionLock(oldHash);

			/*
			 * Must lock the lower-numbered partition first to avoid
			 * deadlocks.
			 */
			if (oldPartitionLock < newPartitionLock)
			{
				LWLockAcquire(oldPartitionLock, LW_EXCLUSIVE);
				LWLockAcquire(newPartitionLock, LW_EXCLUSIVE);
			}
			else if (oldPartitionLock > newPartitionLock)
			{
				LWLockAcquire(newPartitionLock, LW_EXCLUSIVE);
				LWLockAcquire(oldPartitionLock, LW_EXCLUSIVE);
			}
			else
			{
				/* only one partition, only one lock */
				LWLockAcquire(newPartitionLock, LW_EXCLUSIVE);
			}
		}
		else
		{
			/* if it wasn't valid, we need only the new partition */
			LWLockAcquire(newPartitionLock, LW_EXCLUSIVE);
			/* remember we have no old-partition lock or tag */
			oldPartitionLock = NULL;
			/* this just keeps the compiler quiet about uninit variables */
			oldHash = 0;
		}

		/*
		 * Try to make a hashtable entry for the buffer under its new tag.
		 * This could fail because while we were writing someone else
		 * allocated another buffer for the same block we want to read in.
		 * Note that we have not yet removed the hashtable entry for the old
		 * tag.
		 */
		buf_id = BufTableInsert(&newTag, newHash, buf->buf_id);

		if (buf_id >= 0)
		{
			/*
			 * Got a collision. Someone has already done what we were about to
			 * do. We'll just handle this as if it were found in the buffer
			 * pool in the first place.  First, give up the buffer we were
			 * planning to use.
			 */
			UnpinBuffer(buf, true);

			/* Can give up that buffer's mapping partition lock now */
			if (oldPartitionLock != NULL &&
				oldPartitionLock != newPartitionLock)
				LWLockRelease(oldPartitionLock);

			/* remaining code should match code at top of routine */

			buf = GetBufferDescriptor(buf_id);

			valid = PinBuffer(buf, strategy);

			/* Can release the mapping lock as soon as we've pinned it */
			LWLockRelease(newPartitionLock);

			*foundPtr = TRUE;

			if (!valid)
			{
				/*
				 * We can only get here if (a) someone else is still reading
				 * in the page, or (b) a previous read attempt failed.  We
				 * have to wait for any active read attempt to finish, and
				 * then set up our own read attempt if the page is still not
				 * BM_VALID.  StartBufferIO does it all.
				 */
				if (StartBufferIO(buf, true))
				{
					/*
					 * If we get here, previous attempts to read the buffer
					 * must have failed ... but we shall bravely try again.
					 */
					*foundPtr = FALSE;
				}
			}

			return buf;
		}

		/*
		 * Need to lock the buffer header too in order to change its tag.
		 */
		buf_state = LockBufHdr(buf);

		/*
		 * Somebody could have pinned or re-dirtied the buffer while we were
		 * doing the I/O and making the new hashtable entry.  If so, we can't
		 * recycle this buffer; we must undo everything we've done and start
		 * over with a new victim buffer.
		 */
		oldFlags = buf_state & BUF_FLAG_MASK;
		if (BUF_STATE_GET_REFCOUNT(buf_state) == 1 && !(oldFlags & BM_DIRTY))
			break;

		UnlockBufHdr(buf, buf_state);
		BufTableDelete(&newTag, newHash);
		if (oldPartitionLock != NULL &&
			oldPartitionLock != newPartitionLock)
			LWLockRelease(oldPartitionLock);
		LWLockRelease(newPartitionLock);
		UnpinBuffer(buf, true);
	}

	/*
	 * Okay, it's finally safe to rename the buffer.
	 *
	 * Clearing BM_VALID here is necessary, clearing the dirtybits is just
	 * paranoia.  We also reset the usage_count since any recency of use of
	 * the old content is no longer relevant.  (The usage_count starts out at
	 * 1 so that the buffer can survive one clock-sweep pass.)
	 */
	buf->tag = newTag;
	buf_state &= ~(BM_VALID | BM_DIRTY | BM_JUST_DIRTIED |
				   BM_CHECKPOINT_NEEDED | BM_IO_ERROR | BM_PERMANENT |
				   BUF_USAGECOUNT_MASK);
	if (relpersistence == RELPERSISTENCE_PERMANENT)
		buf_state |= BM_TAG_VALID | BM_PERMANENT | BUF_USAGECOUNT_ONE;
	else
		buf_state |= BM_TAG_VALID | BUF_USAGECOUNT_ONE;

	UnlockBufHdr(buf, buf_state);

	if (oldPartitionLock != NULL)
	{
		BufTableDelete(&oldTag, oldHash);
		if (oldPartitionLock != newPartitionLock)
			LWLockRelease(oldPartitionLock);
	}

	LWLockRelease(newPartitionLock);

	/*
	 * Buffer contents are currently invalid.  Try to get the io_in_progress
	 * lock.  If StartBufferIO returns false, then someone else managed to
	 * read it before we did, so there's nothing left for BufferAlloc() to do.
	 */
	if (StartBufferIO(buf, true))
		*foundPtr = FALSE;
	else
		*foundPtr = TRUE;

	return buf;
}

/*
 * InvalidateBuffer -- mark a shared buffer invalid and return it to the
 * freelist.
 *
 * The buffer header spinlock must be held at entry.  We drop it before
 * returning.  (This is sane because the caller must have locked the
 * buffer in order to be sure it should be dropped.)
 *
 * This is used only in contexts such as dropping a relation.  We assume
 * that no other backend could possibly be interested in using the page,
 * so the only reason the buffer might be pinned is if someone else is
 * trying to write it out.  We have to let them finish before we can
 * reclaim the buffer.
 *
 * The buffer could get reclaimed by someone else while we are waiting
 * to acquire the necessary locks; if so, don't mess it up.
 */
static void
InvalidateBuffer(BufferDesc *buf)
{
	BufferTag	oldTag;
	uint32		oldHash;		/* hash value for oldTag */
	LWLock	   *oldPartitionLock;		/* buffer partition lock for it */
	uint32		oldFlags;
	uint32		buf_state;

	/* Save the original buffer tag before dropping the spinlock */
	oldTag = buf->tag;

	buf_state = pg_atomic_read_u32(&buf->state);
	Assert(buf_state & BM_LOCKED);
	UnlockBufHdr(buf, buf_state);

	/*
	 * Need to compute the old tag's hashcode and partition lock ID. XXX is it
	 * worth storing the hashcode in BufferDesc so we need not recompute it
	 * here?  Probably not.
	 */
	oldHash = BufTableHashCode(&oldTag);
	oldPartitionLock = BufMappingPartitionLock(oldHash);

retry:

	/*
	 * Acquire exclusive mapping lock in preparation for changing the buffer's
	 * association.
	 */
	LWLockAcquire(oldPartitionLock, LW_EXCLUSIVE);

	/* Re-lock the buffer header */
	buf_state = LockBufHdr(buf);

	/* If it's changed while we were waiting for lock, do nothing */
	if (!BUFFERTAGS_EQUAL(buf->tag, oldTag))
	{
		UnlockBufHdr(buf, buf_state);
		LWLockRelease(oldPartitionLock);
		return;
	}

	/*
	 * We assume the only reason for it to be pinned is that someone else is
	 * flushing the page out.  Wait for them to finish.  (This could be an
	 * infinite loop if the refcount is messed up... it would be nice to time
	 * out after awhile, but there seems no way to be sure how many loops may
	 * be needed.  Note that if the other guy has pinned the buffer but not
	 * yet done StartBufferIO, WaitIO will fall through and we'll effectively
	 * be busy-looping here.)
	 */
	if (BUF_STATE_GET_REFCOUNT(buf_state) != 0)
	{
		UnlockBufHdr(buf, buf_state);
		LWLockRelease(oldPartitionLock);
		/* safety check: should definitely not be our *own* pin */
		if (GetPrivateRefCount(BufferDescriptorGetBuffer(buf)) > 0)
			elog(ERROR, "buffer is pinned in InvalidateBuffer");
		WaitIO(buf);
		goto retry;
	}

	/*
	 * Clear out the buffer's tag and flags.  We must do this to ensure that
	 * linear scans of the buffer array don't think the buffer is valid.
	 */
	oldFlags = buf_state & BUF_FLAG_MASK;
	CLEAR_BUFFERTAG(buf->tag);
	buf_state &= ~(BUF_FLAG_MASK | BUF_USAGECOUNT_MASK);
	UnlockBufHdr(buf, buf_state);

	/*
	 * Remove the buffer from the lookup hashtable, if it was in there.
	 */
	if (oldFlags & BM_TAG_VALID)
		BufTableDelete(&oldTag, oldHash);

	/*
	 * Done with mapping lock.
	 */
	LWLockRelease(oldPartitionLock);

	/*
	 * Insert the buffer at the head of the list of free buffers.
	 */
	StrategyFreeBuffer(buf);
}

/*
 * MarkBufferDirty
 *
 *		Marks buffer contents as dirty (actual write happens later).
 *
 * Buffer must be pinned and exclusive-locked.  (If caller does not hold
 * exclusive lock, then somebody could be in process of writing the buffer,
 * leading to risk of bad data written to disk.)
 */
void
MarkBufferDirty(Buffer buffer)
{
	BufferDesc *bufHdr;
	uint32		buf_state;
	uint32		old_buf_state;

	if (!BufferIsValid(buffer))
		elog(ERROR, "bad buffer ID: %d", buffer);

	if (BufferIsLocal(buffer))
	{
		MarkLocalBufferDirty(buffer);
		return;
	}

	bufHdr = GetBufferDescriptor(buffer - 1);

	Assert(BufferIsPinned(buffer));
	Assert(LWLockHeldByMeInMode(BufferDescriptorGetContentLock(bufHdr),
								LW_EXCLUSIVE));

	old_buf_state = pg_atomic_read_u32(&bufHdr->state);
	for (;;)
	{
		if (old_buf_state & BM_LOCKED)
			old_buf_state = WaitBufHdrUnlocked(bufHdr);

		buf_state = old_buf_state;

		Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
		buf_state |= BM_DIRTY | BM_JUST_DIRTIED;

		if (pg_atomic_compare_exchange_u32(&bufHdr->state, &old_buf_state,
										   buf_state))
			break;
	}

	/*
	 * If the buffer was not dirty already, do vacuum accounting.
	 */
	if (!(old_buf_state & BM_DIRTY))
	{
		VacuumPageDirty++;
		pgBufferUsage.shared_blks_dirtied++;
		if (VacuumCostActive)
			VacuumCostBalance += VacuumCostPageDirty;
	}
}

/*
 * ReleaseAndReadBuffer -- combine ReleaseBuffer() and ReadBuffer()
 *
 * Formerly, this saved one cycle of acquiring/releasing the BufMgrLock
 * compared to calling the two routines separately.  Now it's mainly just
 * a convenience function.  However, if the passed buffer is valid and
 * already contains the desired block, we just return it as-is; and that
 * does save considerable work compared to a full release and reacquire.
 *
 * Note: it is OK to pass buffer == InvalidBuffer, indicating that no old
 * buffer actually needs to be released.  This case is the same as ReadBuffer,
 * but can save some tests in the caller.
 */
Buffer
ReleaseAndReadBuffer(Buffer buffer,
					 Relation relation,
					 BlockNumber blockNum)
{
	ForkNumber	forkNum = MAIN_FORKNUM;
	BufferDesc *bufHdr;

	if (BufferIsValid(buffer))
	{
		Assert(BufferIsPinned(buffer));
		if (BufferIsLocal(buffer))
		{
			bufHdr = GetLocalBufferDescriptor(-buffer - 1);
			if (bufHdr->tag.blockNum == blockNum &&
				RelFileNodeEquals(bufHdr->tag.rnode, relation->rd_node) &&
				bufHdr->tag.forkNum == forkNum)
				return buffer;
			ResourceOwnerForgetBuffer(CurrentResourceOwner, buffer);
			LocalRefCount[-buffer - 1]--;
		}
		else
		{
			bufHdr = GetBufferDescriptor(buffer - 1);
			/* we have pin, so it's ok to examine tag without spinlock */
			if (bufHdr->tag.blockNum == blockNum &&
				RelFileNodeEquals(bufHdr->tag.rnode, relation->rd_node) &&
				bufHdr->tag.forkNum == forkNum)
				return buffer;
			UnpinBuffer(bufHdr, true);
		}
	}

	return ReadBuffer(relation, blockNum);
}

/*
 * PinBuffer -- make buffer unavailable for replacement.
 *
 * For the default access strategy, the buffer's usage_count is incremented
 * when we first pin it; for other strategies we just make sure the usage_count
 * isn't zero.  (The idea of the latter is that we don't want synchronized
 * heap scans to inflate the count, but we need it to not be zero to discourage
 * other backends from stealing buffers from our ring.  As long as we cycle
 * through the ring faster than the global clock-sweep cycles, buffers in
 * our ring won't be chosen as victims for replacement by other backends.)
 *
 * This should be applied only to shared buffers, never local ones.
 *
 * Since buffers are pinned/unpinned very frequently, pin buffers without
 * taking the buffer header lock; instead update the state variable in loop of
 * CAS operations. Hopefully it's just a single CAS.
 *
 * Note that ResourceOwnerEnlargeBuffers must have been done already.
 *
 * Returns TRUE if buffer is BM_VALID, else FALSE.  This provision allows
 * some callers to avoid an extra spinlock cycle.
 */
static bool
PinBuffer(BufferDesc *buf, BufferAccessStrategy strategy)
{
	Buffer		b = BufferDescriptorGetBuffer(buf);
	bool		result;
	PrivateRefCountEntry *ref;

	ref = GetPrivateRefCountEntry(b, true);

	if (ref == NULL)
	{
		uint32		buf_state;
		uint32		old_buf_state;

