summaryrefslogtreecommitdiff
path: root/src/backend/partitioning/partprune.c
blob: 62159477c1e5c1c17eb89efe71c64c471ed6ceea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
/*-------------------------------------------------------------------------
 *
 * partprune.c
 *		Support for partition pruning during query planning and execution
 *
 * This module implements partition pruning using the information contained in
 * table's partition descriptor, query clauses, and run-time parameters.
 *
 * During planning, clauses that can be matched to the table's partition key
 * are turned into a set of "pruning steps", which are then executed to
 * produce a set of partitions (as indexes of the RelOptInfo->part_rels array)
 * that satisfy the constraints in the step.  Partitions not in the set are said
 * to have been pruned.
 *
 * A base pruning step may also consist of expressions whose values are only
 * known during execution, such as Params, in which case pruning cannot occur
 * entirely during planning.  In that case, such steps are included alongside
 * the plan, so that they can be used by the executor for further pruning.
 *
 * There are two kinds of pruning steps: a "base" pruning step, which contains
 * information extracted from one or more clauses that are matched to the
 * (possibly multi-column) partition key, such as the expressions whose values
 * to match against partition bounds and operator strategy to associate to
 * each expression.  The other kind is a "combine" pruning step, which combines
 * the outputs of some other steps using the appropriate combination method.
 * All steps that are constructed are executed in succession such that for any
 * "combine" step, all of the steps whose output it depends on are executed
 * first and their ouput preserved.
 *
 * See gen_partprune_steps_internal() for more details on step generation.
 *
 * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *		  src/backend/partitioning/partprune.c
 *
 *-------------------------------------------------------------------------
*/
#include "postgres.h"

#include "access/hash.h"
#include "access/nbtree.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/pathnode.h"
#include "optimizer/planner.h"
#include "optimizer/predtest.h"
#include "optimizer/prep.h"
#include "partitioning/partprune.h"
#include "partitioning/partbounds.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"


/*
 * Information about a clause matched with a partition key.
 */
typedef struct PartClauseInfo
{
	int			keyno;			/* Partition key number (0 to partnatts - 1)  */
	Oid			opno;			/* operator used to compare partkey to 'expr' */
	bool		op_is_ne;		/* is clause's original operator <> ? */
	Expr	   *expr;			/* expr the partition key is compared to */
	Oid			cmpfn;			/* Oid of function to compare 'expr' to the
								 * partition key */
	int			op_strategy;	/* cached info. */
} PartClauseInfo;

/*
 * PartClauseMatchStatus
 *		Describes the result match_clause_to_partition_key produces for a
 *		given clause and the partition key to match with that are passed to it
 */
typedef enum PartClauseMatchStatus
{
	PARTCLAUSE_NOMATCH,
	PARTCLAUSE_MATCH_CLAUSE,
	PARTCLAUSE_MATCH_NULLNESS,
	PARTCLAUSE_MATCH_STEPS,
	PARTCLAUSE_MATCH_CONTRADICT,
	PARTCLAUSE_UNSUPPORTED
} PartClauseMatchStatus;

/*
 * GeneratePruningStepsContext
 *		Information about the current state of generation of "pruning steps"
 *		for a given set of clauses
 *
 * gen_partprune_steps() initializes an instance of this struct, which is used
 * throughout the step generation process.
 */
typedef struct GeneratePruningStepsContext
{
	int			next_step_id;
	List	   *steps;
} GeneratePruningStepsContext;

/* The result of performing one PartitionPruneStep */
typedef struct PruneStepResult
{
	/*
	 * The offsets of bounds (in a table's boundinfo) whose partition is
	 * selected by the pruning step.
	 */
	Bitmapset  *bound_offsets;

	bool		scan_default;	/* Scan the default partition? */
	bool		scan_null;		/* Scan the partition for NULL values? */
} PruneStepResult;


static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context,
							 RelOptInfo *rel, List *clauses,
							 bool *contradictory);
static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context,
				  StrategyNumber opstrategy, bool op_is_ne,
				  List *exprs, List *cmpfns, Bitmapset *nullkeys);
static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context,
					   List *source_stepids,
					   PartitionPruneCombineOp combineOp);
static PartitionPruneStep *gen_prune_steps_from_opexps(PartitionScheme part_scheme,
							GeneratePruningStepsContext *context,
							List **keyclauses, Bitmapset *nullkeys);
static PartClauseMatchStatus match_clause_to_partition_key(RelOptInfo *rel,
							  GeneratePruningStepsContext *context,
							  Expr *clause, Expr *partkey, int partkeyidx,
							  bool *clause_is_not_null,
							  PartClauseInfo **pc, List **clause_steps);
static List *get_steps_using_prefix(GeneratePruningStepsContext *context,
					   StrategyNumber step_opstrategy,
					   bool step_op_is_ne,
					   Expr *step_lastexpr,
					   Oid step_lastcmpfn,
					   int step_lastkeyno,
					   Bitmapset *step_nullkeys,
					   List *prefix);
static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
							   StrategyNumber step_opstrategy,
							   bool step_op_is_ne,
							   Expr *step_lastexpr,
							   Oid step_lastcmpfn,
							   int step_lastkeyno,
							   Bitmapset *step_nullkeys,
							   ListCell *start,
							   List *step_exprs,
							   List *step_cmpfns);
static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context,
						 StrategyNumber opstrategy, Datum *values, int nvalues,
						 FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context,
						 StrategyNumber opstrategy, Datum value, int nvalues,
						 FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context,
						  StrategyNumber opstrategy, Datum *values, int nvalues,
						  FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static bool pull_partkey_params(PartitionPruneInfo *pinfo, List *steps);
static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context,
						  PartitionPruneStepOp *opstep);
static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context,
							 PartitionPruneStepCombine *cstep,
							 PruneStepResult **step_results);
static bool match_boolean_partition_clause(Oid partopfamily, Expr *clause,
							   Expr *partkey, Expr **outconst);
static bool partkey_datum_from_expr(PartitionPruneContext *context,
						Expr *expr, int stateidx, Datum *value);

/*
 * make_partition_pruneinfo
 *		Build List of PartitionPruneInfos, one for each 'partitioned_rels'.
 *		These can be used in the executor to allow additional partition
 *		pruning to take place.
 *
 * Here we generate partition pruning steps for 'prunequal' and also build a
 * data stucture which allows mapping of partition indexes into 'subpaths'
 * indexes.
 *
 * If no Params were found to match the partition key in any of the
 * 'partitioned_rels', then we return NIL.  In such a case run-time partition
 * pruning would be useless.
 */
List *
make_partition_pruneinfo(PlannerInfo *root, List *partition_rels,
						 List *subpaths, List *prunequal)
{
	RelOptInfo *targetpart = NULL;
	ListCell   *lc;
	List	   *pinfolist = NIL;
	int		   *relid_subnode_map;
	int		   *relid_subpart_map;
	int			i;
	bool		gotparam = false;

	/*
	 * Allocate two arrays to store the 1-based indexes of the 'subpaths' and
	 * 'partitioned_rels' by relid.
	 */
	relid_subnode_map = palloc0(sizeof(int) * root->simple_rel_array_size);
	relid_subpart_map = palloc0(sizeof(int) * root->simple_rel_array_size);

	i = 1;
	foreach(lc, subpaths)
	{
		Path	   *path = (Path *) lfirst(lc);
		RelOptInfo *pathrel = path->parent;

		Assert(IS_SIMPLE_REL(pathrel));
		Assert(pathrel->relid < root->simple_rel_array_size);

		relid_subnode_map[pathrel->relid] = i++;
	}

	/* Likewise for the partition_rels */
	i = 1;
	foreach(lc, partition_rels)
	{
		Index		rti = lfirst_int(lc);

		Assert(rti < root->simple_rel_array_size);

		relid_subpart_map[rti] = i++;
	}

	/* We now build a PartitionPruneInfo for each partition_rels */
	foreach(lc, partition_rels)
	{
		Index		rti = lfirst_int(lc);
		RelOptInfo *subpart = find_base_rel(root, rti);
		PartitionPruneInfo *pinfo;
		RangeTblEntry *rte;
		Bitmapset  *present_parts;
		int			nparts = subpart->nparts;
		int		   *subnode_map;
		int		   *subpart_map;
		List	   *partprunequal;
		List	   *pruning_steps;
		bool		contradictory;

		/*
		 * The first item in the list is the target partitioned relation.  The
		 * quals belong to this relation, so require no translation.
		 */
		if (!targetpart)
		{
			targetpart = subpart;
			partprunequal = prunequal;
		}
		else
		{
			/*
			 * For sub-partitioned tables the columns may not be in the same
			 * order as the parent, so we must translate the prunequal to make
			 * it compatible with this relation.
			 */
			partprunequal = (List *)
				adjust_appendrel_attrs_multilevel(root,
												  (Node *) prunequal,
												  subpart->relids,
												  targetpart->relids);
		}

		pruning_steps = gen_partprune_steps(subpart, partprunequal,
											&contradictory);

		if (contradictory)
		{
			/*
			 * This shouldn't happen as the planner should have detected this
			 * earlier. However, we do use additional quals from parameterized
			 * paths here. These do only compare Params to the partition key,
			 * so this shouldn't cause the discovery of any new qual
			 * contradictions that were not previously discovered as the Param
			 * values are unknown during planning.  Anyway, we'd better do
			 * something sane here, so let's just disable run-time pruning.
			 */
			return NIL;
		}

		subnode_map = (int *) palloc(nparts * sizeof(int));
		subpart_map = (int *) palloc(nparts * sizeof(int));
		present_parts = NULL;

		/*
		 * Loop over each partition of the partitioned rel and record the
		 * subpath index for each.  Any partitions which are not present in
		 * the subpaths List will be set to -1, and any sub-partitioned table
		 * which is not present will also be set to -1.
		 */
		for (i = 0; i < nparts; i++)
		{
			RelOptInfo *partrel = subpart->part_rels[i];
			int			subnodeidx = relid_subnode_map[partrel->relid] - 1;
			int			subpartidx = relid_subpart_map[partrel->relid] - 1;

			subnode_map[i] = subnodeidx;
			subpart_map[i] = subpartidx;

			/*
			 * Record the indexes of all the partition indexes that we have
			 * subnodes or subparts for.  This allows an optimization to skip
			 * attempting any run-time pruning when no Params are found
			 * matching the partition key at this level.
			 */
			if (subnodeidx >= 0 || subpartidx >= 0)
				present_parts = bms_add_member(present_parts, i);
		}

		rte = root->simple_rte_array[subpart->relid];

		pinfo = makeNode(PartitionPruneInfo);
		pinfo->reloid = rte->relid;
		pinfo->pruning_steps = pruning_steps;
		pinfo->present_parts = present_parts;
		pinfo->nparts = nparts;
		pinfo->extparams = NULL;
		pinfo->execparams = NULL;
		pinfo->subnode_map = subnode_map;
		pinfo->subpart_map = subpart_map;

