summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/pathkeys.c
blob: f93a027cd53dfdce8cc983a7728496b85f50f889 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
/*-------------------------------------------------------------------------
 *
 * pathkeys.c
 *	  Utilities for matching and building path keys
 *
 * See src/backend/optimizer/README for a great deal of information about
 * the nature and use of path keys.
 *
 *
 * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/path/pathkeys.c,v 1.31 2001/03/22 03:59:35 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/tlist.h"
#include "parser/parsetree.h"
#include "parser/parse_func.h"
#include "utils/lsyscache.h"


static PathKeyItem *makePathKeyItem(Node *key, Oid sortop);
static List *make_canonical_pathkey(Query *root, PathKeyItem *item);
static Var *find_indexkey_var(Query *root, RelOptInfo *rel,
				  AttrNumber varattno);


/*
 * makePathKeyItem
 *		create a PathKeyItem node
 */
static PathKeyItem *
makePathKeyItem(Node *key, Oid sortop)
{
	PathKeyItem *item = makeNode(PathKeyItem);

	item->key = key;
	item->sortop = sortop;
	return item;
}

/*
 * add_equijoined_keys
 *	  The given clause has a mergejoinable operator, so its two sides
 *	  can be considered equal after restriction clause application; in
 *	  particular, any pathkey mentioning one side (with the correct sortop)
 *	  can be expanded to include the other as well.  Record the vars and
 *	  associated sortops in the query's equi_key_list for future use.
 *
 * The query's equi_key_list field points to a list of sublists of PathKeyItem
 * nodes, where each sublist is a set of two or more vars+sortops that have
 * been identified as logically equivalent (and, therefore, we may consider
 * any two in a set to be equal).  As described above, we will subsequently
 * use direct pointers to one of these sublists to represent any pathkey
 * that involves an equijoined variable.
 *
 * This code would actually work fine with expressions more complex than
 * a single Var, but currently it won't see any because check_mergejoinable
 * won't accept such clauses as mergejoinable.
 */
void
add_equijoined_keys(Query *root, RestrictInfo *restrictinfo)
{
	Expr	   *clause = restrictinfo->clause;
	PathKeyItem *item1 = makePathKeyItem((Node *) get_leftop(clause),
										 restrictinfo->left_sortop);
	PathKeyItem *item2 = makePathKeyItem((Node *) get_rightop(clause),
										 restrictinfo->right_sortop);
	List	   *newset,
			   *cursetlink;

	/* We might see a clause X=X; don't make a single-element list from it */
	if (equal(item1, item2))
		return;

	/*
	 * Our plan is to make a two-element set, then sweep through the
	 * existing equijoin sets looking for matches to item1 or item2.  When
	 * we find one, we remove that set from equi_key_list and union it
	 * into our new set. When done, we add the new set to the front of
	 * equi_key_list.
	 *
	 * It may well be that the two items we're given are already known to be
	 * equijoin-equivalent, in which case we don't need to change our data
	 * structure.  If we find both of them in the same equivalence set to
	 * start with, we can quit immediately.
	 *
	 * This is a standard UNION-FIND problem, for which there exist better
	 * data structures than simple lists.  If this code ever proves to be
	 * a bottleneck then it could be sped up --- but for now, simple is
	 * beautiful.
	 */
	newset = NIL;

	foreach(cursetlink, root->equi_key_list)
	{
		List	   *curset = lfirst(cursetlink);
		bool		item1here = member(item1, curset);
		bool		item2here = member(item2, curset);

		if (item1here || item2here)
		{

			/*
			 * If find both in same equivalence set, no need to do any
			 * more
			 */
			if (item1here && item2here)
			{
				/* Better not have seen only one in an earlier set... */
				Assert(newset == NIL);
				return;
			}

			/* Build the new set only when we know we must */
			if (newset == NIL)
				newset = makeList2(item1, item2);

			/* Found a set to merge into our new set */
			newset = set_union(newset, curset);

			/*
			 * Remove old set from equi_key_list.  NOTE this does not
			 * change lnext(cursetlink), so the foreach loop doesn't
			 * break.
			 */
			root->equi_key_list = lremove(curset, root->equi_key_list);
			freeList(curset);	/* might as well recycle old cons cells */
		}
	}