		ReservePrivateRefCountEntry();
		ref = NewPrivateRefCountEntry(b);

		old_buf_state = pg_atomic_read_u32(&buf->state);
		for (;;)
		{
			if (old_buf_state & BM_LOCKED)
				old_buf_state = WaitBufHdrUnlocked(buf);

			buf_state = old_buf_state;

			/* increase refcount */
			buf_state += BUF_REFCOUNT_ONE;

			/* increase usagecount unless already max */
			if (BUF_STATE_GET_USAGECOUNT(buf_state) != BM_MAX_USAGE_COUNT)
				buf_state += BUF_USAGECOUNT_ONE;

			if (pg_atomic_compare_exchange_u32(&buf->state, &old_buf_state,
											   buf_state))
			{
				result = (buf_state & BM_VALID) != 0;
				break;
			}
		}
	}
	else
	{
		/* If we previously pinned the buffer, it must surely be valid */
		result = true;
	}

	ref->refcount++;
	Assert(ref->refcount > 0);
	ResourceOwnerRememberBuffer(CurrentResourceOwner, b);
	return result;
}

/*
 * PinBuffer_Locked -- as above, but caller already locked the buffer header.
 * The spinlock is released before return.
 *
 * As this function is called with the spinlock held, the caller has to
 * previously call ReservePrivateRefCountEntry().
 *
 * Currently, no callers of this function want to modify the buffer's
 * usage_count at all, so there's no need for a strategy parameter.
 * Also we don't bother with a BM_VALID test (the caller could check that for
 * itself).
 *
 * Also all callers only ever use this function when it's known that the
 * buffer can't have a preexisting pin by this backend. That allows us to skip
 * searching the private refcount array & hash, which is a boon, because the
 * spinlock is still held.
 *
 * Note: use of this routine is frequently mandatory, not just an optimization
 * to save a spin lock/unlock cycle, because we need to pin a buffer before
 * its state can change under us.
 */
static void
PinBuffer_Locked(BufferDesc *buf)
{
	Buffer		b;
	PrivateRefCountEntry *ref;
	uint32		buf_state;

	/*
	 * As explained, We don't expect any preexisting pins. That allows us to
	 * manipulate the PrivateRefCount after releasing the spinlock
	 */
	Assert(GetPrivateRefCountEntry(BufferDescriptorGetBuffer(buf), false) == NULL);

	/*
	 * Since we hold the buffer spinlock, we can update the buffer state and
	 * release the lock in one operation.
	 */
	buf_state = pg_atomic_read_u32(&buf->state);
	Assert(buf_state & BM_LOCKED);
	buf_state += BUF_REFCOUNT_ONE;
	UnlockBufHdr(buf, buf_state);

	b = BufferDescriptorGetBuffer(buf);

	ref = NewPrivateRefCountEntry(b);
	ref->refcount++;

	ResourceOwnerRememberBuffer(CurrentResourceOwner, b);
}

/*
 * UnpinBuffer -- make buffer available for replacement.
 *
 * This should be applied only to shared buffers, never local ones.
 *
 * Most but not all callers want CurrentResourceOwner to be adjusted.
 * Those that don't should pass fixOwner = FALSE.
 */
static void
UnpinBuffer(BufferDesc *buf, bool fixOwner)
{
	PrivateRefCountEntry *ref;
	Buffer		b = BufferDescriptorGetBuffer(buf);

	/* not moving as we're likely deleting it soon anyway */
	ref = GetPrivateRefCountEntry(b, false);
	Assert(ref != NULL);

	if (fixOwner)
		ResourceOwnerForgetBuffer(CurrentResourceOwner, b);

	Assert(ref->refcount > 0);
	ref->refcount--;
	if (ref->refcount == 0)
	{
		uint32		buf_state;
		uint32		old_buf_state;

		/* I'd better not still hold any locks on the buffer */
		Assert(!LWLockHeldByMe(BufferDescriptorGetContentLock(buf)));
		Assert(!LWLockHeldByMe(BufferDescriptorGetIOLock(buf)));

		/*
		 * Decrement the shared reference count.
		 *
		 * Since buffer spinlock holder can update status using just write,
		 * it's not safe to use atomic decrement here; thus use a CAS loop.
		 */
		old_buf_state = pg_atomic_read_u32(&buf->state);
		for (;;)
		{
			if (old_buf_state & BM_LOCKED)
				old_buf_state = WaitBufHdrUnlocked(buf);

			buf_state = old_buf_state;

			buf_state -= BUF_REFCOUNT_ONE;

			if (pg_atomic_compare_exchange_u32(&buf->state, &old_buf_state,
											   buf_state))
				break;
		}

		/* Support LockBufferForCleanup() */
		if (buf_state & BM_PIN_COUNT_WAITER)
		{
			/*
			 * Acquire the buffer header lock, re-check that there's a waiter.
			 * Another backend could have unpinned this buffer, and already
			 * woken up the waiter.  There's no danger of the buffer being
			 * replaced after we unpinned it above, as it's pinned by the
			 * waiter.
			 */
			buf_state = LockBufHdr(buf);

			if ((buf_state & BM_PIN_COUNT_WAITER) &&
				BUF_STATE_GET_REFCOUNT(buf_state) == 1)
			{
				/* we just released the last pin other than the waiter's */
				int			wait_backend_pid = buf->wait_backend_pid;

				buf_state &= ~BM_PIN_COUNT_WAITER;
				UnlockBufHdr(buf, buf_state);
				ProcSendSignal(wait_backend_pid);
			}
			else
				UnlockBufHdr(buf, buf_state);
		}
		ForgetPrivateRefCountEntry(ref);
	}
}

/*
 * BufferSync -- Write out all dirty buffers in the pool.
 *
 * This is called at checkpoint time to write out all dirty shared buffers.
 * The checkpoint request flags should be passed in.  If CHECKPOINT_IMMEDIATE
 * is set, we disable delays between writes; if CHECKPOINT_IS_SHUTDOWN,
 * CHECKPOINT_END_OF_RECOVERY or CHECKPOINT_FLUSH_ALL is set, we write even
 * unlogged buffers, which are otherwise skipped.  The remaining flags
 * currently have no effect here.
 */
static void
BufferSync(int flags)
{
	uint32		buf_state;
	int			buf_id;
	int			num_to_scan;
	int			num_spaces;
	int			num_processed;
	int			num_written;
	CkptTsStatus *per_ts_stat = NULL;
	Oid			last_tsid;
	binaryheap *ts_heap;
	int			i;
	int			mask = BM_DIRTY;
	WritebackContext wb_context;

	/* Make sure we can handle the pin inside SyncOneBuffer */
	ResourceOwnerEnlargeBuffers(CurrentResourceOwner);

	/*
	 * Unless this is a shutdown checkpoint or we have been explicitly told,
	 * we write only permanent, dirty buffers.  But at shutdown or end of
	 * recovery, we write all dirty buffers.
	 */
	if (!((flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY |
					CHECKPOINT_FLUSH_ALL))))
		mask |= BM_PERMANENT;

	/*
	 * Loop over all buffers, and mark the ones that need to be written with
	 * BM_CHECKPOINT_NEEDED.  Count them as we go (num_to_scan), so that we
	 * can estimate how much work needs to be done.
	 *
	 * This allows us to write only those pages that were dirty when the
	 * checkpoint began, and not those that get dirtied while it proceeds.
	 * Whenever a page with BM_CHECKPOINT_NEEDED is written out, either by us
	 * later in this function, or by normal backends or the bgwriter cleaning
	 * scan, the flag is cleared.  Any buffer dirtied after this point won't
	 * have the flag set.
	 *
	 * Note that if we fail to write some buffer, we may leave buffers with
	 * BM_CHECKPOINT_NEEDED still set.  This is OK since any such buffer would
	 * certainly need to be written for the next checkpoint attempt, too.
	 */
	num_to_scan = 0;
	for (buf_id = 0; buf_id < NBuffers; buf_id++)
	{
		BufferDesc *bufHdr = GetBufferDescriptor(buf_id);

		/*
		 * Header spinlock is enough to examine BM_DIRTY, see comment in
		 * SyncOneBuffer.
		 */
		buf_state = LockBufHdr(bufHdr);

		if ((buf_state & mask) == mask)
		{
			CkptSortItem *item;

			buf_state |= BM_CHECKPOINT_NEEDED;

			item = &CkptBufferIds[num_to_scan++];
			item->buf_id = buf_id;
			item->tsId = bufHdr->tag.rnode.spcNode;
			item->relNode = bufHdr->tag.rnode.relNode;
			item->forkNum = bufHdr->tag.forkNum;
			item->blockNum = bufHdr->tag.blockNum;
		}

		UnlockBufHdr(bufHdr, buf_state);
	}

	if (num_to_scan == 0)
		return;					/* nothing to do */

	WritebackContextInit(&wb_context, &checkpoint_flush_after);

	TRACE_POSTGRESQL_BUFFER_SYNC_START(NBuffers, num_to_scan);

	/*
	 * Sort buffers that need to be written to reduce the likelihood of random
	 * IO. The sorting is also important for the implementation of balancing
	 * writes between tablespaces. Without balancing writes we'd potentially
	 * end up writing to the tablespaces one-by-one; possibly overloading the
	 * underlying system.
	 */
	qsort(CkptBufferIds, num_to_scan, sizeof(CkptSortItem),
		  ckpt_buforder_comparator);

	num_spaces = 0;

	/*
	 * Allocate progress status for each tablespace with buffers that need to
	 * be flushed. This requires the to-be-flushed array to be sorted.
	 */
	last_tsid = InvalidOid;
	for (i = 0; i < num_to_scan; i++)
	{
		CkptTsStatus *s;
		Oid			cur_tsid;

		cur_tsid = CkptBufferIds[i].tsId;

		/*
		 * Grow array of per-tablespace status structs, every time a new
		 * tablespace is found.
		 */
		if (last_tsid == InvalidOid || last_tsid != cur_tsid)
		{
			Size		sz;

			num_spaces++;

			/*
			 * Not worth adding grow-by-power-of-2 logic here - even with a
			 * few hundred tablespaces this should be fine.
			 */
			sz = sizeof(CkptTsStatus) * num_spaces;

			if (per_ts_stat == NULL)
				per_ts_stat = (CkptTsStatus *) palloc(sz);
			else
				per_ts_stat = (CkptTsStatus *) repalloc(per_ts_stat, sz);

			s = &per_ts_stat[num_spaces - 1];
			memset(s, 0, sizeof(*s));
			s->tsId = cur_tsid;

			/*
			 * The first buffer in this tablespace. As CkptBufferIds is sorted
			 * by tablespace all (s->num_to_scan) buffers in this tablespace
			 * will follow afterwards.
			 */
			s->index = i;

			/*
			 * progress_slice will be determined once we know how many buffers
			 * are in each tablespace, i.e. after this loop.
			 */

			last_tsid = cur_tsid;
		}
		else
		{
			s = &per_ts_stat[num_spaces - 1];
		}

		s->num_to_scan++;
	}

	Assert(num_spaces > 0);

	/*
	 * Build a min-heap over the write-progress in the individual tablespaces,
	 * and compute how large a portion of the total progress a single
	 * processed buffer is.
	 */
	ts_heap = binaryheap_allocate(num_spaces,
								  ts_ckpt_progress_comparator,
								  NULL);

	for (i = 0; i < num_spaces; i++)
	{
		CkptTsStatus *ts_stat = &per_ts_stat[i];

		ts_stat->progress_slice = (float8) num_to_scan / ts_stat->num_to_scan;

		binaryheap_add_unordered(ts_heap, PointerGetDatum(ts_stat));
	}

	binaryheap_build(ts_heap);