		/*
		 * Extract Params matching partition key and record if we got any.
		 * We'll not bother enabling run-time pruning if no params matched the
		 * partition key at any level of partitioning.
		 */
		gotparam |= pull_partkey_params(pinfo, pruning_steps);

		pinfolist = lappend(pinfolist, pinfo);
	}

	pfree(relid_subnode_map);
	pfree(relid_subpart_map);

	if (gotparam)
		return pinfolist;

	/*
	 * If no Params were found to match the partition key on any of the
	 * partitioned relations then there's no point doing any run-time
	 * partition pruning.
	 */
	return NIL;
}

/*
 * gen_partprune_steps
 *		Process 'clauses' (a rel's baserestrictinfo list of clauses) and return
 *		a list of "partition pruning steps"
 *
 * If the clauses in the input list are contradictory or there is a
 * pseudo-constant "false", *contradictory is set to true upon return.
 */
List *
gen_partprune_steps(RelOptInfo *rel, List *clauses, bool *contradictory)
{
	GeneratePruningStepsContext context;

	context.next_step_id = 0;
	context.steps = NIL;

	/* The clauses list may be modified below, so better make a copy. */
	clauses = list_copy(clauses);

	/*
	 * For sub-partitioned tables there's a corner case where if the
	 * sub-partitioned table shares any partition keys with its parent, then
	 * it's possible that the partitioning hierarchy allows the parent
	 * partition to only contain a narrower range of values than the
	 * sub-partitioned table does.  In this case it is possible that we'd
	 * include partitions that could not possibly have any tuples matching
	 * 'clauses'.  The possibility of such a partition arrangement is perhaps
	 * unlikely for non-default partitions, but it may be more likely in the
	 * case of default partitions, so we'll add the parent partition table's
	 * partition qual to the clause list in this case only.  This may result
	 * in the default partition being eliminated.
	 */
	if (partition_bound_has_default(rel->boundinfo) &&
		rel->partition_qual != NIL)
	{
		List	   *partqual = rel->partition_qual;

		partqual = (List *) expression_planner((Expr *) partqual);

		/* Fix Vars to have the desired varno */
		if (rel->relid != 1)
			ChangeVarNodes((Node *) partqual, 1, rel->relid, 0);

		clauses = list_concat(clauses, partqual);
	}

	/* Down into the rabbit-hole. */
	gen_partprune_steps_internal(&context, rel, clauses, contradictory);

	return context.steps;
}

/*
 * prune_append_rel_partitions
 *		Returns RT indexes of the minimum set of child partitions which must
 *		be scanned to satisfy rel's baserestrictinfo quals.
 *
 * Callers must ensure that 'rel' is a partitioned table.
 */
Relids
prune_append_rel_partitions(RelOptInfo *rel)
{
	Relids		result;
	List	   *clauses = rel->baserestrictinfo;
	List	   *pruning_steps;
	bool		contradictory;
	PartitionPruneContext context;
	Bitmapset  *partindexes;
	int			i;

	Assert(clauses != NIL);
	Assert(rel->part_scheme != NULL);

	/* If there are no partitions, return the empty set */
	if (rel->nparts == 0)
		return NULL;

	/*
	 * Process clauses.  If the clauses are found to be contradictory, we can
	 * return the empty set.
	 */
	pruning_steps = gen_partprune_steps(rel, clauses, &contradictory);
	if (contradictory)
		return NULL;

	context.strategy = rel->part_scheme->strategy;
	context.partnatts = rel->part_scheme->partnatts;
	context.partopfamily = rel->part_scheme->partopfamily;
	context.partopcintype = rel->part_scheme->partopcintype;
	context.partcollation = rel->part_scheme->partcollation;
	context.partsupfunc = rel->part_scheme->partsupfunc;
	context.nparts = rel->nparts;
	context.boundinfo = rel->boundinfo;

	/* Not valid when being called from the planner */
	context.planstate = NULL;
	context.safeparams = NULL;
	context.exprstates = NULL;

	/* Actual pruning happens here. */
	partindexes = get_matching_partitions(&context, pruning_steps);

	/* Add selected partitions' RT indexes to result. */
	i = -1;
	result = NULL;
	while ((i = bms_next_member(partindexes, i)) >= 0)
		result = bms_add_member(result, rel->part_rels[i]->relid);

	return result;
}

/*
 * get_matching_partitions
 *		Determine partitions that survive partition pruning
 *
 * Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving
 * partitions.
 */
Bitmapset *
get_matching_partitions(PartitionPruneContext *context, List *pruning_steps)
{
	Bitmapset  *result;
	int			num_steps = list_length(pruning_steps),
				i;
	PruneStepResult **results,
			   *final_result;
	ListCell   *lc;

	/* If there are no pruning steps then all partitions match. */
	if (num_steps == 0)
		return bms_add_range(NULL, 0, context->nparts - 1);

	/*
	 * Allocate space for individual pruning steps to store its result.  Each
	 * slot will hold a PruneStepResult after performing a given pruning step.
	 * Later steps may use the result of one or more earlier steps.  The
	 * result of applying all pruning steps is the value contained in the slot
	 * of the last pruning step.
	 */
	results = (PruneStepResult **)
		palloc0(num_steps * sizeof(PruneStepResult *));
	foreach(lc, pruning_steps)
	{
		PartitionPruneStep *step = lfirst(lc);

		switch (nodeTag(step))
		{
			case T_PartitionPruneStepOp:
				results[step->step_id] =
					perform_pruning_base_step(context,
											  (PartitionPruneStepOp *) step);
				break;

			case T_PartitionPruneStepCombine:
				results[step->step_id] =
					perform_pruning_combine_step(context,
												 (PartitionPruneStepCombine *) step,
												 results);
				break;

			default:
				elog(ERROR, "invalid pruning step type: %d",
					 (int) nodeTag(step));
		}
	}

	/*
	 * At this point we know the offsets of all the datums whose corresponding
	 * partitions need to be in the result, including special null-accepting
	 * and default partitions.  Collect the actual partition indexes now.
	 */
	final_result = results[num_steps - 1];
	Assert(final_result != NULL);
	i = -1;
	result = NULL;
	while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0)
	{
		int			partindex = context->boundinfo->indexes[i];

		/*
		 * In range and hash partitioning cases, some slots may contain -1,
		 * indicating that no partition has been defined to accept a given
		 * range of data or for a given remainder, respectively. The default
		 * partition, if any, in case of range partitioning, will be added to
		 * the result, because the specified range still satisfies the query's
		 * conditions.
		 */
		if (partindex >= 0)
			result = bms_add_member(result, partindex);
	}

	/* Add the null and/or default partition if needed and if present. */
	if (final_result->scan_null)
	{
		Assert(context->strategy == PARTITION_STRATEGY_LIST);
		Assert(partition_bound_accepts_nulls(context->boundinfo));
		result = bms_add_member(result, context->boundinfo->null_index);
	}
	if (final_result->scan_default)
	{
		Assert(context->strategy == PARTITION_STRATEGY_LIST ||
			   context->strategy == PARTITION_STRATEGY_RANGE);
		Assert(partition_bound_has_default(context->boundinfo));
		result = bms_add_member(result, context->boundinfo->default_index);
	}

	return result;
}

/*
 * gen_partprune_steps_internal
 *		Processes 'clauses' to generate partition pruning steps.
 *
 * From OpExpr clauses that are mutually AND'd, we find combinations of those
 * that match to the partition key columns and for every such combination,
 * we emit a PartitionPruneStepOp containing a vector of expressions whose
 * values are used as a look up key to search partitions by comparing the
 * values with partition bounds.  Relevant details of the operator and a
 * vector of (possibly cross-type) comparison functions is also included with
 * each step.
 *
 * For BoolExpr clauses, we recursively generate steps for each argument, and
 * return a PartitionPruneStepCombine of their results.
 *
 * The generated steps are added to the context's steps list.  Each step is
 * assigned a step identifier, unique even across recursive calls.
 *
 * If we find clauses that are mutually contradictory, or a pseudoconstant
 * clause that contains false, we set *contradictory to true and return NIL
 * (that is, no pruning steps).  Caller should consider all partitions as
 * pruned in that case.  Otherwise, *contradictory is set to false.
 *
 * Note: the 'clauses' List may be modified inside this function. Callers may
 * like to make a copy of it before passing them to this function.
 */
static List *
gen_partprune_steps_internal(GeneratePruningStepsContext *context,
							 RelOptInfo *rel, List *clauses,
							 bool *contradictory)
{
	PartitionScheme part_scheme = rel->part_scheme;
	List	   *keyclauses[PARTITION_MAX_KEYS];
	Bitmapset  *nullkeys = NULL,
			   *notnullkeys = NULL;
	bool		generate_opsteps = false;
	List	   *result = NIL;
	ListCell   *lc;

	*contradictory = false;

	memset(keyclauses, 0, sizeof(keyclauses));
	foreach(lc, clauses)
	{
		Expr	   *clause = (Expr *) lfirst(lc);
		int			i;

		if (IsA(clause, RestrictInfo))
		{
			RestrictInfo *rinfo = (RestrictInfo *) clause;

			clause = rinfo->clause;
			if (rinfo->pseudoconstant &&
				IsA(rinfo->clause, Const) &&
				!DatumGetBool(((Const *) clause)->constvalue))
			{
				*contradictory = true;
				return NIL;
			}
		}

		/* Get the BoolExpr's out of the way. */
		if (IsA(clause, BoolExpr))
		{
			/*
			 * Generate steps for arguments.
			 *
			 * While steps generated for the arguments themselves will be
			 * added to context->steps during recursion and will be evaluated
			 * independently, collect their step IDs to be stored in the
			 * combine step we'll be creating.
			 */
			if (or_clause((Node *) clause))
			{
				List	   *arg_stepids = NIL;
				bool		all_args_contradictory = true;
				ListCell   *lc1;

				/*
				 * Get pruning step for each arg.  If we get contradictory for
				 * all args, it means the OR expression is false as a whole.
				 */
				foreach(lc1, ((BoolExpr *) clause)->args)
				{
					Expr	   *arg = lfirst(lc1);
					bool		arg_contradictory;
					List	   *argsteps;

					argsteps =
						gen_partprune_steps_internal(context, rel,
													 list_make1(arg),
													 &arg_contradictory);
					if (!arg_contradictory)
						all_args_contradictory = false;

					if (argsteps != NIL)
					{
						PartitionPruneStep *step;

						Assert(list_length(argsteps) == 1);
						step = (PartitionPruneStep *) linitial(argsteps);
						arg_stepids = lappend_int(arg_stepids, step->step_id);
					}
					else
					{
						/*
						 * No steps either means that arg_contradictory is
						 * true or the arg didn't contain a clause matching
						 * this partition key.
						 *
						 * In case of the latter, we cannot prune using such
						 * an arg.  To indicate that to the pruning code, we
						 * must construct a dummy PartitionPruneStepCombine
						 * whose source_stepids is set to an empty List.
						 * However, if we can prove using constraint exclusion
						 * that the clause refutes the table's partition
						 * constraint (if it's sub-partitioned), we need not
						 * bother with that.  That is, we effectively ignore
						 * this OR arm.
						 */
						List	   *partconstr = rel->partition_qual;
						PartitionPruneStep *orstep;

