blob: de40e64fa8ae60298a7811812b4b36896e70b293 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/*-------------------------------------------------------------------------
*
* parser.c
* Main entry point/driver for PostgreSQL grammar
*
* Note that the grammar is not allowed to perform any table access
* (since we need to be able to do basic parsing even while inside an
* aborted transaction). Therefore, the data structures returned by
* the grammar are "raw" parsetrees that still need to be analyzed by
* analyze.c and related files.
*
*
* Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/parser/parser.c,v 1.66 2006/05/27 17:38:46 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "parser/gramparse.h"
#include "parser/parse.h"
#include "parser/parser.h"
List *parsetree; /* result of parsing is left here */
static int lookahead_token; /* one-token lookahead */
static bool have_lookahead; /* lookahead_token set? */
/*
* raw_parser
* Given a query in string form, do lexical and grammatical analysis.
*
* Returns a list of raw (un-analyzed) parse trees.
*/
List *
raw_parser(const char *str)
{
int yyresult;
parsetree = NIL; /* in case grammar forgets to set it */
have_lookahead = false;
scanner_init(str);
parser_init();
yyresult = base_yyparse();
scanner_finish();
if (yyresult) /* error */
return NIL;
return parsetree;
}
/*
* Intermediate filter between parser and base lexer (base_yylex in scan.l).
*
* The filter is needed because in some cases the standard SQL grammar
* requires more than one token lookahead. We reduce these cases to one-token
* lookahead by combining tokens here, in order to keep the grammar LALR(1).
*
* Using a filter is simpler than trying to recognize multiword tokens
* directly in scan.l, because we'd have to allow for comments between the
* words. Furthermore it's not clear how to do it without re-introducing
* scanner backtrack, which would cost more performance than this filter
* layer does.
*/
int
filtered_base_yylex(void)
{
int cur_token;
/* Get next token --- we might already have it */
if (have_lookahead)
{
cur_token = lookahead_token;
have_lookahead = false;
}
else
cur_token = base_yylex();
/* Do we need to look ahead for a possible multiword token? */
switch (cur_token)
{
case WITH:
/*
* WITH CASCADED, LOCAL, or CHECK must be reduced to one token
*
* XXX an alternative way is to recognize just WITH_TIME and
* put the ugliness into the datetime datatype productions
* instead of WITH CHECK OPTION. However that requires promoting
* WITH to a fully reserved word. If we ever have to do that
* anyway (perhaps for SQL99 recursive queries), come back and
* simplify this code.
*/
lookahead_token = base_yylex();
switch (lookahead_token)
{
case CASCADED:
cur_token = WITH_CASCADED;
break;
case LOCAL:
cur_token = WITH_LOCAL;
break;
case CHECK:
cur_token = WITH_CHECK;
break;
default:
have_lookahead = true;
break;
}
break;
default:
break;
}
return cur_token;
}
|