	/*
	 * Iterate through to-be-checkpointed buffers and write the ones (still)
	 * marked with BM_CHECKPOINT_NEEDED. The writes are balanced between
	 * tablespaces; otherwise the sorting would lead to only one tablespace
	 * receiving writes at a time, making inefficient use of the hardware.
	 */
	num_processed = 0;
	num_written = 0;
	while (!binaryheap_empty(ts_heap))
	{
		BufferDesc *bufHdr = NULL;
		CkptTsStatus *ts_stat = (CkptTsStatus *)
		DatumGetPointer(binaryheap_first(ts_heap));

		buf_id = CkptBufferIds[ts_stat->index].buf_id;
		Assert(buf_id != -1);

		bufHdr = GetBufferDescriptor(buf_id);

		num_processed++;

		/*
		 * We don't need to acquire the lock here, because we're only looking
		 * at a single bit. It's possible that someone else writes the buffer
		 * and clears the flag right after we check, but that doesn't matter
		 * since SyncOneBuffer will then do nothing.  However, there is a
		 * further race condition: it's conceivable that between the time we
		 * examine the bit here and the time SyncOneBuffer acquires the lock,
		 * someone else not only wrote the buffer but replaced it with another
		 * page and dirtied it.  In that improbable case, SyncOneBuffer will
		 * write the buffer though we didn't need to.  It doesn't seem worth
		 * guarding against this, though.
		 */
		if (pg_atomic_read_u32(&bufHdr->state) & BM_CHECKPOINT_NEEDED)
		{
			if (SyncOneBuffer(buf_id, false, &wb_context) & BUF_WRITTEN)
			{
				TRACE_POSTGRESQL_BUFFER_SYNC_WRITTEN(buf_id);
				BgWriterStats.m_buf_written_checkpoints++;
				num_written++;
			}
		}

		/*
		 * Measure progress independent of actually having to flush the buffer
		 * - otherwise writing become unbalanced.
		 */
		ts_stat->progress += ts_stat->progress_slice;
		ts_stat->num_scanned++;
		ts_stat->index++;

		/* Have all the buffers from the tablespace been processed? */
		if (ts_stat->num_scanned == ts_stat->num_to_scan)
		{
			binaryheap_remove_first(ts_heap);
		}
		else
		{
			/* update heap with the new progress */
			binaryheap_replace_first(ts_heap, PointerGetDatum(ts_stat));
		}

		/*
		 * Sleep to throttle our I/O rate.
		 */
		CheckpointWriteDelay(flags, (double) num_processed / num_to_scan);
	}

	/* issue all pending flushes */
	IssuePendingWritebacks(&wb_context);

	pfree(per_ts_stat);
	per_ts_stat = NULL;
	binaryheap_free(ts_heap);

	/*
	 * Update checkpoint statistics. As noted above, this doesn't include
	 * buffers written by other backends or bgwriter scan.
	 */
	CheckpointStats.ckpt_bufs_written += num_written;

	TRACE_POSTGRESQL_BUFFER_SYNC_DONE(NBuffers, num_written, num_to_scan);
}

/*
 * BgBufferSync -- Write out some dirty buffers in the pool.
 *
 * This is called periodically by the background writer process.
 *
 * Returns true if it's appropriate for the bgwriter process to go into
 * low-power hibernation mode.  (This happens if the strategy clock sweep
 * has been "lapped" and no buffer allocations have occurred recently,
 * or if the bgwriter has been effectively disabled by setting
 * bgwriter_lru_maxpages to 0.)
 */
bool
BgBufferSync(WritebackContext *wb_context)
{
	/* info obtained from freelist.c */
	int			strategy_buf_id;
	uint32		strategy_passes;
	uint32		recent_alloc;

	/*
	 * Information saved between calls so we can determine the strategy
	 * point's advance rate and avoid scanning already-cleaned buffers.
	 */
	static bool saved_info_valid = false;
	static int	prev_strategy_buf_id;
	static uint32 prev_strategy_passes;
	static int	next_to_clean;
	static uint32 next_passes;

	/* Moving averages of allocation rate and clean-buffer density */
	static float smoothed_alloc = 0;
	static float smoothed_density = 10.0;

	/* Potentially these could be tunables, but for now, not */
	float		smoothing_samples = 16;
	float		scan_whole_pool_milliseconds = 120000.0;

	/* Used to compute how far we scan ahead */
	long		strategy_delta;
	int			bufs_to_lap;
	int			bufs_ahead;
	float		scans_per_alloc;
	int			reusable_buffers_est;
	int			upcoming_alloc_est;
	int			min_scan_buffers;

	/* Variables for the scanning loop proper */
	int			num_to_scan;
	int			num_written;
	int			reusable_buffers;

	/* Variables for final smoothed_density update */
	long		new_strategy_delta;
	uint32		new_recent_alloc;

	/*
	 * Find out where the freelist clock sweep currently is, and how many
	 * buffer allocations have happened since our last call.
	 */
	strategy_buf_id = StrategySyncStart(&strategy_passes, &recent_alloc);

	/* Report buffer alloc counts to pgstat */
	BgWriterStats.m_buf_alloc += recent_alloc;

	/*
	 * If we're not running the LRU scan, just stop after doing the stats
	 * stuff.  We mark the saved state invalid so that we can recover sanely
	 * if LRU scan is turned back on later.
	 */
	if (bgwriter_lru_maxpages <= 0)
	{
		saved_info_valid = false;
		return true;
	}

	/*
	 * Compute strategy_delta = how many buffers have been scanned by the
	 * clock sweep since last time.  If first time through, assume none. Then
	 * see if we are still ahead of the clock sweep, and if so, how many
	 * buffers we could scan before we'd catch up with it and "lap" it. Note:
	 * weird-looking coding of xxx_passes comparisons are to avoid bogus
	 * behavior when the passes counts wrap around.
	 */
	if (saved_info_valid)
	{
		int32		passes_delta = strategy_passes - prev_strategy_passes;

		strategy_delta = strategy_buf_id - prev_strategy_buf_id;
		strategy_delta += (long) passes_delta *NBuffers;

		Assert(strategy_delta >= 0);

		if ((int32) (next_passes - strategy_passes) > 0)
		{
			/* we're one pass ahead of the strategy point */
			bufs_to_lap = strategy_buf_id - next_to_clean;
#ifdef BGW_DEBUG
			elog(DEBUG2, "bgwriter ahead: bgw %u-%u strategy %u-%u delta=%ld lap=%d",
				 next_passes, next_to_clean,
				 strategy_passes, strategy_buf_id,
				 strategy_delta, bufs_to_lap);
#endif
		}
		else if (next_passes == strategy_passes &&
				 next_to_clean >= strategy_buf_id)
		{
			/* on same pass, but ahead or at least not behind */
			bufs_to_lap = NBuffers - (next_to_clean - strategy_buf_id);
#ifdef BGW_DEBUG
			elog(DEBUG2, "bgwriter ahead: bgw %u-%u strategy %u-%u delta=%ld lap=%d",
				 next_passes, next_to_clean,
				 strategy_passes, strategy_buf_id,
				 strategy_delta, bufs_to_lap);
#endif
		}
		else
		{
			/*
			 * We're behind, so skip forward to the strategy point and start
			 * cleaning from there.
			 */
#ifdef BGW_DEBUG
			elog(DEBUG2, "bgwriter behind: bgw %u-%u strategy %u-%u delta=%ld",
				 next_passes, next_to_clean,
				 strategy_passes, strategy_buf_id,
				 strategy_delta);
#endif
			next_to_clean = strategy_buf_id;
			next_passes = strategy_passes;
			bufs_to_lap = NBuffers;
		}
	}
	else
	{
		/*
		 * Initializing at startup or after LRU scanning had been off. Always
		 * start at the strategy point.
		 */
#ifdef BGW_DEBUG
		elog(DEBUG2, "bgwriter initializing: strategy %u-%u",
			 strategy_passes, strategy_buf_id);
#endif
		strategy_delta = 0;
		next_to_clean = strategy_buf_id;
		next_passes = strategy_passes;
		bufs_to_lap = NBuffers;
	}

	/* Update saved info for next time */
	prev_strategy_buf_id = strategy_buf_id;
	prev_strategy_passes = strategy_passes;
	saved_info_valid = true;

	/*
	 * Compute how many buffers had to be scanned for each new allocation, ie,
	 * 1/density of reusable buffers, and track a moving average of that.
	 *
	 * If the strategy point didn't move, we don't update the density estimate
	 */
	if (strategy_delta > 0 && recent_alloc > 0)
	{
		scans_per_alloc = (float) strategy_delta / (float) recent_alloc;
		smoothed_density += (scans_per_alloc - smoothed_density) /
			smoothing_samples;
	}

	/*
	 * Estimate how many reusable buffers there are between the current
	 * strategy point and where we've scanned ahead to, based on the smoothed
	 * density estimate.
	 */
	bufs_ahead = NBuffers - bufs_to_lap;
	reusable_buffers_est = (float) bufs_ahead / smoothed_density;

	/*
	 * Track a moving average of recent buffer allocations.  Here, rather than
	 * a true average we want a fast-attack, slow-decline behavior: we
	 * immediately follow any increase.
	 */
	if (smoothed_alloc <= (float) recent_alloc)
		smoothed_alloc = recent_alloc;
	else
		smoothed_alloc += ((float) recent_alloc - smoothed_alloc) /
			smoothing_samples;

	/* Scale the estimate by a GUC to allow more aggressive tuning. */
	upcoming_alloc_est = (int) (smoothed_alloc * bgwriter_lru_multiplier);

	/*
	 * If recent_alloc remains at zero for many cycles, smoothed_alloc will
	 * eventually underflow to zero, and the underflows produce annoying
	 * kernel warnings on some platforms.  Once upcoming_alloc_est has gone to
	 * zero, there's no point in tracking smaller and smaller values of
	 * smoothed_alloc, so just reset it to exactly zero to avoid this
	 * syndrome.  It will pop back up as soon as recent_alloc increases.
	 */
	if (upcoming_alloc_est == 0)
		smoothed_alloc = 0;

	/*
	 * Even in cases where there's been little or no buffer allocation
	 * activity, we want to make a small amount of progress through the buffer
	 * cache so that as many reusable buffers as possible are clean after an
	 * idle period.
	 *
	 * (scan_whole_pool_milliseconds / BgWriterDelay) computes how many times
	 * the BGW will be called during the scan_whole_pool time; slice the
	 * buffer pool into that many sections.
	 */
	min_scan_buffers = (int) (NBuffers / (scan_whole_pool_milliseconds / BgWriterDelay));

	if (upcoming_alloc_est < (min_scan_buffers + reusable_buffers_est))
	{
#ifdef BGW_DEBUG
		elog(DEBUG2, "bgwriter: alloc_est=%d too small, using min=%d + reusable_est=%d",
			 upcoming_alloc_est, min_scan_buffers, reusable_buffers_est);
#endif
		upcoming_alloc_est = min_scan_buffers + reusable_buffers_est;
	}

	/*
	 * Now write out dirty reusable buffers, working forward from the
	 * next_to_clean point, until we have lapped the strategy scan, or cleaned
	 * enough buffers to match our estimate of the next cycle's allocation
	 * requirements, or hit the bgwriter_lru_maxpages limit.
	 */

	/* Make sure we can handle the pin inside SyncOneBuffer */
	ResourceOwnerEnlargeBuffers(CurrentResourceOwner);

	num_to_scan = bufs_to_lap;
	num_written = 0;
	reusable_buffers = reusable_buffers_est;

	/* Execute the LRU scan */
	while (num_to_scan > 0 && reusable_buffers < upcoming_alloc_est)
	{
		int			sync_state = SyncOneBuffer(next_to_clean, true,
											   wb_context);

		if (++next_to_clean >= NBuffers)
		{
			next_to_clean = 0;
			next_passes++;
		}
		num_to_scan--;

		if (sync_state & BUF_WRITTEN)
		{
			reusable_buffers++;
			if (++num_written >= bgwriter_lru_maxpages)
			{
				BgWriterStats.m_maxwritten_clean++;
				break;
			}
		}
		else if (sync_state & BUF_REUSABLE)
			reusable_buffers++;
	}

	BgWriterStats.m_buf_written_clean += num_written;

#ifdef BGW_DEBUG
	elog(DEBUG1, "bgwriter: recent_alloc=%u smoothed=%.2f delta=%ld ahead=%d density=%.2f reusable_est=%d upcoming_est=%d scanned=%d wrote=%d reusable=%d",
		 recent_alloc, smoothed_alloc, strategy_delta, bufs_ahead,
		 smoothed_density, reusable_buffers_est, upcoming_alloc_est,
		 bufs_to_lap - num_to_scan,
		 num_written,
		 reusable_buffers - reusable_buffers_est);
#endif

	/*
	 * Consider the above scan as being like a new allocation scan.
	 * Characterize its density and update the smoothed one based on it. This
	 * effectively halves the moving average period in cases where both the
	 * strategy and the background writer are doing some useful scanning,
	 * which is helpful because a long memory isn't as desirable on the
	 * density estimates.
	 */
	new_strategy_delta = bufs_to_lap - num_to_scan;
	new_recent_alloc = reusable_buffers - reusable_buffers_est;
	if (new_strategy_delta > 0 && new_recent_alloc > 0)
	{
		scans_per_alloc = (float) new_strategy_delta / (float) new_recent_alloc;
		smoothed_density += (scans_per_alloc - smoothed_density) /
			smoothing_samples;