						/* Just ignore this argument. */
						if (arg_contradictory)
							continue;

						if (partconstr)
						{
							partconstr = (List *)
								expression_planner((Expr *) partconstr);
							if (rel->relid != 1)
								ChangeVarNodes((Node *) partconstr, 1,
											   rel->relid, 0);
							if (predicate_refuted_by(partconstr,
													 list_make1(arg),
													 false))
								continue;
						}

						orstep = gen_prune_step_combine(context, NIL,
														PARTPRUNE_COMBINE_UNION);
						arg_stepids = lappend_int(arg_stepids, orstep->step_id);
					}
				}

				*contradictory = all_args_contradictory;

				/* Check if any contradicting clauses were found */
				if (*contradictory)
					return NIL;

				if (arg_stepids != NIL)
				{
					PartitionPruneStep *step;

					step = gen_prune_step_combine(context, arg_stepids,
												  PARTPRUNE_COMBINE_UNION);
					result = lappend(result, step);
				}
				continue;
			}
			else if (and_clause((Node *) clause))
			{
				List	   *args = ((BoolExpr *) clause)->args;
				List	   *argsteps,
						   *arg_stepids = NIL;
				ListCell   *lc1;

				/*
				 * args may itself contain clauses of arbitrary type, so just
				 * recurse and later combine the component partitions sets
				 * using a combine step.
				 */
				argsteps = gen_partprune_steps_internal(context, rel, args,
														contradictory);
				if (*contradictory)
					return NIL;

				foreach(lc1, argsteps)
				{
					PartitionPruneStep *step = lfirst(lc1);

					arg_stepids = lappend_int(arg_stepids, step->step_id);
				}

				if (arg_stepids != NIL)
				{
					PartitionPruneStep *step;

					step = gen_prune_step_combine(context, arg_stepids,
												  PARTPRUNE_COMBINE_INTERSECT);
					result = lappend(result, step);
				}
				continue;
			}

			/*
			 * Fall-through for a NOT clause, which if it's a Boolean clause,
			 * will be handled in match_clause_to_partition_key(). We
			 * currently don't perform any pruning for more complex NOT
			 * clauses.
			 */
		}

		/*
		 * Must be a clause for which we can check if one of its args matches
		 * the partition key.
		 */
		for (i = 0; i < part_scheme->partnatts; i++)
		{
			Expr	   *partkey = linitial(rel->partexprs[i]);
			bool		clause_is_not_null = false;
			PartClauseInfo *pc = NULL;
			List	   *clause_steps = NIL;

			switch (match_clause_to_partition_key(rel, context,
												  clause, partkey, i,
												  &clause_is_not_null,
												  &pc, &clause_steps))
			{
				case PARTCLAUSE_MATCH_CLAUSE:
					Assert(pc != NULL);

					/*
					 * Since we only allow strict operators, check for any
					 * contradicting IS NULL.
					 */
					if (bms_is_member(i, nullkeys))
					{
						*contradictory = true;
						return NIL;
					}
					generate_opsteps = true;
					keyclauses[i] = lappend(keyclauses[i], pc);
					break;

				case PARTCLAUSE_MATCH_NULLNESS:
					if (!clause_is_not_null)
					{
						/* check for conflicting IS NOT NULL */
						if (bms_is_member(i, notnullkeys))
						{
							*contradictory = true;
							return NIL;
						}
						nullkeys = bms_add_member(nullkeys, i);
					}
					else
					{
						/* check for conflicting IS NULL */
						if (bms_is_member(i, nullkeys))
						{
							*contradictory = true;
							return NIL;
						}
						notnullkeys = bms_add_member(notnullkeys, i);
					}
					break;

				case PARTCLAUSE_MATCH_STEPS:
					Assert(clause_steps != NIL);
					result = list_concat(result, clause_steps);
					break;

				case PARTCLAUSE_MATCH_CONTRADICT:
					/* We've nothing more to do if a contradiction was found. */
					*contradictory = true;
					return NIL;

				case PARTCLAUSE_NOMATCH:

					/*
					 * Clause didn't match this key, but it might match the
					 * next one.
					 */
					continue;

				case PARTCLAUSE_UNSUPPORTED:
					/* This clause cannot be used for pruning. */
					break;
			}

			/* done; go check the next clause. */
			break;
		}
	}

	/*
	 * If generate_opsteps is set to false it means no OpExprs were directly
	 * present in the input list.
	 */
	if (!generate_opsteps)
	{
		/*
		 * Generate one prune step for the information derived from IS NULL,
		 * if any.  To prune hash partitions, we must have found IS NULL
		 * clauses for all partition keys.
		 */
		if (!bms_is_empty(nullkeys) &&
			(part_scheme->strategy != PARTITION_STRATEGY_HASH ||
			 bms_num_members(nullkeys) == part_scheme->partnatts))
		{
			PartitionPruneStep *step;

			step = gen_prune_step_op(context, InvalidStrategy,
									 false, NIL, NIL, nullkeys);
			result = lappend(result, step);
		}

		/*
		 * Note that for IS NOT NULL clauses, simply having step suffices;
		 * there is no need to propagate the exact details of which keys are
		 * required to be NOT NULL.  Hash partitioning expects to see actual
		 * values to perform any pruning.
		 */
		if (!bms_is_empty(notnullkeys) &&
			part_scheme->strategy != PARTITION_STRATEGY_HASH)
		{
			PartitionPruneStep *step;

			step = gen_prune_step_op(context, InvalidStrategy,
									 false, NIL, NIL, NULL);
			result = lappend(result, step);
		}
	}
	else
	{
		PartitionPruneStep *step;

		/* Generate pruning steps from OpExpr clauses in keyclauses. */
		step = gen_prune_steps_from_opexps(part_scheme, context,
										   keyclauses, nullkeys);
		if (step != NULL)
			result = lappend(result, step);
	}

	/*
	 * Finally, results from all entries appearing in result should be
	 * combined using an INTERSECT combine step, if more than one.
	 */
	if (list_length(result) > 1)
	{
		List	   *step_ids = NIL;

		foreach(lc, result)
		{
			PartitionPruneStep *step = lfirst(lc);

			step_ids = lappend_int(step_ids, step->step_id);
		}

		if (step_ids != NIL)
		{
			PartitionPruneStep *step;

			step = gen_prune_step_combine(context, step_ids,
										  PARTPRUNE_COMBINE_INTERSECT);
			result = lappend(result, step);
		}
	}

	return result;
}

/*
 * gen_prune_step_op
 *		Generate a pruning step for a specific operator
 *
 * The step is assigned a unique step identifier and added to context's 'steps'
 * list.
 */
static PartitionPruneStep *
gen_prune_step_op(GeneratePruningStepsContext *context,
				  StrategyNumber opstrategy, bool op_is_ne,
				  List *exprs, List *cmpfns,
				  Bitmapset *nullkeys)
{
	PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp);

	opstep->step.step_id = context->next_step_id++;

	/*
	 * For clauses that contain an <> operator, set opstrategy to
	 * InvalidStrategy to signal get_matching_list_bounds to do the right
	 * thing.
	 */
	opstep->opstrategy = op_is_ne ? InvalidStrategy : opstrategy;
	Assert(list_length(exprs) == list_length(cmpfns));
	opstep->exprs = exprs;
	opstep->cmpfns = cmpfns;
	opstep->nullkeys = nullkeys;

	context->steps = lappend(context->steps, opstep);

	return (PartitionPruneStep *) opstep;
}

/*
 * gen_prune_step_combine
 *		Generate a pruning step for a combination of several other steps
 *
 * The step is assigned a unique step identifier and added to context's
 * 'steps' list.
 */
static PartitionPruneStep *
gen_prune_step_combine(GeneratePruningStepsContext *context,
					   List *source_stepids,
					   PartitionPruneCombineOp combineOp)
{
	PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine);

	cstep->step.step_id = context->next_step_id++;
	cstep->combineOp = combineOp;
	cstep->source_stepids = source_stepids;

	context->steps = lappend(context->steps, cstep);

	return (PartitionPruneStep *) cstep;
}

/*
 * gen_prune_steps_from_opexps
 *		Generate pruning steps based on clauses for partition keys
 *
 * 'keyclauses' contains one list of clauses per partition key.  We check here
 * if we have found clauses for a valid subset of the partition key. In some
 * cases, (depending on the type of partitioning being used) if we didn't
 * find clauses for a given key, we discard clauses that may have been
 * found for any subsequent keys; see specific notes below.
 */
static PartitionPruneStep *
gen_prune_steps_from_opexps(PartitionScheme part_scheme,
							GeneratePruningStepsContext *context,
							List **keyclauses, Bitmapset *nullkeys)
{
	ListCell   *lc;
	List	   *opsteps = NIL;
	List	   *btree_clauses[BTMaxStrategyNumber + 1],
			   *hash_clauses[HTMaxStrategyNumber + 1];
	bool		need_next_less,
				need_next_eq,
				need_next_greater;
	int			i;

	memset(btree_clauses, 0, sizeof(btree_clauses));
	memset(hash_clauses, 0, sizeof(hash_clauses));
	for (i = 0; i < part_scheme->partnatts; i++)
	{
		List	   *clauselist = keyclauses[i];
		bool		consider_next_key = true;

		/*
		 * To be useful for pruning, we must have clauses for a prefix of
		 * partition keys in the case of range partitioning.  So, ignore
		 * clauses for keys after this one.
		 */
		if (part_scheme->strategy == PARTITION_STRATEGY_RANGE &&
			clauselist == NIL)
			break;

		/*
		 * For hash partitioning, if a column doesn't have the necessary
		 * equality clause, there should be an IS NULL clause, otherwise
		 * pruning is not possible.
		 */
		if (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
			clauselist == NIL && !bms_is_member(i, nullkeys))
			return NULL;

		need_next_eq = need_next_less = need_next_greater = true;
		foreach(lc, clauselist)
		{
			PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc);
			Oid			lefttype,
						righttype;

			/* Look up the operator's btree/hash strategy number. */
			if (pc->op_strategy == InvalidStrategy)
				get_op_opfamily_properties(pc->opno,
										   part_scheme->partopfamily[i],
										   false,
										   &pc->op_strategy,
										   &lefttype,
										   &righttype);

			switch (part_scheme->strategy)
			{
				case PARTITION_STRATEGY_LIST:
				case PARTITION_STRATEGY_RANGE:
					{
						PartClauseInfo *last = NULL;
						bool		inclusive = false;

						/*
						 * Add this clause to the list of clauses to be used
						 * for pruning if this is the first such key for this
						 * operator strategy or if it is consecutively next to
						 * the last column for which a clause with this
						 * operator strategy was matched.
						 */
						if (btree_clauses[pc->op_strategy] != NIL)
							last = llast(btree_clauses[pc->op_strategy]);

						if (last == NULL ||
							i == last->keyno || i == last->keyno + 1)
							btree_clauses[pc->op_strategy] =
								lappend(btree_clauses[pc->op_strategy], pc);