#ifdef BGW_DEBUG
		elog(DEBUG2, "bgwriter: cleaner density alloc=%u scan=%ld density=%.2f new smoothed=%.2f",
			 new_recent_alloc, new_strategy_delta,
			 scans_per_alloc, smoothed_density);
#endif
	}

	/* Return true if OK to hibernate */
	return (bufs_to_lap == 0 && recent_alloc == 0);
}

/*
 * SyncOneBuffer -- process a single buffer during syncing.
 *
 * If skip_recently_used is true, we don't write currently-pinned buffers, nor
 * buffers marked recently used, as these are not replacement candidates.
 *
 * Returns a bitmask containing the following flag bits:
 *	BUF_WRITTEN: we wrote the buffer.
 *	BUF_REUSABLE: buffer is available for replacement, ie, it has
 *		pin count 0 and usage count 0.
 *
 * (BUF_WRITTEN could be set in error if FlushBuffers finds the buffer clean
 * after locking it, but we don't care all that much.)
 *
 * Note: caller must have done ResourceOwnerEnlargeBuffers.
 */
static int
SyncOneBuffer(int buf_id, bool skip_recently_used, WritebackContext *wb_context)
{
	BufferDesc *bufHdr = GetBufferDescriptor(buf_id);
	int			result = 0;
	uint32		buf_state;
	BufferTag	tag;

	ReservePrivateRefCountEntry();

	/*
	 * Check whether buffer needs writing.
	 *
	 * We can make this check without taking the buffer content lock so long
	 * as we mark pages dirty in access methods *before* logging changes with
	 * XLogInsert(): if someone marks the buffer dirty just after our check we
	 * don't worry because our checkpoint.redo points before log record for
	 * upcoming changes and so we are not required to write such dirty buffer.
	 */
	buf_state = LockBufHdr(bufHdr);

	if (BUF_STATE_GET_REFCOUNT(buf_state) == 0 &&
		BUF_STATE_GET_USAGECOUNT(buf_state) == 0)
	{
		result |= BUF_REUSABLE;
	}
	else if (skip_recently_used)
	{
		/* Caller told us not to write recently-used buffers */
		UnlockBufHdr(bufHdr, buf_state);
		return result;
	}

	if (!(buf_state & BM_VALID) || !(buf_state & BM_DIRTY))
	{
		/* It's clean, so nothing to do */
		UnlockBufHdr(bufHdr, buf_state);
		return result;
	}

	/*
	 * Pin it, share-lock it, write it.  (FlushBuffer will do nothing if the
	 * buffer is clean by the time we've locked it.)
	 */
	PinBuffer_Locked(bufHdr);
	LWLockAcquire(BufferDescriptorGetContentLock(bufHdr), LW_SHARED);

	FlushBuffer(bufHdr, NULL);

	LWLockRelease(BufferDescriptorGetContentLock(bufHdr));

	tag = bufHdr->tag;

	UnpinBuffer(bufHdr, true);

	ScheduleBufferTagForWriteback(wb_context, &tag);

	return result | BUF_WRITTEN;
}

/*
 *		AtEOXact_Buffers - clean up at end of transaction.
 *
 *		As of PostgreSQL 8.0, buffer pins should get released by the
 *		ResourceOwner mechanism.  This routine is just a debugging
 *		cross-check that no pins remain.
 */
void
AtEOXact_Buffers(bool isCommit)
{
	CheckForBufferLeaks();

	AtEOXact_LocalBuffers(isCommit);

	Assert(PrivateRefCountOverflowed == 0);
}

/*
 * Initialize access to shared buffer pool
 *
 * This is called during backend startup (whether standalone or under the
 * postmaster).  It sets up for this backend's access to the already-existing
 * buffer pool.
 *
 * NB: this is called before InitProcess(), so we do not have a PGPROC and
 * cannot do LWLockAcquire; hence we can't actually access stuff in
 * shared memory yet.  We are only initializing local data here.
 * (See also InitBufferPoolBackend)
 */
void
InitBufferPoolAccess(void)
{
	HASHCTL		hash_ctl;

	memset(&PrivateRefCountArray, 0, sizeof(PrivateRefCountArray));

	MemSet(&hash_ctl, 0, sizeof(hash_ctl));
	hash_ctl.keysize = sizeof(int32);
	hash_ctl.entrysize = sizeof(PrivateRefCountEntry);

	PrivateRefCountHash = hash_create("PrivateRefCount", 100, &hash_ctl,
									  HASH_ELEM | HASH_BLOBS);
}

/*
 * InitBufferPoolBackend --- second-stage initialization of a new backend
 *
 * This is called after we have acquired a PGPROC and so can safely get
 * LWLocks.  We don't currently need to do anything at this stage ...
 * except register a shmem-exit callback.  AtProcExit_Buffers needs LWLock
 * access, and thereby has to be called at the corresponding phase of
 * backend shutdown.
 */
void
InitBufferPoolBackend(void)
{
	on_shmem_exit(AtProcExit_Buffers, 0);
}

/*
 * During backend exit, ensure that we released all shared-buffer locks and
 * assert that we have no remaining pins.
 */
static void
AtProcExit_Buffers(int code, Datum arg)
{
	AbortBufferIO();
	UnlockBuffers();

	CheckForBufferLeaks();

	/* localbuf.c needs a chance too */
	AtProcExit_LocalBuffers();
}

/*
 *		CheckForBufferLeaks - ensure this backend holds no buffer pins
 *
 *		As of PostgreSQL 8.0, buffer pins should get released by the
 *		ResourceOwner mechanism.  This routine is just a debugging
 *		cross-check that no pins remain.
 */
static void
CheckForBufferLeaks(void)
{
#ifdef USE_ASSERT_CHECKING
	int			RefCountErrors = 0;
	PrivateRefCountEntry *res;
	int			i;

	/* check the array */
	for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
	{
		res = &PrivateRefCountArray[i];

		if (res->buffer != InvalidBuffer)
		{
			PrintBufferLeakWarning(res->buffer);
			RefCountErrors++;
		}
	}

	/* if necessary search the hash */
	if (PrivateRefCountOverflowed)
	{
		HASH_SEQ_STATUS hstat;

		hash_seq_init(&hstat, PrivateRefCountHash);
		while ((res = (PrivateRefCountEntry *) hash_seq_search(&hstat)) != NULL)
		{
			PrintBufferLeakWarning(res->buffer);
			RefCountErrors++;
		}

	}

	Assert(RefCountErrors == 0);
#endif
}

/*
 * Helper routine to issue warnings when a buffer is unexpectedly pinned
 */
void
PrintBufferLeakWarning(Buffer buffer)
{
	BufferDesc *buf;
	int32		loccount;
	char	   *path;
	BackendId	backend;
	uint32		buf_state;

	Assert(BufferIsValid(buffer));
	if (BufferIsLocal(buffer))
	{
		buf = GetLocalBufferDescriptor(-buffer - 1);
		loccount = LocalRefCount[-buffer - 1];
		backend = MyBackendId;
	}
	else
	{
		buf = GetBufferDescriptor(buffer - 1);
		loccount = GetPrivateRefCount(buffer);
		backend = InvalidBackendId;
	}

	/* theoretically we should lock the bufhdr here */
	path = relpathbackend(buf->tag.rnode, backend, buf->tag.forkNum);
	buf_state = pg_atomic_read_u32(&buf->state);
	elog(WARNING,
		 "buffer refcount leak: [%03d] "
		 "(rel=%s, blockNum=%u, flags=0x%x, refcount=%u %d)",
		 buffer, path,
		 buf->tag.blockNum, buf_state & BUF_FLAG_MASK,
		 BUF_STATE_GET_REFCOUNT(buf_state), loccount);
	pfree(path);
}

/*
 * CheckPointBuffers
 *
 * Flush all dirty blocks in buffer pool to disk at checkpoint time.
 *
 * Note: temporary relations do not participate in checkpoints, so they don't
 * need to be flushed.
 */
void
CheckPointBuffers(int flags)
{
	TRACE_POSTGRESQL_BUFFER_CHECKPOINT_START(flags);
	CheckpointStats.ckpt_write_t = GetCurrentTimestamp();
	BufferSync(flags);
	CheckpointStats.ckpt_sync_t = GetCurrentTimestamp();
	TRACE_POSTGRESQL_BUFFER_CHECKPOINT_SYNC_START();
	smgrsync();
	CheckpointStats.ckpt_sync_end_t = GetCurrentTimestamp();
	TRACE_POSTGRESQL_BUFFER_CHECKPOINT_DONE();
}


/*
 * Do whatever is needed to prepare for commit at the bufmgr and smgr levels
 */
void
BufmgrCommit(void)
{
	/* Nothing to do in bufmgr anymore... */
}

/*
 * BufferGetBlockNumber
 *		Returns the block number associated with a buffer.
 *
 * Note:
 *		Assumes that the buffer is valid and pinned, else the
 *		value may be obsolete immediately...
 */
BlockNumber
BufferGetBlockNumber(Buffer buffer)
{
	BufferDesc *bufHdr;

	Assert(BufferIsPinned(buffer));

	if (BufferIsLocal(buffer))
		bufHdr = GetLocalBufferDescriptor(-buffer - 1);
	else
		bufHdr = GetBufferDescriptor(buffer - 1);

	/* pinned, so OK to read tag without spinlock */
	return bufHdr->tag.blockNum;
}

/*
 * BufferGetTag
 *		Returns the relfilenode, fork number and block number associated with
 *		a buffer.
 */
void
BufferGetTag(Buffer buffer, RelFileNode *rnode, ForkNumber *forknum,
			 BlockNumber *blknum)
{
	BufferDesc *bufHdr;

	/* Do the same checks as BufferGetBlockNumber. */
	Assert(BufferIsPinned(buffer));

	if (BufferIsLocal(buffer))
		bufHdr = GetLocalBufferDescriptor(-buffer - 1);
	else
		bufHdr = GetBufferDescriptor(buffer - 1);

	/* pinned, so OK to read tag without spinlock */
	*rnode = bufHdr->tag.rnode;
	*forknum = bufHdr->tag.forkNum;
	*blknum = bufHdr->tag.blockNum;
}

/*
 * FlushBuffer
 *		Physically write out a shared buffer.
 *
 * NOTE: this actually just passes the buffer contents to the kernel; the
 * real write to disk won't happen until the kernel feels like it.  This
 * is okay from our point of view since we can redo the changes from WAL.
 * However, we will need to force the changes to disk via fsync before
 * we can checkpoint WAL.
 *
 * The caller must hold a pin on the buffer and have share-locked the
 * buffer contents.  (Note: a share-lock does not prevent updates of
 * hint bits in the buffer, so the page could change while the write
 * is in progress, but we assume that that will not invalidate the data
 * written.)
 *
 * If the caller has an smgr reference for the buffer's relation, pass it
 * as the second parameter.  If not, pass NULL.
 */
static void
FlushBuffer(BufferDesc *buf, SMgrRelation reln)
{
	XLogRecPtr	recptr;
	ErrorContextCallback errcallback;
	instr_time	io_start,
				io_time;
	Block		bufBlock;
	char	   *bufToWrite;
	uint32		buf_state;

	/*
	 * Acquire the buffer's io_in_progress lock.  If StartBufferIO returns
	 * false, then someone else flushed the buffer before we could, so we need
	 * not do anything.
	 */
	if (!StartBufferIO(buf, false))
		return;

	/* Setup error traceback support for ereport() */
	errcallback.callback = shared_buffer_write_error_callback;
	errcallback.arg = (void *) buf;
	errcallback.previous = error_context_stack;
	error_context_stack = &errcallback;

	/* Find smgr relation for buffer */
	if (reln == NULL)
		reln = smgropen(buf->tag.rnode, InvalidBackendId);

	TRACE_POSTGRESQL_BUFFER_FLUSH_START(buf->tag.forkNum,
										buf->tag.blockNum,
										reln->smgr_rnode.node.spcNode,
										reln->smgr_rnode.node.dbNode,
										reln->smgr_rnode.node.relNode);

	buf_state = LockBufHdr(buf);

	/*
	 * Run PageGetLSN while holding header lock, since we don't have the
	 * buffer locked exclusively in all cases.
	 */
	recptr = BufferGetLSN(buf);

	/* To check if block content changes while flushing. - vadim 01/17/97 */
	buf_state &= ~BM_JUST_DIRTIED;
	UnlockBufHdr(buf, buf_state);

	/*
	 * Force XLOG flush up to buffer's LSN.  This implements the basic WAL
	 * rule that log updates must hit disk before any of the data-file changes
	 * they describe do.
	 *
	 * However, this rule does not apply to unlogged relations, which will be
	 * lost after a crash anyway.  Most unlogged relation pages do not bear
	 * LSNs since we never emit WAL records for them, and therefore flushing
	 * up through the buffer LSN would be useless, but harmless.  However,
	 * GiST indexes use LSNs internally to track page-splits, and therefore
	 * unlogged GiST pages bear "fake" LSNs generated by
	 * GetFakeLSNForUnloggedRel.  It is unlikely but possible that the fake
	 * LSN counter could advance past the WAL insertion point; and if it did
	 * happen, attempting to flush WAL through that location would fail, with
	 * disastrous system-wide consequences.  To make sure that can't happen,
	 * skip the flush if the buffer isn't permanent.
	 */
	if (buf_state & BM_PERMANENT)
		XLogFlush(recptr);

	/*
	 * Now it's safe to write buffer to disk. Note that no one else should
	 * have been able to write it while we were busy with log flushing because
	 * we have the io_in_progress lock.
	 */
	bufBlock = BufHdrGetBlock(buf);

	/*
	 * Update page checksum if desired.  Since we have only shared lock on the
	 * buffer, other processes might be updating hint bits in it, so we must
	 * copy the page to private storage if we do checksumming.
	 */
	bufToWrite = PageSetChecksumCopy((Page) bufBlock, buf->tag.blockNum);

	if (track_io_timing)
		INSTR_TIME_SET_CURRENT(io_start);

	/*
	 * bufToWrite is either the shared buffer or a copy, as appropriate.
	 */
	smgrwrite(reln,
			  buf->tag.forkNum,
			  buf->tag.blockNum,
			  bufToWrite,
			  false);

	if (track_io_timing)
	{
		INSTR_TIME_SET_CURRENT(io_time);
		INSTR_TIME_SUBTRACT(io_time, io_start);
		pgstat_count_buffer_write_time(INSTR_TIME_GET_MICROSEC(io_time));
		INSTR_TIME_ADD(pgBufferUsage.blk_write_time, io_time);
	}

	pgBufferUsage.shared_blks_written++;

	/*
	 * Mark the buffer as clean (unless BM_JUST_DIRTIED has become set) and
	 * end the io_in_progress state.
	 */
	TerminateBufferIO(buf, true, 0);

	TRACE_POSTGRESQL_BUFFER_FLUSH_DONE(buf->tag.forkNum,
									   buf->tag.blockNum,
									   reln->smgr_rnode.node.spcNode,
									   reln->smgr_rnode.node.dbNode,
									   reln->smgr_rnode.node.relNode);

	/* Pop the error context stack */
	error_context_stack = errcallback.previous;
}

/*
 * RelationGetNumberOfBlocksInFork
 *		Determines the current number of pages in the specified relation fork.
 */
BlockNumber
RelationGetNumberOfBlocksInFork(Relation relation, ForkNumber forkNum)
{
	/* Open it at the smgr level if not already done */
	RelationOpenSmgr(relation);

	return smgrnblocks(relation->rd_smgr, forkNum);
}

/*
 * BufferIsPermanent
 *		Determines whether a buffer will potentially still be around after
 *		a crash.  Caller must hold a buffer pin.
 */
bool
BufferIsPermanent(Buffer buffer)
{
	BufferDesc *bufHdr;

	/* Local buffers are used only for temp relations. */
	if (BufferIsLocal(buffer))
		return false;

	/* Make sure we've got a real buffer, and that we hold a pin on it. */
	Assert(BufferIsValid(buffer));
	Assert(BufferIsPinned(buffer));

	/*
	 * BM_PERMANENT can't be changed while we hold a pin on the buffer, so we
	 * need not bother with the buffer header spinlock.  Even if someone else
	 * changes the buffer header state while we're doing this, the state is
	 * changed atomically, so we'll read the old value or the new value, but
	 * not random garbage.
	 */
	bufHdr = GetBufferDescriptor(buffer - 1);
	return (pg_atomic_read_u32(&bufHdr->state) & BM_PERMANENT) != 0;
}

/*
 * BufferGetLSNAtomic
 *		Retrieves the LSN of the buffer atomically using a buffer header lock.
 *		This is necessary for some callers who may not have an exclusive lock
 *		on the buffer.
 */
XLogRecPtr
BufferGetLSNAtomic(Buffer buffer)
{
	BufferDesc *bufHdr = GetBufferDescriptor(buffer - 1);
	char	   *page = BufferGetPage(buffer);
	XLogRecPtr	lsn;
	uint32		buf_state;

	/*
	 * If we don't need locking for correctness, fastpath out.
	 */
	if (!XLogHintBitIsNeeded() || BufferIsLocal(buffer))
		return PageGetLSN(page);

	/* Make sure we've got a real buffer, and that we hold a pin on it. */
	Assert(BufferIsValid(buffer));
	Assert(BufferIsPinned(buffer));

	buf_state = LockBufHdr(bufHdr);
	lsn = PageGetLSN(page);
	UnlockBufHdr(bufHdr, buf_state);

	return lsn;
}

/* ---------------------------------------------------------------------
 *		DropRelFileNodeBuffers
 *
 *		This function removes from the buffer pool all the pages of the
 *		specified relation fork that have block numbers >= firstDelBlock.
 *		(In particular, with firstDelBlock = 0, all pages are removed.)
 *		Dirty pages are simply dropped, without bothering to write them
 *		out first.  Therefore, this is NOT rollback-able, and so should be
 *		used only with extreme caution!
 *
 *		Currently, this is called only from smgr.c when the underlying file
 *		is about to be deleted or truncated (firstDelBlock is needed for
 *		the truncation case).  The data in the affected pages would therefore
 *		be deleted momentarily anyway, and there is no point in writing it.
 *		It is the responsibility of higher-level code to ensure that the
 *		deletion or truncation does not lose any data that could be needed
 *		later.  It is also the responsibility of higher-level code to ensure
 *		that no other process could be trying to load more pages of the
 *		relation into buffers.
 *
 *		XXX currently it sequentially searches the buffer pool, should be
 *		changed to more clever ways of searching.  However, this routine
 *		is used only in code paths that aren't very performance-critical,
 *		and we shouldn't slow down the hot paths to make it faster ...
 * --------------------------------------------------------------------
 */
void
DropRelFileNodeBuffers(RelFileNodeBackend rnode, ForkNumber forkNum,
					   BlockNumber firstDelBlock)
{
	int			i;

	/* If it's a local relation, it's localbuf.c's problem. */
	if (RelFileNodeBackendIsTemp(rnode))
	{
		if (rnode.backend == MyBackendId)
			DropRelFileNodeLocalBuffers(rnode.node, forkNum, firstDelBlock);
		return;
	}

	for (i = 0; i < NBuffers; i++)
	{
		BufferDesc *bufHdr = GetBufferDescriptor(i);
		uint32		buf_state;

		/*
		 * We can make this a tad faster by prechecking the buffer tag before
		 * we attempt to lock the buffer; this saves a lot of lock
		 * acquisitions in typical cases.  It should be safe because the
		 * caller must have AccessExclusiveLock on the relation, or some other
		 * reason to be certain that no one is loading new pages of the rel
		 * into the buffer pool.  (Otherwise we might well miss such pages
		 * entirely.)  Therefore, while the tag might be changing while we
		 * look at it, it can't be changing *to* a value we care about, only
		 * *away* from such a value.  So false negatives are impossible, and
		 * false positives are safe because we'll recheck after getting the
		 * buffer lock.
		 *
		 * We could check forkNum and blockNum as well as the rnode, but the
		 * incremental win from doing so seems small.
		 */
		if (!RelFileNodeEquals(bufHdr->tag.rnode, rnode.node))
			continue;

		buf_state = LockBufHdr(bufHdr);
		if (RelFileNodeEquals(bufHdr->tag.rnode, rnode.node) &&
			bufHdr->tag.forkNum == forkNum &&
			bufHdr->tag.blockNum >= firstDelBlock)
			InvalidateBuffer(bufHdr);	/* releases spinlock */
		else
			UnlockBufHdr(bufHdr, buf_state);
	}
}

/* ---------------------------------------------------------------------
 *		DropRelFileNodesAllBuffers
 *
 *		This function removes from the buffer pool all the pages of all
 *		forks of the specified relations.  It's equivalent to calling
 *		DropRelFileNodeBuffers once per fork per relation with
 *		firstDelBlock = 0.
 * --------------------------------------------------------------------
 */
void
DropRelFileNodesAllBuffers(RelFileNodeBackend *rnodes, int nnodes)
{
	int			i,
				n = 0;
	RelFileNode *nodes;
	bool		use_bsearch;

	if (nnodes == 0)
		return;

	nodes = palloc(sizeof(RelFileNode) * nnodes);		/* non-local relations */

	/* If it's a local relation, it's localbuf.c's problem. */
	for (i = 0; i < nnodes; i++)
	{
		if (RelFileNodeBackendIsTemp(rnodes[i]))
		{
			if (rnodes[i].backend == MyBackendId)
				DropRelFileNodeAllLocalBuffers(rnodes[i].node);
		}
		else
			nodes[n++] = rnodes[i].node;
	}

	/*
	 * If there are no non-local relations, then we're done. Release the
	 * memory and return.
	 */
	if (n == 0)
	{
		pfree(nodes);
		return;
	}

	/*
	 * For low number of relations to drop just use a simple walk through, to
	 * save the bsearch overhead. The threshold to use is rather a guess than
	 * an exactly determined value, as it depends on many factors (CPU and RAM
	 * speeds, amount of shared buffers etc.).
	 */
	use_bsearch = n > DROP_RELS_BSEARCH_THRESHOLD;

	/* sort the list of rnodes if necessary */
	if (use_bsearch)
		pg_qsort(nodes, n, sizeof(RelFileNode), rnode_comparator);

	for (i = 0; i < NBuffers; i++)
	{
		RelFileNode *rnode = NULL;
		BufferDesc *bufHdr = GetBufferDescriptor(i);
		uint32		buf_state;

		/*
		 * As in DropRelFileNodeBuffers, an unlocked precheck should be safe
		 * and saves some cycles.
		 */

		if (!use_bsearch)
		{
			int			j;

			for (j = 0; j < n; j++)
			{
				if (RelFileNodeEquals(bufHdr->tag.rnode, nodes[j]))
				{
					rnode = &nodes[j];
					break;
				}
			}
		}
		else
		{
			rnode = bsearch((const void *) &(bufHdr->tag.rnode),
							nodes, n, sizeof(RelFileNode),
							rnode_comparator);
		}

		/* buffer doesn't belong to any of the given relfilenodes; skip it */
		if (rnode == NULL)
			continue;

		buf_state = LockBufHdr(bufHdr);
		if (RelFileNodeEquals(bufHdr->tag.rnode, (*rnode)))
			InvalidateBuffer(bufHdr);	/* releases spinlock */
		else
			UnlockBufHdr(bufHdr, buf_state);
	}

	pfree(nodes);
}

/* ---------------------------------------------------------------------
 *		DropDatabaseBuffers
 *
 *		This function removes all the buffers in the buffer cache for a
 *		particular database.  Dirty pages are simply dropped, without
 *		bothering to write them out first.  This is used when we destroy a
 *		database, to avoid trying to flush data to disk when the directory
 *		tree no longer exists.  Implementation is pretty similar to
 *		DropRelFileNodeBuffers() which is for destroying just one relation.
 * --------------------------------------------------------------------
 */
void
DropDatabaseBuffers(Oid dbid)
{
	int			i;

	/*
	 * We needn't consider local buffers, since by assumption the target
	 * database isn't our own.
	 */

	for (i = 0; i < NBuffers; i++)
	{
		BufferDesc *bufHdr = GetBufferDescriptor(i);
		uint32		buf_state;

		/*
		 * As in DropRelFileNodeBuffers, an unlocked precheck should be safe
		 * and saves some cycles.
		 */
		if (bufHdr->tag.rnode.dbNode != dbid)
			continue;

		buf_state = LockBufHdr(bufHdr);
		if (bufHdr->tag.rnode.dbNode == dbid)
			InvalidateBuffer(bufHdr);	/* releases spinlock */
		else
			UnlockBufHdr(bufHdr, buf_state);
	}
}

/* -----------------------------------------------------------------
 *		PrintBufferDescs
 *
 *		this function prints all the buffer descriptors, for debugging
 *		use only.
 * -----------------------------------------------------------------
 */
#ifdef NOT_USED
void
PrintBufferDescs(void)
{
	int			i;

	for (i = 0; i < NBuffers; ++i)
	{
		BufferDesc *buf = GetBufferDescriptor(i);
		Buffer		b = BufferDescriptorGetBuffer(buf);

		/* theoretically we should lock the bufhdr here */
		elog(LOG,
			 "[%02d] (freeNext=%d, rel=%s, "
			 "blockNum=%u, flags=0x%x, refcount=%u %d)",
			 i, buf->freeNext,
		  relpathbackend(buf->tag.rnode, InvalidBackendId, buf->tag.forkNum),
			 buf->tag.blockNum, buf->flags,
			 buf->refcount, GetPrivateRefCount(b));
	}
}
#endif