						/*
						 * We may not need the next clause if they're of
						 * certain strategy.
						 */
						switch (pc->op_strategy)
						{
							case BTLessEqualStrategyNumber:
								inclusive = true;
								/* fall through */
							case BTLessStrategyNumber:
								if (!inclusive)
									need_next_eq = need_next_less = false;
								break;
							case BTEqualStrategyNumber:
								/* always accept clauses for the next key. */
								break;
							case BTGreaterEqualStrategyNumber:
								inclusive = true;
								/* fall through */
							case BTGreaterStrategyNumber:
								if (!inclusive)
									need_next_eq = need_next_greater = false;
								break;
						}

						/* We may want to change our mind. */
						if (consider_next_key)
							consider_next_key = (need_next_eq ||
												 need_next_less ||
												 need_next_greater);
						break;
					}

				case PARTITION_STRATEGY_HASH:
					if (pc->op_strategy != HTEqualStrategyNumber)
						elog(ERROR, "invalid clause for hash partitioning");
					hash_clauses[pc->op_strategy] =
						lappend(hash_clauses[pc->op_strategy], pc);
					break;

				default:
					elog(ERROR, "invalid partition strategy: %c",
						 part_scheme->strategy);
					break;
			}
		}

		/*
		 * If we've decided that clauses for subsequent partition keys
		 * wouldn't be useful for pruning, don't search any further.
		 */
		if (!consider_next_key)
			break;
	}

	/*
	 * Now, we have divided clauses according to their operator strategies.
	 * Check for each strategy if we can generate pruning step(s) by
	 * collecting a list of expressions whose values will constitute a vector
	 * that can be used as a lookup key by a partition bound searching
	 * function.
	 */
	switch (part_scheme->strategy)
	{
		case PARTITION_STRATEGY_LIST:
		case PARTITION_STRATEGY_RANGE:
			{
				List	   *eq_clauses = btree_clauses[BTEqualStrategyNumber];
				List	   *le_clauses = btree_clauses[BTLessEqualStrategyNumber];
				List	   *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber];
				int			strat;

				/*
				 * For each clause under consideration for a given strategy,
				 * we collect expressions from clauses for earlier keys, whose
				 * operator strategy is inclusive, into a list called
				 * 'prefix'. By appending the clause's own expression to the
				 * 'prefix', we'll generate one step using the so generated
				 * vector and assign the current strategy to it.  Actually,
				 * 'prefix' might contain multiple clauses for the same key,
				 * in which case, we must generate steps for various
				 * combinations of expressions of different keys, which
				 * get_steps_using_prefix takes care of for us.
				 */
				for (strat = 1; strat <= BTMaxStrategyNumber; strat++)
				{
					foreach(lc, btree_clauses[strat])
					{
						PartClauseInfo *pc = lfirst(lc);
						ListCell   *lc1;
						List	   *prefix = NIL;
						List	   *pc_steps;

						/*
						 * Expressions from = clauses can always be in the
						 * prefix, provided they're from an earlier key.
						 */
						foreach(lc1, eq_clauses)
						{
							PartClauseInfo *eqpc = lfirst(lc1);

							if (eqpc->keyno == pc->keyno)
								break;
							if (eqpc->keyno < pc->keyno)
								prefix = lappend(prefix, eqpc);
						}

						/*
						 * If we're generating steps for </<= strategy, we can
						 * add other <= clauses to the prefix, provided
						 * they're from an earlier key.
						 */
						if (strat == BTLessStrategyNumber ||
							strat == BTLessEqualStrategyNumber)
						{
							foreach(lc1, le_clauses)
							{
								PartClauseInfo *lepc = lfirst(lc1);

								if (lepc->keyno == pc->keyno)
									break;
								if (lepc->keyno < pc->keyno)
									prefix = lappend(prefix, lepc);
							}
						}

						/*
						 * If we're generating steps for >/>= strategy, we can
						 * add other >= clauses to the prefix, provided
						 * they're from an earlier key.
						 */
						if (strat == BTGreaterStrategyNumber ||
							strat == BTGreaterEqualStrategyNumber)
						{
							foreach(lc1, ge_clauses)
							{
								PartClauseInfo *gepc = lfirst(lc1);

								if (gepc->keyno == pc->keyno)
									break;
								if (gepc->keyno < pc->keyno)
									prefix = lappend(prefix, gepc);
							}
						}

						/*
						 * As mentioned above, if 'prefix' contains multiple
						 * expressions for the same key, the following will
						 * generate multiple steps, one for each combination
						 * of the expressions for different keys.
						 *
						 * Note that we pass NULL for step_nullkeys, because
						 * we don't search list/range partition bounds where
						 * some keys are NULL.
						 */
						Assert(pc->op_strategy == strat);
						pc_steps = get_steps_using_prefix(context, strat,
														  pc->op_is_ne,
														  pc->expr,
														  pc->cmpfn,
														  pc->keyno,
														  NULL,
														  prefix);
						opsteps = list_concat(opsteps, list_copy(pc_steps));
					}
				}
				break;
			}

		case PARTITION_STRATEGY_HASH:
			{
				List	   *eq_clauses = hash_clauses[HTEqualStrategyNumber];

				/* For hash partitioning, we have just the = strategy. */
				if (eq_clauses != NIL)
				{
					PartClauseInfo *pc;
					List	   *pc_steps;
					List	   *prefix = NIL;
					int			last_keyno;
					ListCell   *lc1;

					/*
					 * Locate the clause for the greatest column.  This may
					 * not belong to the last partition key, but it is the
					 * clause belonging to the last partition key we found a
					 * clause for above.
					 */
					pc = llast(eq_clauses);

					/*
					 * There might be multiple clauses which matched to that
					 * partition key; find the first such clause.  While at
					 * it, add all the clauses before that one to 'prefix'.
					 */
					last_keyno = pc->keyno;
					foreach(lc, eq_clauses)
					{
						pc = lfirst(lc);
						if (pc->keyno == last_keyno)
							break;
						prefix = lappend(prefix, pc);
					}

					/*
					 * For each clause for the "last" column, after appending
					 * the clause's own expression to the 'prefix', we'll
					 * generate one step using the so generated vector and and
					 * assign = as its strategy.  Actually, 'prefix' might
					 * contain multiple clauses for the same key, in which
					 * case, we must generate steps for various combinations
					 * of expressions of different keys, which
					 * get_steps_using_prefix will take care of for us.
					 */
					for_each_cell(lc1, lc)
					{
						pc = lfirst(lc1);

						/*
						 * Note that we pass nullkeys for step_nullkeys,
						 * because we need to tell hash partition bound search
						 * function which of the keys we found IS NULL clauses
						 * for.
						 */
						Assert(pc->op_strategy == HTEqualStrategyNumber);
						pc_steps =
							get_steps_using_prefix(context,
												   HTEqualStrategyNumber,
												   false,
												   pc->expr,
												   pc->cmpfn,
												   pc->keyno,
												   nullkeys,
												   prefix);
						opsteps = list_concat(opsteps, list_copy(pc_steps));
					}
				}
				break;
			}

		default:
			elog(ERROR, "invalid partition strategy: %c",
				 part_scheme->strategy);
			break;
	}

	/* Lastly, add a combine step to mutually AND these op steps, if needed */
	if (list_length(opsteps) > 1)
	{
		List	   *opstep_ids = NIL;

		foreach(lc, opsteps)
		{
			PartitionPruneStep *step = lfirst(lc);

			opstep_ids = lappend_int(opstep_ids, step->step_id);
		}

		if (opstep_ids != NIL)
			return gen_prune_step_combine(context, opstep_ids,
										  PARTPRUNE_COMBINE_INTERSECT);
		return NULL;
	}
	else if (opsteps != NIL)
		return linitial(opsteps);

	return NULL;
}

/*
 * If the partition key has a collation, then the clause must have the same
 * input collation.  If the partition key is non-collatable, we assume the
 * collation doesn't matter, because while collation wasn't considered when
 * performing partitioning, the clause still may have a collation assigned
 * due to the other input being of a collatable type.
 *
 * See also IndexCollMatchesExprColl.
 */
#define PartCollMatchesExprColl(partcoll, exprcoll) \
	((partcoll) == InvalidOid || (partcoll) == (exprcoll))

/*
 * match_clause_to_partition_key
 *		Attempt to match the given 'clause' with the specified partition key.
 *
 * Return value is:
 * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
 *   caller should keep trying, because it might match a subsequent key).
 *   Output arguments: none set.
 *
 * * PARTCLAUSE_MATCH_CLAUSE if there is a match.
 *   Output arguments: *pc is set to a PartClauseInfo constructed for the
 *   matched clause.
 *
 * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
 *   either a "a IS NULL" or "a IS NOT NULL" clause.
 *   Output arguments: *clause_is_not_null is set to false in the former case
 *   true otherwise.
 *
 * * PARTCLAUSE_MATCH_STEPS if there is a match.
 *   Output arguments: *clause_steps is set to a list of PartitionPruneStep
 *   generated for the clause.
 *
 * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory.  This can
 *   only happen if it's a BoolExpr whose arguments are self-contradictory.
 *   Output arguments: none set.
 *
 * * PARTCLAUSE_UNSUPPORTED if the clause cannot be used for pruning at all
 *   due to one of its properties, such as argument volatility, even if it may
 *   have been matched with a key.
 *   Output arguments: none set.
 */
static PartClauseMatchStatus
match_clause_to_partition_key(RelOptInfo *rel,
							  GeneratePruningStepsContext *context,
							  Expr *clause, Expr *partkey, int partkeyidx,
							  bool *clause_is_not_null, PartClauseInfo **pc,
							  List **clause_steps)
{
	PartitionScheme part_scheme = rel->part_scheme;
	Expr	   *expr;
	Oid			partopfamily = part_scheme->partopfamily[partkeyidx],
				partcoll = part_scheme->partcollation[partkeyidx];

	/*
	 * Recognize specially shaped clauses that match with the Boolean
	 * partition key.
	 */
	if (match_boolean_partition_clause(partopfamily, clause, partkey, &expr))
	{
		PartClauseInfo *partclause;

		partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
		partclause->keyno = partkeyidx;
		/* Do pruning with the Boolean equality operator. */
		partclause->opno = BooleanEqualOperator;
		partclause->op_is_ne = false;
		partclause->expr = expr;
		/* We know that expr is of Boolean type. */
		partclause->cmpfn = rel->part_scheme->partsupfunc[partkeyidx].fn_oid;
		partclause->op_strategy = InvalidStrategy;

		*pc = partclause;

		return PARTCLAUSE_MATCH_CLAUSE;
	}
	else if (IsA(clause, OpExpr) &&
			 list_length(((OpExpr *) clause)->args) == 2)
	{
		OpExpr	   *opclause = (OpExpr *) clause;
		Expr	   *leftop,
				   *rightop;
		Oid			op_lefttype,
					op_righttype,
					commutator = InvalidOid,
					negator = InvalidOid;
		Oid			cmpfn;
		int			op_strategy;
		bool		is_opne_listp = false;
		PartClauseInfo *partclause;

		leftop = (Expr *) get_leftop(clause);
		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;
		rightop = (Expr *) get_rightop(clause);
		if (IsA(rightop, RelabelType))
			rightop = ((RelabelType *) rightop)->arg;