#ifdef NOT_USED
void
PrintPinnedBufs(void)
{
	int			i;

	for (i = 0; i < NBuffers; ++i)
	{
		BufferDesc *buf = GetBufferDescriptor(i);
		Buffer		b = BufferDescriptorGetBuffer(buf);

		if (GetPrivateRefCount(b) > 0)
		{
			/* theoretically we should lock the bufhdr here */
			elog(LOG,
				 "[%02d] (freeNext=%d, rel=%s, "
				 "blockNum=%u, flags=0x%x, refcount=%u %d)",
				 i, buf->freeNext,
				 relpathperm(buf->tag.rnode, buf->tag.forkNum),
				 buf->tag.blockNum, buf->flags,
				 buf->refcount, GetPrivateRefCount(b));
		}
	}
}
#endif

/* ---------------------------------------------------------------------
 *		FlushRelationBuffers
 *
 *		This function writes all dirty pages of a relation out to disk
 *		(or more accurately, out to kernel disk buffers), ensuring that the
 *		kernel has an up-to-date view of the relation.
 *
 *		Generally, the caller should be holding AccessExclusiveLock on the
 *		target relation to ensure that no other backend is busy dirtying
 *		more blocks of the relation; the effects can't be expected to last
 *		after the lock is released.
 *
 *		XXX currently it sequentially searches the buffer pool, should be
 *		changed to more clever ways of searching.  This routine is not
 *		used in any performance-critical code paths, so it's not worth
 *		adding additional overhead to normal paths to make it go faster;
 *		but see also DropRelFileNodeBuffers.
 * --------------------------------------------------------------------
 */
void
FlushRelationBuffers(Relation rel)
{
	int			i;
	BufferDesc *bufHdr;

	/* Open rel at the smgr level if not already done */
	RelationOpenSmgr(rel);

	if (RelationUsesLocalBuffers(rel))
	{
		for (i = 0; i < NLocBuffer; i++)
		{
			uint32		buf_state;

			bufHdr = GetLocalBufferDescriptor(i);
			if (RelFileNodeEquals(bufHdr->tag.rnode, rel->rd_node) &&
				((buf_state = pg_atomic_read_u32(&bufHdr->state)) &
				 (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
			{
				ErrorContextCallback errcallback;
				Page		localpage;

				localpage = (char *) LocalBufHdrGetBlock(bufHdr);

				/* Setup error traceback support for ereport() */
				errcallback.callback = local_buffer_write_error_callback;
				errcallback.arg = (void *) bufHdr;
				errcallback.previous = error_context_stack;
				error_context_stack = &errcallback;

				PageSetChecksumInplace(localpage, bufHdr->tag.blockNum);

				smgrwrite(rel->rd_smgr,
						  bufHdr->tag.forkNum,
						  bufHdr->tag.blockNum,
						  localpage,
						  false);

				buf_state &= ~(BM_DIRTY | BM_JUST_DIRTIED);
				pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state);

				/* Pop the error context stack */
				error_context_stack = errcallback.previous;
			}
		}

		return;
	}

	/* Make sure we can handle the pin inside the loop */
	ResourceOwnerEnlargeBuffers(CurrentResourceOwner);

	for (i = 0; i < NBuffers; i++)
	{
		uint32		buf_state;

		bufHdr = GetBufferDescriptor(i);

		/*
		 * As in DropRelFileNodeBuffers, an unlocked precheck should be safe
		 * and saves some cycles.
		 */
		if (!RelFileNodeEquals(bufHdr->tag.rnode, rel->rd_node))
			continue;

		ReservePrivateRefCountEntry();

		buf_state = LockBufHdr(bufHdr);
		if (RelFileNodeEquals(bufHdr->tag.rnode, rel->rd_node) &&
			(buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
		{
			PinBuffer_Locked(bufHdr);
			LWLockAcquire(BufferDescriptorGetContentLock(bufHdr), LW_SHARED);
			FlushBuffer(bufHdr, rel->rd_smgr);
			LWLockRelease(BufferDescriptorGetContentLock(bufHdr));
			UnpinBuffer(bufHdr, true);
		}
		else
			UnlockBufHdr(bufHdr, buf_state);
	}
}

/* ---------------------------------------------------------------------
 *		FlushDatabaseBuffers
 *
 *		This function writes all dirty pages of a database out to disk
 *		(or more accurately, out to kernel disk buffers), ensuring that the
 *		kernel has an up-to-date view of the database.
 *
 *		Generally, the caller should be holding an appropriate lock to ensure
 *		no other backend is active in the target database; otherwise more
 *		pages could get dirtied.
 *
 *		Note we don't worry about flushing any pages of temporary relations.
 *		It's assumed these wouldn't be interesting.
 * --------------------------------------------------------------------
 */
void
FlushDatabaseBuffers(Oid dbid)
{
	int			i;
	BufferDesc *bufHdr;

	/* Make sure we can handle the pin inside the loop */
	ResourceOwnerEnlargeBuffers(CurrentResourceOwner);

	for (i = 0; i < NBuffers; i++)
	{
		uint32		buf_state;

		bufHdr = GetBufferDescriptor(i);

		/*
		 * As in DropRelFileNodeBuffers, an unlocked precheck should be safe
		 * and saves some cycles.
		 */
		if (bufHdr->tag.rnode.dbNode != dbid)
			continue;

		ReservePrivateRefCountEntry();

		buf_state = LockBufHdr(bufHdr);
		if (bufHdr->tag.rnode.dbNode == dbid &&
			(buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
		{
			PinBuffer_Locked(bufHdr);
			LWLockAcquire(BufferDescriptorGetContentLock(bufHdr), LW_SHARED);
			FlushBuffer(bufHdr, NULL);
			LWLockRelease(BufferDescriptorGetContentLock(bufHdr));
			UnpinBuffer(bufHdr, true);
		}
		else
			UnlockBufHdr(bufHdr, buf_state);
	}
}

/*
 * Flush a previously, shared or exclusively, locked and pinned buffer to the
 * OS.
 */
void
FlushOneBuffer(Buffer buffer)
{
	BufferDesc *bufHdr;

	/* currently not needed, but no fundamental reason not to support */
	Assert(!BufferIsLocal(buffer));

	Assert(BufferIsPinned(buffer));

	bufHdr = GetBufferDescriptor(buffer - 1);

	Assert(LWLockHeldByMe(BufferDescriptorGetContentLock(bufHdr)));

	FlushBuffer(bufHdr, NULL);
}

/*
 * ReleaseBuffer -- release the pin on a buffer
 */
void
ReleaseBuffer(Buffer buffer)
{
	if (!BufferIsValid(buffer))
		elog(ERROR, "bad buffer ID: %d", buffer);

	if (BufferIsLocal(buffer))
	{
		ResourceOwnerForgetBuffer(CurrentResourceOwner, buffer);

		Assert(LocalRefCount[-buffer - 1] > 0);
		LocalRefCount[-buffer - 1]--;
		return;
	}

	UnpinBuffer(GetBufferDescriptor(buffer - 1), true);
}

/*
 * UnlockReleaseBuffer -- release the content lock and pin on a buffer
 *
 * This is just a shorthand for a common combination.
 */
void
UnlockReleaseBuffer(Buffer buffer)
{
	LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
	ReleaseBuffer(buffer);
}

/*
 * IncrBufferRefCount
 *		Increment the pin count on a buffer that we have *already* pinned
 *		at least once.
 *
 *		This function cannot be used on a buffer we do not have pinned,
 *		because it doesn't change the shared buffer state.
 */
void
IncrBufferRefCount(Buffer buffer)
{
	Assert(BufferIsPinned(buffer));
	ResourceOwnerEnlargeBuffers(CurrentResourceOwner);
	ResourceOwnerRememberBuffer(CurrentResourceOwner, buffer);
	if (BufferIsLocal(buffer))
		LocalRefCount[-buffer - 1]++;
	else
	{
		PrivateRefCountEntry *ref;

		ref = GetPrivateRefCountEntry(buffer, true);
		Assert(ref != NULL);
		ref->refcount++;
	}
}

/*
 * MarkBufferDirtyHint
 *
 *	Mark a buffer dirty for non-critical changes.
 *
 * This is essentially the same as MarkBufferDirty, except:
 *
 * 1. The caller does not write WAL; so if checksums are enabled, we may need
 *	  to write an XLOG_FPI WAL record to protect against torn pages.
 * 2. The caller might have only share-lock instead of exclusive-lock on the
 *	  buffer's content lock.
 * 3. This function does not guarantee that the buffer is always marked dirty
 *	  (due to a race condition), so it cannot be used for important changes.
 */
void
MarkBufferDirtyHint(Buffer buffer, bool buffer_std)
{
	BufferDesc *bufHdr;
	Page		page = BufferGetPage(buffer);

	if (!BufferIsValid(buffer))
		elog(ERROR, "bad buffer ID: %d", buffer);

	if (BufferIsLocal(buffer))
	{
		MarkLocalBufferDirty(buffer);
		return;
	}

	bufHdr = GetBufferDescriptor(buffer - 1);

	Assert(GetPrivateRefCount(buffer) > 0);
	/* here, either share or exclusive lock is OK */
	Assert(LWLockHeldByMe(BufferDescriptorGetContentLock(bufHdr)));

	/*
	 * This routine might get called many times on the same page, if we are
	 * making the first scan after commit of an xact that added/deleted many
	 * tuples. So, be as quick as we can if the buffer is already dirty.  We
	 * do this by not acquiring spinlock if it looks like the status bits are
	 * already set.  Since we make this test unlocked, there's a chance we
	 * might fail to notice that the flags have just been cleared, and failed
	 * to reset them, due to memory-ordering issues.  But since this function
	 * is only intended to be used in cases where failing to write out the
	 * data would be harmless anyway, it doesn't really matter.
	 */
	if ((pg_atomic_read_u32(&bufHdr->state) & (BM_DIRTY | BM_JUST_DIRTIED)) !=
		(BM_DIRTY | BM_JUST_DIRTIED))
	{
		XLogRecPtr	lsn = InvalidXLogRecPtr;
		bool		dirtied = false;
		bool		delayChkpt = false;
		uint32		buf_state;

		/*
		 * If we need to protect hint bit updates from torn writes, WAL-log a
		 * full page image of the page. This full page image is only necessary
		 * if the hint bit update is the first change to the page since the
		 * last checkpoint.
		 *
		 * We don't check full_page_writes here because that logic is included
		 * when we call XLogInsert() since the value changes dynamically.
		 */
		if (XLogHintBitIsNeeded() &&
			(pg_atomic_read_u32(&bufHdr->state) & BM_PERMANENT))
		{
			/*
			 * If we're in recovery we cannot dirty a page because of a hint.
			 * We can set the hint, just not dirty the page as a result so the
			 * hint is lost when we evict the page or shutdown.
			 *
			 * See src/backend/storage/page/README for longer discussion.
			 */
			if (RecoveryInProgress())
				return;

			/*
			 * If the block is already dirty because we either made a change
			 * or set a hint already, then we don't need to write a full page
			 * image.  Note that aggressive cleaning of blocks dirtied by hint
			 * bit setting would increase the call rate. Bulk setting of hint
			 * bits would reduce the call rate...
			 *
			 * We must issue the WAL record before we mark the buffer dirty.
			 * Otherwise we might write the page before we write the WAL. That
			 * causes a race condition, since a checkpoint might occur between
			 * writing the WAL record and marking the buffer dirty. We solve
			 * that with a kluge, but one that is already in use during
			 * transaction commit to prevent race conditions. Basically, we
			 * simply prevent the checkpoint WAL record from being written
			 * until we have marked the buffer dirty. We don't start the
			 * checkpoint flush until we have marked dirty, so our checkpoint
			 * must flush the change to disk successfully or the checkpoint
			 * never gets written, so crash recovery will fix.
			 *
			 * It's possible we may enter here without an xid, so it is
			 * essential that CreateCheckpoint waits for virtual transactions
			 * rather than full transactionids.
			 */
			MyPgXact->delayChkpt = delayChkpt = true;
			lsn = XLogSaveBufferForHint(buffer, buffer_std);
		}

		buf_state = LockBufHdr(bufHdr);

		Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);

		if (!(buf_state & BM_DIRTY))
		{
			dirtied = true;		/* Means "will be dirtied by this action" */

			/*
			 * Set the page LSN if we wrote a backup block. We aren't supposed
			 * to set this when only holding a share lock but as long as we
			 * serialise it somehow we're OK. We choose to set LSN while
			 * holding the buffer header lock, which causes any reader of an
			 * LSN who holds only a share lock to also obtain a buffer header
			 * lock before using PageGetLSN(), which is enforced in
			 * BufferGetLSNAtomic().
			 *
			 * If checksums are enabled, you might think we should reset the
			 * checksum here. That will happen when the page is written
			 * sometime later in this checkpoint cycle.
			 */
			if (!XLogRecPtrIsInvalid(lsn))
				PageSetLSN(page, lsn);
		}

		buf_state |= BM_DIRTY | BM_JUST_DIRTIED;
		UnlockBufHdr(bufHdr, buf_state);

		if (delayChkpt)
			MyPgXact->delayChkpt = false;

		if (dirtied)
		{
			VacuumPageDirty++;
			pgBufferUsage.shared_blks_dirtied++;
			if (VacuumCostActive)
				VacuumCostBalance += VacuumCostPageDirty;
		}
	}
}