		/* check if the clause matches this partition key */
		if (equal(leftop, partkey))
			expr = rightop;
		else if (equal(rightop, partkey))
		{
			expr = leftop;
			commutator = get_commutator(opclause->opno);

			/* nothing we can do unless we can swap the operands */
			if (!OidIsValid(commutator))
				return PARTCLAUSE_UNSUPPORTED;
		}
		else
			/* clause does not match this partition key, but perhaps next. */
			return PARTCLAUSE_NOMATCH;

		/*
		 * Partition key also consists of a collation that's specified for it,
		 * so try to match it too.  There may be multiple keys with the same
		 * expression but different collations.
		 */
		if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid))
			return PARTCLAUSE_NOMATCH;

		/*
		 * Matched with this key.  Now check various properties of the clause
		 * to see if it's sane to use it for pruning.  If any of the
		 * properties makes it unsuitable for pruning, then the clause is
		 * useless no matter which key it's matched to.
		 */

		/*
		 * Only allow strict operators.  This will guarantee nulls are
		 * filtered.
		 */
		if (!op_strict(opclause->opno))
			return PARTCLAUSE_UNSUPPORTED;

		/* We can't use any volatile expressions to prune partitions. */
		if (contain_volatile_functions((Node *) expr))
			return PARTCLAUSE_UNSUPPORTED;

		/*
		 * Determine the input types of the operator we're considering.
		 *
		 * Normally we only care about operators that are listed as being part
		 * of the partitioning operator family.  But there is one exception:
		 * the not-equals operators are not listed in any operator family
		 * whatsoever, but their negators (equality) are.  We can use one of
		 * those if we find it, but only for list partitioning.
		 */
		if (op_in_opfamily(opclause->opno, partopfamily))
		{
			Oid		oper;

			oper = OidIsValid(commutator) ? commutator : opclause->opno;
			get_op_opfamily_properties(oper, partopfamily, false,
									   &op_strategy, &op_lefttype,
									   &op_righttype);
		}
		else
		{
			/* Not good unless list partitioning */
			if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
				return PARTCLAUSE_UNSUPPORTED;

			/* See if the negator is equality */
			negator = get_negator(opclause->opno);
			if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
			{
				get_op_opfamily_properties(negator, partopfamily, false,
										   &op_strategy, &op_lefttype,
										   &op_righttype);
				if (op_strategy == BTEqualStrategyNumber)
					is_opne_listp = true;	/* bingo */
			}

			/* Operator isn't really what we were hoping it'd be. */
			if (!is_opne_listp)
				return PARTCLAUSE_UNSUPPORTED;
		}

		/*
		 * Now find the procedure to use, based on the types.  If the clause's
		 * other argument is of the same type as the partitioning opclass's
		 * declared input type, we can use the procedure cached in
		 * PartitionKey.  If not, search for a cross-type one in the same
		 * opfamily; if one doesn't exist, give up on pruning for this clause.
		 */
		if (op_righttype == part_scheme->partopcintype[partkeyidx])
			cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
		else
		{
			switch (part_scheme->strategy)
			{
				/*
				 * For range and list partitioning, we need the ordering
				 * procedure with lefttype being the partition key's type, and
				 * righttype the clause's operator's right type.
				 */
				case PARTITION_STRATEGY_LIST:
				case PARTITION_STRATEGY_RANGE:
					cmpfn =
						get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
										  part_scheme->partopcintype[partkeyidx],
										  op_righttype, BTORDER_PROC);
					break;

				/*
				 * For hash partitioning, we need the hashing procedure for
				 * the clause's type.
				 */
				case PARTITION_STRATEGY_HASH:
					cmpfn =
						get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
										  op_righttype, op_righttype,
										  HASHEXTENDED_PROC);
					break;

				default:
					elog(ERROR, "invalid partition strategy: %c",
						 part_scheme->strategy);
					break;
			}

			/* If we couldn't find one, we cannot use this expression. */
			if (!OidIsValid(cmpfn))
				return PARTCLAUSE_UNSUPPORTED;
		}

		/*
		 * Build the clause, passing the negator or commutator if applicable.
		 */
		partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
		partclause->keyno = partkeyidx;
		if (is_opne_listp)
		{
			Assert(OidIsValid(negator));
			partclause->opno = negator;
			partclause->op_is_ne = true;
			partclause->op_strategy = InvalidStrategy;
		}
		else
		{
			partclause->opno = OidIsValid(commutator) ?
				commutator : opclause->opno;
			partclause->op_is_ne = false;
			partclause->op_strategy = op_strategy;
		}
		partclause->expr = expr;
		partclause->cmpfn = cmpfn;

		*pc = partclause;

		return PARTCLAUSE_MATCH_CLAUSE;
	}
	else if (IsA(clause, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
		Oid			saop_op = saop->opno;
		Oid			saop_coll = saop->inputcollid;
		Expr	   *leftop = (Expr *) linitial(saop->args),
				   *rightop = (Expr *) lsecond(saop->args);
		List	   *elem_exprs,
				   *elem_clauses;
		ListCell   *lc1;

		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;

		/* Check it matches this partition key */
		if (!equal(leftop, partkey) ||
			!PartCollMatchesExprColl(partcoll, saop->inputcollid))
			return PARTCLAUSE_NOMATCH;

		/*
		 * Matched with this key.  Check various properties of the clause to
		 * see if it can sanely be used for partition pruning.
		 */

		/*
		 * Only allow strict operators.  This will guarantee nulls are
		 * filtered.
		 */
		if (!op_strict(saop->opno))
			return PARTCLAUSE_UNSUPPORTED;

		/* Useless if the array has any volatile functions. */
		if (contain_volatile_functions((Node *) rightop))
			return PARTCLAUSE_UNSUPPORTED;

		/*
		 * In case of NOT IN (..), we get a '<>', which we handle if list
		 * partitioning is in use and we're able to confirm that it's negator
		 * is a btree equality operator belonging to the partitioning operator
		 * family.
		 */
		if (!op_in_opfamily(saop_op, partopfamily))
		{
			Oid			negator;

			if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
				return PARTCLAUSE_UNSUPPORTED;

			negator = get_negator(saop_op);
			if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
			{
				int			strategy;
				Oid			lefttype,
							righttype;

				get_op_opfamily_properties(negator, partopfamily,
										   false, &strategy,
										   &lefttype, &righttype);
				if (strategy != BTEqualStrategyNumber)
					return PARTCLAUSE_UNSUPPORTED;
			}
		}

		/*
		 * First generate a list of Const nodes, one for each array element
		 * (excepting nulls).
		 */
		elem_exprs = NIL;
		if (IsA(rightop, Const))
		{
			Const	   *arr = castNode(Const, rightop);
			ArrayType  *arrval = DatumGetArrayTypeP(arr->constvalue);
			int16		elemlen;
			bool		elembyval;
			char		elemalign;
			Datum	   *elem_values;
			bool	   *elem_nulls;
			int			num_elems,
						i;

			get_typlenbyvalalign(ARR_ELEMTYPE(arrval),
								 &elemlen, &elembyval, &elemalign);
			deconstruct_array(arrval,
							  ARR_ELEMTYPE(arrval),
							  elemlen, elembyval, elemalign,
							  &elem_values, &elem_nulls,
							  &num_elems);
			for (i = 0; i < num_elems; i++)
			{
				Const	   *elem_expr;

				/* Only consider non-null values. */
				if (elem_nulls[i])
					continue;

				elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1,
									  arr->constcollid, elemlen,
									  elem_values[i], false, elembyval);
				elem_exprs = lappend(elem_exprs, elem_expr);
			}
		}
		else
		{
			ArrayExpr  *arrexpr = castNode(ArrayExpr, rightop);

			/*
			 * For a nested ArrayExpr, we don't know how to get the actual
			 * scalar values out into a flat list, so we give up doing
			 * anything with this ScalarArrayOpExpr.
			 */
			if (arrexpr->multidims)
				return PARTCLAUSE_UNSUPPORTED;

			elem_exprs = arrexpr->elements;
		}

		/*
		 * Now generate a list of clauses, one for each array element, of the
		 * form saop_leftop saop_op elem_expr
		 */
		elem_clauses = NIL;
		foreach(lc1, elem_exprs)
		{
			Expr	   *rightop = (Expr *) lfirst(lc1),
					   *elem_clause;

			elem_clause = make_opclause(saop_op, BOOLOID, false,
										leftop, rightop,
										InvalidOid, saop_coll);
			elem_clauses = lappend(elem_clauses, elem_clause);
		}

		/*
		 * Build a combine step as if for an OR clause or add the clauses to
		 * the end of the list that's being processed currently.
		 */
		if (saop->useOr && list_length(elem_clauses) > 1)
		{
			Expr	   *orexpr;
			bool		contradictory;

			orexpr = makeBoolExpr(OR_EXPR, elem_clauses, -1);
			*clause_steps =
				gen_partprune_steps_internal(context, rel, list_make1(orexpr),
											 &contradictory);
			if (contradictory)
				return PARTCLAUSE_MATCH_CONTRADICT;

			Assert(list_length(*clause_steps) == 1);
			return PARTCLAUSE_MATCH_STEPS;
		}
		else
		{
			bool		contradictory;

			*clause_steps =
				gen_partprune_steps_internal(context, rel, elem_clauses,
											 &contradictory);
			if (contradictory)
				return PARTCLAUSE_MATCH_CONTRADICT;
			Assert(list_length(*clause_steps) >= 1);
			return PARTCLAUSE_MATCH_STEPS;
		}
	}
	else if (IsA(clause, NullTest))
	{
		NullTest   *nulltest = (NullTest *) clause;
		Expr	   *arg = nulltest->arg;

		if (IsA(arg, RelabelType))
			arg = ((RelabelType *) arg)->arg;

		/* Does arg match with this partition key column? */
		if (!equal(arg, partkey))
			return PARTCLAUSE_NOMATCH;

		*clause_is_not_null = nulltest->nulltesttype == IS_NOT_NULL;

		return PARTCLAUSE_MATCH_NULLNESS;
	}

	return PARTCLAUSE_UNSUPPORTED;
}

/*
 * get_steps_using_prefix
 *		Generate list of PartitionPruneStepOp steps each consisting of given
 *		opstrategy
 *
 * To generate steps, step_lastexpr and step_lastcmpfn are appended to
 * expressions and cmpfns, respectively, extracted from the clauses in
 * 'prefix'.  Actually, since 'prefix' may contain multiple clauses for the
 * same partition key column, we must generate steps for various combinations
 * of the clauses of different keys.
 */
static List *
get_steps_using_prefix(GeneratePruningStepsContext *context,
					   StrategyNumber step_opstrategy,
					   bool step_op_is_ne,
					   Expr *step_lastexpr,
					   Oid step_lastcmpfn,
					   int step_lastkeyno,
					   Bitmapset *step_nullkeys,
					   List *prefix)
{
	/* Quick exit if there are no values to prefix with. */
	if (list_length(prefix) == 0)
	{
		PartitionPruneStep *step;

		step = gen_prune_step_op(context,
								 step_opstrategy,
								 step_op_is_ne,
								 list_make1(step_lastexpr),
								 list_make1_oid(step_lastcmpfn),
								 step_nullkeys);
		return list_make1(step);
	}