/*
 * Release buffer content locks for shared buffers.
 *
 * Used to clean up after errors.
 *
 * Currently, we can expect that lwlock.c's LWLockReleaseAll() took care
 * of releasing buffer content locks per se; the only thing we need to deal
 * with here is clearing any PIN_COUNT request that was in progress.
 */
void
UnlockBuffers(void)
{
	BufferDesc *buf = PinCountWaitBuf;

	if (buf)
	{
		uint32		buf_state;

		buf_state = LockBufHdr(buf);

		/*
		 * Don't complain if flag bit not set; it could have been reset but we
		 * got a cancel/die interrupt before getting the signal.
		 */
		if ((buf_state & BM_PIN_COUNT_WAITER) != 0 &&
			buf->wait_backend_pid == MyProcPid)
			buf_state &= ~BM_PIN_COUNT_WAITER;

		UnlockBufHdr(buf, buf_state);

		PinCountWaitBuf = NULL;
	}
}

/*
 * Acquire or release the content_lock for the buffer.
 */
void
LockBuffer(Buffer buffer, int mode)
{
	BufferDesc *buf;

	Assert(BufferIsValid(buffer));
	if (BufferIsLocal(buffer))
		return;					/* local buffers need no lock */

	buf = GetBufferDescriptor(buffer - 1);

	if (mode == BUFFER_LOCK_UNLOCK)
		LWLockRelease(BufferDescriptorGetContentLock(buf));
	else if (mode == BUFFER_LOCK_SHARE)
		LWLockAcquire(BufferDescriptorGetContentLock(buf), LW_SHARED);
	else if (mode == BUFFER_LOCK_EXCLUSIVE)
		LWLockAcquire(BufferDescriptorGetContentLock(buf), LW_EXCLUSIVE);
	else
		elog(ERROR, "unrecognized buffer lock mode: %d", mode);
}

/*
 * Acquire the content_lock for the buffer, but only if we don't have to wait.
 *
 * This assumes the caller wants BUFFER_LOCK_EXCLUSIVE mode.
 */
bool
ConditionalLockBuffer(Buffer buffer)
{
	BufferDesc *buf;

	Assert(BufferIsValid(buffer));
	if (BufferIsLocal(buffer))
		return true;			/* act as though we got it */

	buf = GetBufferDescriptor(buffer - 1);

	return LWLockConditionalAcquire(BufferDescriptorGetContentLock(buf),
									LW_EXCLUSIVE);
}

/*
 * LockBufferForCleanup - lock a buffer in preparation for deleting items
 *
 * Items may be deleted from a disk page only when the caller (a) holds an
 * exclusive lock on the buffer and (b) has observed that no other backend
 * holds a pin on the buffer.  If there is a pin, then the other backend
 * might have a pointer into the buffer (for example, a heapscan reference
 * to an item --- see README for more details).  It's OK if a pin is added
 * after the cleanup starts, however; the newly-arrived backend will be
 * unable to look at the page until we release the exclusive lock.
 *
 * To implement this protocol, a would-be deleter must pin the buffer and
 * then call LockBufferForCleanup().  LockBufferForCleanup() is similar to
 * LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE), except that it loops until
 * it has successfully observed pin count = 1.
 */
void
LockBufferForCleanup(Buffer buffer)
{
	BufferDesc *bufHdr;

	Assert(BufferIsValid(buffer));
	Assert(PinCountWaitBuf == NULL);

	if (BufferIsLocal(buffer))
	{
		/* There should be exactly one pin */
		if (LocalRefCount[-buffer - 1] != 1)
			elog(ERROR, "incorrect local pin count: %d",
				 LocalRefCount[-buffer - 1]);
		/* Nobody else to wait for */
		return;
	}

	/* There should be exactly one local pin */
	if (GetPrivateRefCount(buffer) != 1)
		elog(ERROR, "incorrect local pin count: %d",
			 GetPrivateRefCount(buffer));

	bufHdr = GetBufferDescriptor(buffer - 1);

	for (;;)
	{
		uint32		buf_state;

		/* Try to acquire lock */
		LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		buf_state = LockBufHdr(bufHdr);

		Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
		if (BUF_STATE_GET_REFCOUNT(buf_state) == 1)
		{
			/* Successfully acquired exclusive lock with pincount 1 */
			UnlockBufHdr(bufHdr, buf_state);
			return;
		}
		/* Failed, so mark myself as waiting for pincount 1 */
		if (buf_state & BM_PIN_COUNT_WAITER)
		{
			UnlockBufHdr(bufHdr, buf_state);
			LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
			elog(ERROR, "multiple backends attempting to wait for pincount 1");
		}
		bufHdr->wait_backend_pid = MyProcPid;
		PinCountWaitBuf = bufHdr;
		buf_state |= BM_PIN_COUNT_WAITER;
		UnlockBufHdr(bufHdr, buf_state);
		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);

		/* Wait to be signaled by UnpinBuffer() */
		if (InHotStandby)
		{
			/* Publish the bufid that Startup process waits on */
			SetStartupBufferPinWaitBufId(buffer - 1);
			/* Set alarm and then wait to be signaled by UnpinBuffer() */
			ResolveRecoveryConflictWithBufferPin();
			/* Reset the published bufid */
			SetStartupBufferPinWaitBufId(-1);
		}
		else
			ProcWaitForSignal(PG_WAIT_BUFFER_PIN);

		/*
		 * Remove flag marking us as waiter. Normally this will not be set
		 * anymore, but ProcWaitForSignal() can return for other signals as
		 * well.  We take care to only reset the flag if we're the waiter, as
		 * theoretically another backend could have started waiting. That's
		 * impossible with the current usages due to table level locking, but
		 * better be safe.
		 */
		buf_state = LockBufHdr(bufHdr);
		if ((buf_state & BM_PIN_COUNT_WAITER) != 0 &&
			bufHdr->wait_backend_pid == MyProcPid)
			buf_state &= ~BM_PIN_COUNT_WAITER;
		UnlockBufHdr(bufHdr, buf_state);

		PinCountWaitBuf = NULL;
		/* Loop back and try again */
	}
}

/*
 * Check called from RecoveryConflictInterrupt handler when Startup
 * process requests cancellation of all pin holders that are blocking it.
 */
bool
HoldingBufferPinThatDelaysRecovery(void)
{
	int			bufid = GetStartupBufferPinWaitBufId();

	/*
	 * If we get woken slowly then it's possible that the Startup process was
	 * already woken by other backends before we got here. Also possible that
	 * we get here by multiple interrupts or interrupts at inappropriate
	 * times, so make sure we do nothing if the bufid is not set.
	 */
	if (bufid < 0)
		return false;

	if (GetPrivateRefCount(bufid + 1) > 0)
		return true;

	return false;
}

/*
 * ConditionalLockBufferForCleanup - as above, but don't wait to get the lock
 *
 * We won't loop, but just check once to see if the pin count is OK.  If
 * not, return FALSE with no lock held.
 */
bool
ConditionalLockBufferForCleanup(Buffer buffer)
{
	BufferDesc *bufHdr;
	uint32		buf_state,
				refcount;

	Assert(BufferIsValid(buffer));

	if (BufferIsLocal(buffer))
	{
		refcount = LocalRefCount[-buffer - 1];
		/* There should be exactly one pin */
		Assert(refcount > 0);
		if (refcount != 1)
			return false;
		/* Nobody else to wait for */
		return true;
	}

	/* There should be exactly one local pin */
	refcount = GetPrivateRefCount(buffer);
	Assert(refcount);
	if (refcount != 1)
		return false;

	/* Try to acquire lock */
	if (!ConditionalLockBuffer(buffer))
		return false;

	bufHdr = GetBufferDescriptor(buffer - 1);
	buf_state = LockBufHdr(bufHdr);
	refcount = BUF_STATE_GET_REFCOUNT(buf_state);

	Assert(refcount > 0);
	if (refcount == 1)
	{
		/* Successfully acquired exclusive lock with pincount 1 */
		UnlockBufHdr(bufHdr, buf_state);
		return true;
	}

	/* Failed, so release the lock */
	UnlockBufHdr(bufHdr, buf_state);
	LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
	return false;
}

/*
 * IsBufferCleanupOK - as above, but we already have the lock
 *
 * Check whether it's OK to perform cleanup on a buffer we've already
 * locked.  If we observe that the pin count is 1, our exclusive lock
 * happens to be a cleanup lock, and we can proceed with anything that
 * would have been allowable had we sought a cleanup lock originally.
 */
bool
IsBufferCleanupOK(Buffer buffer)
{
	BufferDesc *bufHdr;
	uint32		buf_state;

	Assert(BufferIsValid(buffer));

	if (BufferIsLocal(buffer))
	{
		/* There should be exactly one pin */
		if (LocalRefCount[-buffer - 1] != 1)
			return false;
		/* Nobody else to wait for */
		return true;
	}

	/* There should be exactly one local pin */
	if (GetPrivateRefCount(buffer) != 1)
		return false;

	bufHdr = GetBufferDescriptor(buffer - 1);

	/* caller must hold exclusive lock on buffer */
	Assert(LWLockHeldByMeInMode(BufferDescriptorGetContentLock(bufHdr),
								LW_EXCLUSIVE));

	buf_state = LockBufHdr(bufHdr);

	Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
	if (BUF_STATE_GET_REFCOUNT(buf_state) == 1)
	{
		/* pincount is OK. */
		UnlockBufHdr(bufHdr, buf_state);
		return true;
	}

	UnlockBufHdr(bufHdr, buf_state);
	return false;
}


/*
 *	Functions for buffer I/O handling
 *
 *	Note: We assume that nested buffer I/O never occurs.
 *	i.e at most one io_in_progress lock is held per proc.
 *
 *	Also note that these are used only for shared buffers, not local ones.
 */

/*
 * WaitIO -- Block until the IO_IN_PROGRESS flag on 'buf' is cleared.
 */
static void
WaitIO(BufferDesc *buf)
{
	/*
	 * Changed to wait until there's no IO - Inoue 01/13/2000
	 *
	 * Note this is *necessary* because an error abort in the process doing
	 * I/O could release the io_in_progress_lock prematurely. See
	 * AbortBufferIO.
	 */
	for (;;)
	{
		uint32		buf_state;

		/*
		 * It may not be necessary to acquire the spinlock to check the flag
		 * here, but since this test is essential for correctness, we'd better
		 * play it safe.
		 */
		buf_state = LockBufHdr(buf);
		UnlockBufHdr(buf, buf_state);

		if (!(buf_state & BM_IO_IN_PROGRESS))
			break;
		LWLockAcquire(BufferDescriptorGetIOLock(buf), LW_SHARED);
		LWLockRelease(BufferDescriptorGetIOLock(buf));
	}
}

/*
 * StartBufferIO: begin I/O on this buffer
 *	(Assumptions)
 *	My process is executing no IO
 *	The buffer is Pinned
 *
 * In some scenarios there are race conditions in which multiple backends
 * could attempt the same I/O operation concurrently.  If someone else
 * has already started I/O on this buffer then we will block on the
 * io_in_progress lock until he's done.
 *
 * Input operations are only attempted on buffers that are not BM_VALID,
 * and output operations only on buffers that are BM_VALID and BM_DIRTY,
 * so we can always tell if the work is already done.
 *
 * Returns TRUE if we successfully marked the buffer as I/O busy,
 * FALSE if someone else already did the work.
 */
static bool
StartBufferIO(BufferDesc *buf, bool forInput)
{
	uint32		buf_state;

	Assert(!InProgressBuf);

	for (;;)
	{
		/*
		 * Grab the io_in_progress lock so that other processes can wait for
		 * me to finish the I/O.
		 */
		LWLockAcquire(BufferDescriptorGetIOLock(buf), LW_EXCLUSIVE);

		buf_state = LockBufHdr(buf);

		if (!(buf_state & BM_IO_IN_PROGRESS))
			break;

		/*
		 * The only way BM_IO_IN_PROGRESS could be set when the io_in_progress
		 * lock isn't held is if the process doing the I/O is recovering from
		 * an error (see AbortBufferIO).  If that's the case, we must wait for
		 * him to get unwedged.
		 */
		UnlockBufHdr(buf, buf_state);
		LWLockRelease(BufferDescriptorGetIOLock(buf));
		WaitIO(buf);
	}

	/* Once we get here, there is definitely no I/O active on this buffer */

	if (forInput ? (buf_state & BM_VALID) : !(buf_state & BM_DIRTY))
	{
		/* someone else already did the I/O */
		UnlockBufHdr(buf, buf_state);
		LWLockRelease(BufferDescriptorGetIOLock(buf));
		return false;
	}

	buf_state |= BM_IO_IN_PROGRESS;
	UnlockBufHdr(buf, buf_state);