	/* Recurse to generate steps for various combinations. */
	return get_steps_using_prefix_recurse(context,
										  step_opstrategy,
										  step_op_is_ne,
										  step_lastexpr,
										  step_lastcmpfn,
										  step_lastkeyno,
										  step_nullkeys,
										  list_head(prefix),
										  NIL, NIL);
}

/*
 * get_steps_using_prefix_recurse
 *		Recursively generate combinations of clauses for different partition
 *		keys and start generating steps upon reaching clauses for the greatest
 *		column that is less than the one for which we're currently generating
 *		steps (that is, step_lastkeyno)
 *
 * 'start' is where we should start iterating for the current invocation.
 * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
 * we've generated so far from the clauses for the previous part keys.
 */
static List *
get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
							   StrategyNumber step_opstrategy,
							   bool step_op_is_ne,
							   Expr *step_lastexpr,
							   Oid step_lastcmpfn,
							   int step_lastkeyno,
							   Bitmapset *step_nullkeys,
							   ListCell *start,
							   List *step_exprs,
							   List *step_cmpfns)
{
	List	   *result = NIL;
	ListCell   *lc;
	int			cur_keyno;

	/* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
	check_stack_depth();

	/* Check if we need to recurse. */
	Assert(start != NULL);
	cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno;
	if (cur_keyno < step_lastkeyno - 1)
	{
		PartClauseInfo *pc;
		ListCell   *next_start;

		/*
		 * For each clause with cur_keyno, adds its expr and cmpfn to
		 * step_exprs and step_cmpfns, respectively, and recurse after setting
		 * next_start to the ListCell of the first clause for the next
		 * partition key.
		 */
		for_each_cell(lc, start)
		{
			pc = lfirst(lc);

			if (pc->keyno > cur_keyno)
				break;
		}
		next_start = lc;

		for_each_cell(lc, start)
		{
			List	   *moresteps;

			pc = lfirst(lc);
			if (pc->keyno == cur_keyno)
			{
				/* clean up before starting a new recursion cycle. */
				if (cur_keyno == 0)
				{
					list_free(step_exprs);
					list_free(step_cmpfns);
					step_exprs = list_make1(pc->expr);
					step_cmpfns = list_make1_oid(pc->cmpfn);
				}
				else
				{
					step_exprs = lappend(step_exprs, pc->expr);
					step_cmpfns = lappend_oid(step_cmpfns, pc->cmpfn);
				}
			}
			else
			{
				Assert(pc->keyno > cur_keyno);
				break;
			}

			moresteps = get_steps_using_prefix_recurse(context,
													   step_opstrategy,
													   step_op_is_ne,
													   step_lastexpr,
													   step_lastcmpfn,
													   step_lastkeyno,
													   step_nullkeys,
													   next_start,
													   step_exprs,
													   step_cmpfns);
			result = list_concat(result, moresteps);
		}
	}
	else
	{
		/*
		 * End the current recursion cycle and start generating steps, one for
		 * each clause with cur_keyno, which is all clauses from here onward
		 * till the end of the list.
		 */
		Assert(list_length(step_exprs) == cur_keyno);
		for_each_cell(lc, start)
		{
			PartClauseInfo *pc = lfirst(lc);
			PartitionPruneStep *step;
			List	   *step_exprs1,
					   *step_cmpfns1;

			Assert(pc->keyno == cur_keyno);

			/* Leave the original step_exprs unmodified. */
			step_exprs1 = list_copy(step_exprs);
			step_exprs1 = lappend(step_exprs1, pc->expr);
			step_exprs1 = lappend(step_exprs1, step_lastexpr);

			/* Leave the original step_cmpfns unmodified. */
			step_cmpfns1 = list_copy(step_cmpfns);
			step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
			step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn);

			step = gen_prune_step_op(context,
									 step_opstrategy, step_op_is_ne,
									 step_exprs1, step_cmpfns1,
									 step_nullkeys);
			result = lappend(result, step);
		}
	}

	return result;
}

/*
 * get_matching_hash_bounds
 *		Determine offset of the hash bound matching the specified values,
 *		considering that all the non-null values come from clauses containing
 *		a compatible hash equality operator and any keys that are null come
 *		from an IS NULL clause.
 *
 * Generally this function will return a single matching bound offset,
 * although if a partition has not been setup for a given modulus then we may
 * return no matches.  If the number of clauses found don't cover the entire
 * partition key, then we'll need to return all offsets.
 *
 * 'opstrategy' if non-zero must be HTEqualStrategyNumber.
 *
 * 'values' contains Datums indexed by the partition key to use for pruning.
 *
 * 'nvalues', the number of Datums in the 'values' array.
 *
 * 'partsupfunc' contains partition hashing functions that can produce correct
 * hash for the type of the values contained in 'values'.
 *
 * 'nullkeys' is the set of partition keys that are null.
 */
static PruneStepResult *
get_matching_hash_bounds(PartitionPruneContext *context,
						 StrategyNumber opstrategy, Datum *values, int nvalues,
						 FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	PartitionBoundInfo boundinfo = context->boundinfo;
	int		   *partindices = boundinfo->indexes;
	int			partnatts = context->partnatts;
	bool		isnull[PARTITION_MAX_KEYS];
	int			i;
	uint64		rowHash;
	int			greatest_modulus;

	Assert(context->strategy == PARTITION_STRATEGY_HASH);

	/*
	 * For hash partitioning we can only perform pruning based on equality
	 * clauses to the partition key or IS NULL clauses.  We also can only
	 * prune if we got values for all keys.
	 */
	if (nvalues + bms_num_members(nullkeys) == partnatts)
	{
		/*
		 * If there are any values, they must have come from clauses
		 * containing an equality operator compatible with hash partitioning.
		 */
		Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0);

		for (i = 0; i < partnatts; i++)
			isnull[i] = bms_is_member(i, nullkeys);

		greatest_modulus = get_hash_partition_greatest_modulus(boundinfo);
		rowHash = compute_hash_value(partnatts, partsupfunc, values, isnull);

		if (partindices[rowHash % greatest_modulus] >= 0)
			result->bound_offsets =
				bms_make_singleton(rowHash % greatest_modulus);
	}
	else
		result->bound_offsets = bms_add_range(NULL, 0,
											  boundinfo->ndatums - 1);

	/*
	 * There is neither a special hash null partition or the default hash
	 * partition.
	 */
	result->scan_null = result->scan_default = false;

	return result;
}

/*
 * get_matching_list_bounds
 *		Determine the offsets of list bounds matching the specified value,
 *		according to the semantics of the given operator strategy
 * 'opstrategy' if non-zero must be a btree strategy number.
 *
 * 'value' contains the value to use for pruning.
 *
 * 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
 *
 * 'partsupfunc' contains the list partitioning comparison function to be used
 * to perform partition_list_bsearch
 *
 * 'nullkeys' is the set of partition keys that are null.
 */
static PruneStepResult *
get_matching_list_bounds(PartitionPruneContext *context,
						 StrategyNumber opstrategy, Datum value, int nvalues,
						 FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	PartitionBoundInfo boundinfo = context->boundinfo;
	int			off,
				minoff,
				maxoff;
	bool		is_equal;
	bool		inclusive = false;
	Oid		   *partcollation = context->partcollation;

	Assert(context->strategy == PARTITION_STRATEGY_LIST);
	Assert(context->partnatts == 1);

	result->scan_null = result->scan_default = false;

	if (!bms_is_empty(nullkeys))
	{
		/*
		 * Nulls may exist in only one partition - the partition whose
		 * accepted set of values includes null or the default partition if
		 * the former doesn't exist.
		 */
		if (partition_bound_accepts_nulls(boundinfo))
			result->scan_null = true;
		else
			result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	/*
	 * If there are no datums to compare keys with, but there are partitions,
	 * just return the default partition if one exists.
	 */
	if (boundinfo->ndatums == 0)
	{
		result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	minoff = 0;
	maxoff = boundinfo->ndatums - 1;

	/*
	 * If there are no values to compare with the datums in boundinfo, it
	 * means the caller asked for partitions for all non-null datums.  Add
	 * indexes of *all* partitions, including the default if any.
	 */
	if (nvalues == 0)
	{
		result->bound_offsets = bms_add_range(NULL, 0,
											  boundinfo->ndatums - 1);
		result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	/* Special case handling of values coming from a <> operator clause. */
	if (opstrategy == InvalidStrategy)
	{
		/*
		 * First match to all bounds.  We'll remove any matching datums below.
		 */
		result->bound_offsets = bms_add_range(NULL, 0,
											  boundinfo->ndatums - 1);

		off = partition_list_bsearch(partsupfunc, partcollation, boundinfo,
									 value, &is_equal);
		if (off >= 0 && is_equal)
		{

			/* We have a match. Remove from the result. */
			Assert(boundinfo->indexes[off] >= 0);
			result->bound_offsets = bms_del_member(result->bound_offsets,
												   off);
		}

		/* Always include the default partition if any. */
		result->scan_default = partition_bound_has_default(boundinfo);

		return result;
	}

	/*
	 * With range queries, always include the default list partition, because
	 * list partitions divide the key space in a discontinuous manner, not all
	 * values in the given range will have a partition assigned.  This may not
	 * technically be true for some data types (e.g. integer types), however,
	 * we currently lack any sort of infrastructure to provide us with proofs
	 * that would allow us to do anything smarter here.
	 */
	if (opstrategy != BTEqualStrategyNumber)
		result->scan_default = partition_bound_has_default(boundinfo);

	switch (opstrategy)
	{
		case BTEqualStrategyNumber:
			off = partition_list_bsearch(partsupfunc,
										 partcollation,
										 boundinfo, value,
										 &is_equal);
			if (off >= 0 && is_equal)
			{
				Assert(boundinfo->indexes[off] >= 0);
				result->bound_offsets = bms_make_singleton(off);
			}
			else
				result->scan_default = partition_bound_has_default(boundinfo);
			return result;

		case BTGreaterEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTGreaterStrategyNumber:
			off = partition_list_bsearch(partsupfunc,
										 partcollation,
										 boundinfo, value,
										 &is_equal);
			if (off >= 0)
			{
				/* We don't want the matched datum to be in the result. */
				if (!is_equal || !inclusive)
					off++;
			}
			else
			{
				/*
				 * This case means all partition bounds are greater, which in
				 * turn means that all partitions satisfy this key.
				 */
				off = 0;
			}

			/*
			 * off is greater than the numbers of datums we have partitions
			 * for.  The only possible partition that could contain a match is
			 * the default partition, but we must've set context->scan_default
			 * above anyway if one exists.
			 */
			if (off > boundinfo->ndatums - 1)
				return result;

			minoff = off;
			break;

		case BTLessEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTLessStrategyNumber:
			off = partition_list_bsearch(partsupfunc,
										 partcollation,
										 boundinfo, value,
										 &is_equal);
			if (off >= 0 && is_equal && !inclusive)
				off--;

			/*
			 * off is smaller than the datums of all non-default partitions.
			 * The only possible partition that could contain a match is the
			 * default partition, but we must've set context->scan_default
			 * above anyway if one exists.
			 */
			if (off < 0)
				return result;

			maxoff = off;
			break;

		default:
			elog(ERROR, "invalid strategy number %d", opstrategy);
			break;
	}

	result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
	return result;
}


/*
 * get_matching_range_datums
 *		Determine the offsets of range bounds matching the specified values,
 *		according to the semantics of the given operator strategy
 *
 * Each datum whose offset is in result is to be treated as the upper bound of
 * the partition that will contain the desired values.
 *
 * If default partition needs to be scanned for given values, set scan_default
 * in result if present.
 *
 * 'opstrategy' if non-zero must be a btree strategy number.
 *
 * 'values' contains Datums indexed by the partition key to use for pruning.
 *
 * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
 *
 * 'partsupfunc' contains the range partitioning comparison functions to be
 * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
 * using.
 *
 * 'nullkeys' is the set of partition keys that are null.
 */
static PruneStepResult *
get_matching_range_bounds(PartitionPruneContext *context,
						  StrategyNumber opstrategy, Datum *values, int nvalues,
						  FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	PartitionBoundInfo boundinfo = context->boundinfo;
	Oid		   *partcollation = context->partcollation;
	int			partnatts = context->partnatts;
	int		   *partindices = boundinfo->indexes;
	int			off,
				minoff,
				maxoff,
				i;
	bool		is_equal;
	bool		inclusive = false;

	Assert(context->strategy == PARTITION_STRATEGY_RANGE);
	Assert(nvalues <= partnatts);

	result->scan_null = result->scan_default = false;

	/*
	 * If there are no datums to compare keys with, or if we got an IS NULL
	 * clause just return the default partition, if it exists.
	 */
	if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys))
	{
		result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	minoff = 0;
	maxoff = boundinfo->ndatums;

	/*
	 * If there are no values to compare with the datums in boundinfo, it
	 * means the caller asked for partitions for all non-null datums.  Add
	 * indexes of *all* partitions, including the default partition if one
	 * exists.
	 */
	if (nvalues == 0)
	{
		if (partindices[minoff] < 0)
			minoff++;
		if (partindices[maxoff] < 0)
			maxoff--;

		result->scan_default = partition_bound_has_default(boundinfo);
		result->bound_offsets = bms_add_range(NULL, minoff, maxoff);

		return result;
	}

	/*
	 * If the query does not constrain all key columns, we'll need to scan the
	 * the default partition, if any.
	 */
	if (nvalues < partnatts)
		result->scan_default = partition_bound_has_default(boundinfo);

	switch (opstrategy)
	{
		case BTEqualStrategyNumber:
			/* Look for the smallest bound that is = lookup value. */
			off = partition_range_datum_bsearch(partsupfunc,
												partcollation,
												boundinfo,
												nvalues, values,
												&is_equal);

			if (off >= 0 && is_equal)
			{
				if (nvalues == partnatts)
				{
					/* There can only be zero or one matching partition. */
					if (partindices[off + 1] >= 0)
						result->bound_offsets = bms_make_singleton(off + 1);
					else
						result->scan_default =
							partition_bound_has_default(boundinfo);
					return result;
				}
				else
				{
					int			saved_off = off;

					/*
					 * Since the lookup value contains only a prefix of keys,
					 * we must find other bounds that may also match the
					 * prefix.  partition_range_datum_bsearch() returns the
					 * offset of one of them, find others by checking adjacent
					 * bounds.
					 */

					/*
					 * First find greatest bound that's smaller than the
					 * lookup value.
					 */
					while (off >= 1)
					{
						int32		cmpval;

						cmpval =
							partition_rbound_datum_cmp(partsupfunc,
													   partcollation,
													   boundinfo->datums[off - 1],
													   boundinfo->kind[off - 1],
													   values, nvalues);
						if (cmpval != 0)
							break;
						off--;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					/*
					 * We can treat 'off' as the offset of the smallest bound
					 * to be included in the result, if we know it is the
					 * upper bound of the partition in which the lookup value
					 * could possibly exist.  One case it couldn't is if the
					 * bound, or precisely the matched portion of its prefix,
					 * is not inclusive.
					 */
					if (boundinfo->kind[off][nvalues] ==
						PARTITION_RANGE_DATUM_MINVALUE)
						off++;

					minoff = off;

					/*
					 * Now find smallest bound that's greater than the lookup
					 * value.
					 */
					off = saved_off;
					while (off < boundinfo->ndatums - 1)
					{
						int32		cmpval;

						cmpval = partition_rbound_datum_cmp(partsupfunc,
															partcollation,
															boundinfo->datums[off + 1],
															boundinfo->kind[off + 1],
															values, nvalues);
						if (cmpval != 0)
							break;
						off++;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					/*
					 * off + 1, then would be the offset of the greatest bound
					 * to be included in the result.
					 */
					maxoff = off + 1;
				}

				/*
				 * Skip if minoff/maxoff are actually the upper bound of a
				 * un-assigned portion of values.
				 */
				if (partindices[minoff] < 0 && minoff < boundinfo->ndatums)
					minoff++;
				if (partindices[maxoff] < 0 && maxoff >= 1)
					maxoff--;

				/*
				 * There may exist a range of values unassigned to any
				 * non-default partition between the datums at minoff and
				 * maxoff.  Add the default partition in that case.
				 */
				if (partition_bound_has_default(boundinfo))
				{
					for (i = minoff; i <= maxoff; i++)
					{
						if (partindices[i] < 0)
						{
							result->scan_default = true;
							break;
						}
					}
				}

				Assert(minoff >= 0 && maxoff >= 0);
				result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
			}
			else if (off >= 0)	/* !is_equal */
			{
				/*
				 * The lookup value falls in the range between some bounds in
				 * boundinfo.  'off' would be the offset of the greatest bound
				 * that is <= lookup value, so add off + 1 to the result
				 * instead as the offset of the upper bound of the only
				 * partition that may contain the lookup value.
				 */
				if (partindices[off + 1] >= 0)
					result->bound_offsets = bms_make_singleton(off + 1);
				else
					result->scan_default =
						partition_bound_has_default(boundinfo);
			}
			else
			{
				/*
				 * off < 0: the lookup value is smaller than all bounds, so
				 * only the default partition qualifies, if there is one.
				 */
				result->scan_default = partition_bound_has_default(boundinfo);
			}

			return result;

		case BTGreaterEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTGreaterStrategyNumber:

			/*
			 * Look for the smallest bound that is > or >= lookup value and
			 * set minoff to its offset.
			 */
			off = partition_range_datum_bsearch(partsupfunc,
												partcollation,
												boundinfo,
												nvalues, values,
												&is_equal);
			if (off < 0)
			{
				/*
				 * All bounds are greater than the lookup value, so include
				 * all of them in the result.
				 */
				minoff = 0;
			}
			else
			{
				if (is_equal && nvalues < partnatts)
				{
					/*
					 * Since the lookup value contains only a prefix of keys,
					 * we must find other bounds that may also match the
					 * prefix.  partition_range_datum_bsearch() returns the
					 * offset of one of them, find others by checking adjacent
					 * bounds.
					 *
					 * Based on whether the lookup values are inclusive or
					 * not, we must either include the indexes of all such
					 * bounds in the result (that is, set minoff to the index
					 * of smallest such bound) or find the smallest one that's
					 * greater than the lookup values and set minoff to that.
					 */
					while (off >= 1 && off < boundinfo->ndatums - 1)
					{
						int32		cmpval;
						int			nextoff;

						nextoff = inclusive ? off - 1 : off + 1;
						cmpval =
							partition_rbound_datum_cmp(partsupfunc,
													   partcollation,
													   boundinfo->datums[nextoff],
													   boundinfo->kind[nextoff],
													   values, nvalues);
						if (cmpval != 0)
							break;

						off = nextoff;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					minoff = inclusive ? off : off + 1;
				}

				/*
				 * lookup value falls in the range between some bounds in
				 * boundinfo.  off would be the offset of the greatest bound
				 * that is <= lookup value, so add off + 1 to the result
				 * instead as the offset of the upper bound of the smallest
				 * partition that may contain the lookup value.
				 */
				else
					minoff = off + 1;
			}
			break;

		case BTLessEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTLessStrategyNumber:

			/*
			 * Look for the greatest bound that is < or <= lookup value and
			 * set minoff to its offset.
			 */
			off = partition_range_datum_bsearch(partsupfunc,
												partcollation,
												boundinfo,
												nvalues, values,
												&is_equal);
			if (off < 0)
			{
				/*
				 * All bounds are greater than the key, so we could only
				 * expect to find the lookup key in the default partition.
				 */
				result->scan_default = partition_bound_has_default(boundinfo);
				return result;
			}
			else
			{
				/*
				 * See the comment above.
				 */
				if (is_equal && nvalues < partnatts)
				{
					while (off >= 1 && off < boundinfo->ndatums - 1)
					{
						int32		cmpval;
						int			nextoff;

						nextoff = inclusive ? off + 1 : off - 1;
						cmpval = partition_rbound_datum_cmp(partsupfunc,
															partcollation,
															boundinfo->datums[nextoff],
															boundinfo->kind[nextoff],
															values, nvalues);
						if (cmpval != 0)
							break;

						off = nextoff;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					maxoff = inclusive ? off + 1 : off;
				}

				/*
				 * The lookup value falls in the range between some bounds in
				 * boundinfo.  'off' would be the offset of the greatest bound
				 * that is <= lookup value, so add off + 1 to the result
				 * instead as the offset of the upper bound of the greatest
				 * partition that may contain lookup value.  If the lookup
				 * value had exactly matched the bound, but it isn't
				 * inclusive, no need add the adjacent partition.
				 */
				else if (!is_equal || inclusive)
					maxoff = off + 1;
				else
					maxoff = off;
			}
			break;

		default:
			elog(ERROR, "invalid strategy number %d", opstrategy);
			break;
	}

	/*
	 * Skip a gap and when doing so, check if the bound contains a finite
	 * value to decide if we need to add the default partition.  If it's an
	 * infinite bound, we need not add the default partition, as having an
	 * infinite bound means the partition in question catches any values that
	 * would otherwise be in the default partition.
	 */
	if (partindices[minoff] < 0)
	{
		int			lastkey = nvalues - 1;

		if (minoff >= 0 &&
			minoff < boundinfo->ndatums &&
			boundinfo->kind[minoff][lastkey] ==
			PARTITION_RANGE_DATUM_VALUE)
			result->scan_default = partition_bound_has_default(boundinfo);

		minoff++;
	}

	/*
	 * Skip a gap.  See the above comment about how we decide whether or or
	 * not to scan the default partition based whether the datum that will
	 * become the maximum datum is finite or not.
	 */
	if (maxoff >= 1 && partindices[maxoff] < 0)
	{
		int			lastkey = nvalues - 1;

		if (maxoff >= 0 &&
			maxoff <= boundinfo->ndatums &&
			boundinfo->kind[maxoff - 1][lastkey] ==
			PARTITION_RANGE_DATUM_VALUE)
			result->scan_default = partition_bound_has_default(boundinfo);

		maxoff--;
	}

	if (partition_bound_has_default(boundinfo))
	{
		/*
		 * There may exist a range of values unassigned to any non-default
		 * partition between the datums at minoff and maxoff.  Add the default
		 * partition in that case.
		 */
		for (i = minoff; i <= maxoff; i++)
		{
			if (partindices[i] < 0)
			{
				result->scan_default = true;
				break;
			}
		}
	}