	InProgressBuf = buf;
	IsForInput = forInput;

	return true;
}

/*
 * TerminateBufferIO: release a buffer we were doing I/O on
 *	(Assumptions)
 *	My process is executing IO for the buffer
 *	BM_IO_IN_PROGRESS bit is set for the buffer
 *	We hold the buffer's io_in_progress lock
 *	The buffer is Pinned
 *
 * If clear_dirty is TRUE and BM_JUST_DIRTIED is not set, we clear the
 * buffer's BM_DIRTY flag.  This is appropriate when terminating a
 * successful write.  The check on BM_JUST_DIRTIED is necessary to avoid
 * marking the buffer clean if it was re-dirtied while we were writing.
 *
 * set_flag_bits gets ORed into the buffer's flags.  It must include
 * BM_IO_ERROR in a failure case.  For successful completion it could
 * be 0, or BM_VALID if we just finished reading in the page.
 */
static void
TerminateBufferIO(BufferDesc *buf, bool clear_dirty, uint32 set_flag_bits)
{
	uint32		buf_state;

	Assert(buf == InProgressBuf);

	buf_state = LockBufHdr(buf);

	Assert(buf_state & BM_IO_IN_PROGRESS);

	buf_state &= ~(BM_IO_IN_PROGRESS | BM_IO_ERROR);
	if (clear_dirty && !(buf_state & BM_JUST_DIRTIED))
		buf_state &= ~(BM_DIRTY | BM_CHECKPOINT_NEEDED);

	buf_state |= set_flag_bits;
	UnlockBufHdr(buf, buf_state);

	InProgressBuf = NULL;

	LWLockRelease(BufferDescriptorGetIOLock(buf));
}

/*
 * AbortBufferIO: Clean up any active buffer I/O after an error.
 *
 *	All LWLocks we might have held have been released,
 *	but we haven't yet released buffer pins, so the buffer is still pinned.
 *
 *	If I/O was in progress, we always set BM_IO_ERROR, even though it's
 *	possible the error condition wasn't related to the I/O.
 */
void
AbortBufferIO(void)
{
	BufferDesc *buf = InProgressBuf;

	if (buf)
	{
		uint32		buf_state;

		/*
		 * Since LWLockReleaseAll has already been called, we're not holding
		 * the buffer's io_in_progress_lock. We have to re-acquire it so that
		 * we can use TerminateBufferIO. Anyone who's executing WaitIO on the
		 * buffer will be in a busy spin until we succeed in doing this.
		 */
		LWLockAcquire(BufferDescriptorGetIOLock(buf), LW_EXCLUSIVE);

		buf_state = LockBufHdr(buf);
		Assert(buf_state & BM_IO_IN_PROGRESS);
		if (IsForInput)
		{
			Assert(!(buf_state & BM_DIRTY));

			/* We'd better not think buffer is valid yet */
			Assert(!(buf_state & BM_VALID));
			UnlockBufHdr(buf, buf_state);
		}
		else
		{
			Assert(buf_state & BM_DIRTY);
			UnlockBufHdr(buf, buf_state);
			/* Issue notice if this is not the first failure... */
			if (buf_state & BM_IO_ERROR)
			{
				/* Buffer is pinned, so we can read tag without spinlock */
				char	   *path;

				path = relpathperm(buf->tag.rnode, buf->tag.forkNum);
				ereport(WARNING,
						(errcode(ERRCODE_IO_ERROR),
						 errmsg("could not write block %u of %s",
								buf->tag.blockNum, path),
						 errdetail("Multiple failures --- write error might be permanent.")));
				pfree(path);
			}
		}
		TerminateBufferIO(buf, false, BM_IO_ERROR);
	}
}

/*
 * Error context callback for errors occurring during shared buffer writes.
 */
static void
shared_buffer_write_error_callback(void *arg)
{
	BufferDesc *bufHdr = (BufferDesc *) arg;

	/* Buffer is pinned, so we can read the tag without locking the spinlock */
	if (bufHdr != NULL)
	{
		char	   *path = relpathperm(bufHdr->tag.rnode, bufHdr->tag.forkNum);

		errcontext("writing block %u of relation %s",
				   bufHdr->tag.blockNum, path);
		pfree(path);
	}
}

/*
 * Error context callback for errors occurring during local buffer writes.
 */
static void
local_buffer_write_error_callback(void *arg)
{
	BufferDesc *bufHdr = (BufferDesc *) arg;

	if (bufHdr != NULL)
	{
		char	   *path = relpathbackend(bufHdr->tag.rnode, MyBackendId,
										  bufHdr->tag.forkNum);

		errcontext("writing block %u of relation %s",
				   bufHdr->tag.blockNum, path);
		pfree(path);
	}
}

/*
 * RelFileNode qsort/bsearch comparator; see RelFileNodeEquals.
 */
static int
rnode_comparator(const void *p1, const void *p2)
{
	RelFileNode n1 = *(RelFileNode *) p1;
	RelFileNode n2 = *(RelFileNode *) p2;

	if (n1.relNode < n2.relNode)
		return -1;
	else if (n1.relNode > n2.relNode)
		return 1;

	if (n1.dbNode < n2.dbNode)
		return -1;
	else if (n1.dbNode > n2.dbNode)
		return 1;

	if (n1.spcNode < n2.spcNode)
		return -1;
	else if (n1.spcNode > n2.spcNode)
		return 1;
	else
		return 0;
}

/*
 * Lock buffer header - set BM_LOCKED in buffer state.
 */
uint32
LockBufHdr(BufferDesc *desc)
{
	SpinDelayStatus delayStatus;
	uint32		old_buf_state;

	init_local_spin_delay(&delayStatus);

	while (true)
	{
		/* set BM_LOCKED flag */
		old_buf_state = pg_atomic_fetch_or_u32(&desc->state, BM_LOCKED);
		/* if it wasn't set before we're OK */
		if (!(old_buf_state & BM_LOCKED))
			break;
		perform_spin_delay(&delayStatus);
	}
	finish_spin_delay(&delayStatus);
	return old_buf_state | BM_LOCKED;
}

/*
 * Wait until the BM_LOCKED flag isn't set anymore and return the buffer's
 * state at that point.
 *
 * Obviously the buffer could be locked by the time the value is returned, so
 * this is primarily useful in CAS style loops.
 */
static uint32
WaitBufHdrUnlocked(BufferDesc *buf)
{
	SpinDelayStatus delayStatus;
	uint32		buf_state;

	init_local_spin_delay(&delayStatus);

	buf_state = pg_atomic_read_u32(&buf->state);

	while (buf_state & BM_LOCKED)
	{
		perform_spin_delay(&delayStatus);
		buf_state = pg_atomic_read_u32(&buf->state);
	}

	finish_spin_delay(&delayStatus);

	return buf_state;
}

/*
 * BufferTag comparator.
 */
static int
buffertag_comparator(const void *a, const void *b)
{
	const BufferTag *ba = (const BufferTag *) a;
	const BufferTag *bb = (const BufferTag *) b;
	int			ret;

	ret = rnode_comparator(&ba->rnode, &bb->rnode);

	if (ret != 0)
		return ret;

	if (ba->forkNum < bb->forkNum)
		return -1;
	if (ba->forkNum > bb->forkNum)
		return 1;

	if (ba->blockNum < bb->blockNum)
		return -1;
	if (ba->blockNum > bb->blockNum)
		return 1;

	return 0;
}

/*
 * Comparator determining the writeout order in a checkpoint.
 *
 * It is important that tablespaces are compared first, the logic balancing
 * writes between tablespaces relies on it.
 */
static int
ckpt_buforder_comparator(const void *pa, const void *pb)
{
	const CkptSortItem *a = (CkptSortItem *) pa;
	const CkptSortItem *b = (CkptSortItem *) pb;

	/* compare tablespace */
	if (a->tsId < b->tsId)
		return -1;
	else if (a->tsId > b->tsId)
		return 1;
	/* compare relation */
	if (a->relNode < b->relNode)
		return -1;
	else if (a->relNode > b->relNode)
		return 1;
	/* compare fork */
	else if (a->forkNum < b->forkNum)
		return -1;
	else if (a->forkNum > b->forkNum)
		return 1;
	/* compare block number */
	else if (a->blockNum < b->blockNum)
		return -1;
	else	/* should not be the same block ... */
		return 1;
}

/*
 * Comparator for a Min-Heap over the per-tablespace checkpoint completion
 * progress.
 */
static int
ts_ckpt_progress_comparator(Datum a, Datum b, void *arg)
{
	CkptTsStatus *sa = (CkptTsStatus *) a;
	CkptTsStatus *sb = (CkptTsStatus *) b;

	/* we want a min-heap, so return 1 for the a < b */
	if (sa->progress < sb->progress)
		return 1;
	else if (sa->progress == sb->progress)
		return 0;
	else
		return -1;
}

/*
 * Initialize a writeback context, discarding potential previous state.
 *
 * *max_pending is a pointer instead of an immediate value, so the coalesce
 * limits can easily changed by the GUC mechanism, and so calling code does
 * not have to check the current configuration. A value is 0 means that no
 * writeback control will be performed.
 */
void
WritebackContextInit(WritebackContext *context, int *max_pending)
{
	Assert(*max_pending <= WRITEBACK_MAX_PENDING_FLUSHES);

	context->max_pending = max_pending;
	context->nr_pending = 0;
}

/*
 * Add buffer to list of pending writeback requests.
 */
void
ScheduleBufferTagForWriteback(WritebackContext *context, BufferTag *tag)
{
	PendingWriteback *pending;

	/*
	 * Add buffer to the pending writeback array, unless writeback control is
	 * disabled.
	 */
	if (*context->max_pending > 0)
	{
		Assert(*context->max_pending <= WRITEBACK_MAX_PENDING_FLUSHES);

		pending = &context->pending_writebacks[context->nr_pending++];

		pending->tag = *tag;
	}

	/*
	 * Perform pending flushes if the writeback limit is exceeded. This
	 * includes the case where previously an item has been added, but control
	 * is now disabled.
	 */
	if (context->nr_pending >= *context->max_pending)
		IssuePendingWritebacks(context);
}

/*
 * Issue all pending writeback requests, previously scheduled with
 * ScheduleBufferTagForWriteback, to the OS.
 *
 * Because this is only used to improve the OSs IO scheduling we try to never
 * error out - it's just a hint.
 */
void
IssuePendingWritebacks(WritebackContext *context)
{
	int			i;

	if (context->nr_pending == 0)
		return;

	/*
	 * Executing the writes in-order can make them a lot faster, and allows to
	 * merge writeback requests to consecutive blocks into larger writebacks.
	 */
	qsort(&context->pending_writebacks, context->nr_pending,
		  sizeof(PendingWriteback), buffertag_comparator);

	/*
	 * Coalesce neighbouring writes, but nothing else. For that we iterate
	 * through the, now sorted, array of pending flushes, and look forward to
	 * find all neighbouring (or identical) writes.
	 */
	for (i = 0; i < context->nr_pending; i++)
	{
		PendingWriteback *cur;
		PendingWriteback *next;
		SMgrRelation reln;
		int			ahead;
		BufferTag	tag;
		Size		nblocks = 1;

		cur = &context->pending_writebacks[i];
		tag = cur->tag;

		/*
		 * Peek ahead, into following writeback requests, to see if they can
		 * be combined with the current one.
		 */
		for (ahead = 0; i + ahead + 1 < context->nr_pending; ahead++)
		{
			next = &context->pending_writebacks[i + ahead + 1];

			/* different file, stop */
			if (!RelFileNodeEquals(cur->tag.rnode, next->tag.rnode) ||
				cur->tag.forkNum != next->tag.forkNum)
				break;

			/* ok, block queued twice, skip */
			if (cur->tag.blockNum == next->tag.blockNum)
				continue;

			/* only merge consecutive writes */
			if (cur->tag.blockNum + 1 != next->tag.blockNum)
				break;

			nblocks++;
			cur = next;
		}

		i += ahead;

		/* and finally tell the kernel to write the data to storage */
		reln = smgropen(tag.rnode, InvalidBackendId);
		smgrwriteback(reln, tag.forkNum, tag.blockNum, nblocks);
	}

	context->nr_pending = 0;
}


/*
 * Implement slower/larger portions of TestForOldSnapshot
 *
 * Smaller/faster portions are put inline, but the entire set of logic is too
 * big for that.
 */
void
TestForOldSnapshot_impl(Snapshot snapshot, Relation relation)
{
	if (RelationAllowsEarlyPruning(relation)
		&& (snapshot)->whenTaken < GetOldSnapshotThresholdTimestamp())
		ereport(ERROR,
				(errcode(ERRCODE_SNAPSHOT_TOO_OLD),
				 errmsg("snapshot too old")));
}