	Assert(minoff >= 0 && maxoff >= 0);
	if (minoff <= maxoff)
		result->bound_offsets = bms_add_range(NULL, minoff, maxoff);

	return result;
}

/*
 * pull_partkey_params
 *		Loop through each pruning step and record each external and exec
 *		Params being compared to the partition keys.
 */
static bool
pull_partkey_params(PartitionPruneInfo *pinfo, List *steps)
{
	ListCell   *lc;
	bool		gotone = false;

	foreach(lc, steps)
	{
		PartitionPruneStepOp *stepop = lfirst(lc);
		ListCell   *lc2;

		if (!IsA(stepop, PartitionPruneStepOp))
			continue;

		foreach(lc2, stepop->exprs)
		{
			Expr	   *expr = lfirst(lc2);

			if (IsA(expr, Param))
			{
				Param	   *param = (Param *) expr;

				switch (param->paramkind)
				{
					case PARAM_EXTERN:
						pinfo->extparams = bms_add_member(pinfo->extparams,
														  param->paramid);
						break;
					case PARAM_EXEC:
						pinfo->execparams = bms_add_member(pinfo->execparams,
														   param->paramid);
						break;

					default:
						elog(ERROR, "unrecognized paramkind: %d",
							 (int) param->paramkind);
						break;
				}
				gotone = true;
			}
		}
	}

	return gotone;
}

/*
 * perform_pruning_base_step
 *		Determines the indexes of datums that satisfy conditions specified in
 *		'opstep'.
 *
 * Result also contains whether special null-accepting and/or default
 * partition need to be scanned.
 */
static PruneStepResult *
perform_pruning_base_step(PartitionPruneContext *context,
						  PartitionPruneStepOp *opstep)
{
	ListCell   *lc1,
			   *lc2;
	int			keyno,
				nvalues;
	Datum		values[PARTITION_MAX_KEYS];
	FmgrInfo	partsupfunc[PARTITION_MAX_KEYS];

	/*
	 * There better be the same number of expressions and compare functions.
	 */
	Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns));

	nvalues = 0;
	lc1 = list_head(opstep->exprs);
	lc2 = list_head(opstep->cmpfns);

	/*
	 * Generate the partition lookup key that will be used by one of the
	 * get_matching_*_bounds functions called below.
	 */
	for (keyno = 0; keyno < context->partnatts; keyno++)
	{
		/*
		 * For hash partitioning, it is possible that values of some keys are
		 * not provided in operator clauses, but instead the planner found
		 * that they appeared in a IS NULL clause.
		 */
		if (bms_is_member(keyno, opstep->nullkeys))
			continue;

		/*
		 * For range partitioning, we must only perform pruning with values
		 * for either all partition keys or a prefix thereof.
		 */
		if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE)
			break;

		if (lc1 != NULL)
		{
			Expr	   *expr;
			int			stateidx;
			Datum		datum;

			expr = lfirst(lc1);
			stateidx = PruneCxtStateIdx(context->partnatts,
										opstep->step.step_id, keyno);
			if (partkey_datum_from_expr(context, expr, stateidx, &datum))
			{
				Oid			cmpfn;

				/*
				 * If we're going to need a different comparison function than
				 * the one cached in the PartitionKey, we'll need to look up
				 * the FmgrInfo.
				 */
				cmpfn = lfirst_oid(lc2);
				Assert(OidIsValid(cmpfn));
				if (cmpfn != context->partsupfunc[keyno].fn_oid)
					fmgr_info(cmpfn, &partsupfunc[keyno]);
				else
					fmgr_info_copy(&partsupfunc[keyno],
								   &context->partsupfunc[keyno],
								   CurrentMemoryContext);

				values[keyno] = datum;
				nvalues++;
			}

			lc1 = lnext(lc1);
			lc2 = lnext(lc2);
		}
	}

	switch (context->strategy)
	{
		case PARTITION_STRATEGY_HASH:
			return get_matching_hash_bounds(context,
											opstep->opstrategy,
											values, nvalues,
											partsupfunc,
											opstep->nullkeys);

		case PARTITION_STRATEGY_LIST:
			return get_matching_list_bounds(context,
											opstep->opstrategy,
											values[0], nvalues,
											&partsupfunc[0],
											opstep->nullkeys);

		case PARTITION_STRATEGY_RANGE:
			return get_matching_range_bounds(context,
											 opstep->opstrategy,
											 values, nvalues,
											 partsupfunc,
											 opstep->nullkeys);

		default:
			elog(ERROR, "unexpected partition strategy: %d",
				 (int) context->strategy);
			break;
	}

	return NULL;
}

/*
 * perform_pruning_combine_step
 *		Determines the indexes of datums obtained by combining those given
 *		by the steps identified by cstep->source_stepids using the specified
 *		combination method
 *
 * Since cstep may refer to the result of earlier steps, we also receive
 * step_results here.
 */
static PruneStepResult *
perform_pruning_combine_step(PartitionPruneContext *context,
							 PartitionPruneStepCombine *cstep,
							 PruneStepResult **step_results)
{
	ListCell   *lc1;
	PruneStepResult *result = NULL;
	bool		firststep;

	/*
	 * A combine step without any source steps is an indication to not perform
	 * any partition pruning, we just return all partitions.
	 */
	result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	if (list_length(cstep->source_stepids) == 0)
	{
		PartitionBoundInfo boundinfo = context->boundinfo;

		result->bound_offsets = bms_add_range(NULL, 0, boundinfo->ndatums - 1);
		result->scan_default = partition_bound_has_default(boundinfo);
		result->scan_null = partition_bound_accepts_nulls(boundinfo);
		return result;
	}

	switch (cstep->combineOp)
	{
		case PARTPRUNE_COMBINE_UNION:
			foreach(lc1, cstep->source_stepids)
			{
				int			step_id = lfirst_int(lc1);
				PruneStepResult *step_result;

				/*
				 * step_results[step_id] must contain a valid result, which is
				 * confirmed by the fact that cstep's step_id is greater than
				 * step_id and the fact that results of the individual steps
				 * are evaluated in sequence of their step_ids.
				 */
				if (step_id >= cstep->step.step_id)
					elog(ERROR, "invalid pruning combine step argument");
				step_result = step_results[step_id];
				Assert(step_result != NULL);

				/* Record any additional datum indexes from this step */
				result->bound_offsets = bms_add_members(result->bound_offsets,
														step_result->bound_offsets);

				/* Update whether to scan null and default partitions. */
				if (!result->scan_null)
					result->scan_null = step_result->scan_null;
				if (!result->scan_default)
					result->scan_default = step_result->scan_default;
			}
			break;

		case PARTPRUNE_COMBINE_INTERSECT:
			firststep = true;
			foreach(lc1, cstep->source_stepids)
			{
				int			step_id = lfirst_int(lc1);
				PruneStepResult *step_result;

				if (step_id >= cstep->step.step_id)
					elog(ERROR, "invalid pruning combine step argument");
				step_result = step_results[step_id];
				Assert(step_result != NULL);

				if (firststep)
				{
					/* Copy step's result the first time. */
					result->bound_offsets =
						bms_copy(step_result->bound_offsets);
					result->scan_null = step_result->scan_null;
					result->scan_default = step_result->scan_default;
					firststep = false;
				}
				else
				{
					/* Record datum indexes common to both steps */
					result->bound_offsets =
						bms_int_members(result->bound_offsets,
										step_result->bound_offsets);

					/* Update whether to scan null and default partitions. */
					if (result->scan_null)
						result->scan_null = step_result->scan_null;
					if (result->scan_default)
						result->scan_default = step_result->scan_default;
				}
			}
			break;

		default:
			elog(ERROR, "invalid pruning combine op: %d",
				 (int) cstep->combineOp);
	}

	return result;
}

/*
 * match_boolean_partition_clause
 *
 * Sets *outconst to a Const containing true or false value and returns true if
 * we're able to match the clause to the partition key as specially-shaped
 * Boolean clause.  Returns false otherwise with *outconst set to NULL.
 */
static bool
match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey,
							   Expr **outconst)
{
	Expr	   *leftop;

	*outconst = NULL;

	if (!IsBooleanOpfamily(partopfamily))
		return false;

	if (IsA(clause, BooleanTest))
	{
		BooleanTest *btest = (BooleanTest *) clause;

		/* Only IS [NOT] TRUE/FALSE are any good to us */
		if (btest->booltesttype == IS_UNKNOWN ||
			btest->booltesttype == IS_NOT_UNKNOWN)
			return false;

		leftop = btest->arg;
		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;

		if (equal(leftop, partkey))
			*outconst = (btest->booltesttype == IS_TRUE ||
						 btest->booltesttype == IS_NOT_FALSE)
				? (Expr *) makeBoolConst(true, false)
				: (Expr *) makeBoolConst(false, false);

		if (*outconst)
			return true;
	}
	else
	{
		bool		is_not_clause = not_clause((Node *) clause);

		leftop = is_not_clause ? get_notclausearg(clause) : clause;

		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;

		/* Compare to the partition key, and make up a clause ... */
		if (equal(leftop, partkey))
			*outconst = is_not_clause ?
				(Expr *) makeBoolConst(false, false) :
				(Expr *) makeBoolConst(true, false);
		else if (equal(negate_clause((Node *) leftop), partkey))
			*outconst = (Expr *) makeBoolConst(false, false);

		if (*outconst)
			return true;
	}

	return false;
}

/*
 * partkey_datum_from_expr
 *		Evaluate expression for potential partition pruning
 *
 * Evaluate 'expr', whose ExprState is stateidx of the context exprstate
 * array; set *value to the resulting Datum.  Return true if evaluation was
 * possible, otherwise false.
 */
static bool
partkey_datum_from_expr(PartitionPruneContext *context,
						Expr *expr, int stateidx, Datum *value)
{
	switch (nodeTag(expr))
	{
		case T_Const:
			*value = ((Const *) expr)->constvalue;
			return true;

		case T_Param:

			/*
			 * When being called from the executor we may be able to evaluate
			 * the Param's value.
			 */
			if (context->planstate &&
				bms_is_member(((Param *) expr)->paramid, context->safeparams))
			{
				ExprState  *exprstate;
				ExprContext *ectx;
				bool		isNull;

				exprstate = context->exprstates[stateidx];
				ectx = context->planstate->ps_ExprContext;
				*value = ExecEvalExprSwitchContext(exprstate, ectx, &isNull);
				if (isNull)
					return false;

				return true;
			}
			break;

		default:
			break;
	}

	return false;
}