	/* Build the new set only when we know we must */
	if (newset == NIL)
		newset = makeList2(item1, item2);

	root->equi_key_list = lcons(newset, root->equi_key_list);
}

/*
 * generate_implied_equalities
 *	  Scan the completed equi_key_list for the query, and generate explicit
 *	  qualifications (WHERE clauses) for all the pairwise equalities not
 *	  already mentioned in the quals.  This is useful because the additional
 *	  clauses help the selectivity-estimation code, and in fact it's
 *	  *necessary* to ensure that sort keys we think are equivalent really
 *	  are (see src/backend/optimizer/README for more info).
 *
 * This routine just walks the equi_key_list to find all pairwise equalities.
 * We call process_implied_equality (in plan/initsplan.c) to determine whether
 * each is already known and add it to the proper restrictinfo list if not.
 */
void
generate_implied_equalities(Query *root)
{
	List	   *cursetlink;

	foreach(cursetlink, root->equi_key_list)
	{
		List	   *curset = lfirst(cursetlink);
		List	   *ptr1;

		/*
		 * A set containing only two items cannot imply any equalities
		 * beyond the one that created the set, so we can skip it.
		 */
		if (length(curset) < 3)
			continue;

		/*
		 * Match each item in the set with all that appear after it (it's
		 * sufficient to generate A=B, need not process B=A too).
		 */
		foreach(ptr1, curset)
		{
			PathKeyItem *item1 = (PathKeyItem *) lfirst(ptr1);
			List	   *ptr2;

			foreach(ptr2, lnext(ptr1))
			{
				PathKeyItem *item2 = (PathKeyItem *) lfirst(ptr2);

				process_implied_equality(root, item1->key, item2->key,
										 item1->sortop, item2->sortop);
			}
		}
	}
}

/*
 * make_canonical_pathkey
 *	  Given a PathKeyItem, find the equi_key_list subset it is a member of,
 *	  if any.  If so, return a pointer to that sublist, which is the
 *	  canonical representation (for this query) of that PathKeyItem's
 *	  equivalence set.	If it is not found, add a singleton "equivalence set"
 *	  to the equi_key_list and return that --- see compare_pathkeys.
 *
 * Note that this function must not be used until after we have completed
 * scanning the WHERE clause for equijoin operators.
 */
static List *
make_canonical_pathkey(Query *root, PathKeyItem *item)
{
	List	   *cursetlink;
	List	   *newset;

	foreach(cursetlink, root->equi_key_list)
	{
		List	   *curset = lfirst(cursetlink);

		if (member(item, curset))
			return curset;
	}
	newset = makeList1(item);
	root->equi_key_list = lcons(newset, root->equi_key_list);
	return newset;
}

/*
 * canonicalize_pathkeys
 *	   Convert a not-necessarily-canonical pathkeys list to canonical form.
 *
 * Note that this function must not be used until after we have completed
 * scanning the WHERE clause for equijoin operators.
 */
List *
canonicalize_pathkeys(Query *root, List *pathkeys)
{
	List	   *new_pathkeys = NIL;
	List	   *i;

	foreach(i, pathkeys)
	{
		List	   *pathkey = (List *) lfirst(i);
		PathKeyItem *item;
		List	   *cpathkey;

		/*
		 * It's sufficient to look at the first entry in the sublist; if
		 * there are more entries, they're already part of an equivalence
		 * set by definition.
		 */
		Assert(pathkey != NIL);
		item = (PathKeyItem *) lfirst(pathkey);
		cpathkey = make_canonical_pathkey(root, item);

		/*
		 * Eliminate redundant ordering requests --- ORDER BY A,A is the
		 * same as ORDER BY A.	We want to check this only after we have
		 * canonicalized the keys, so that equivalent-key knowledge is
		 * used when deciding if an item is redundant.
		 */
		if (!ptrMember(cpathkey, new_pathkeys))
			new_pathkeys = lappend(new_pathkeys, cpathkey);
	}
	return new_pathkeys;
}

/****************************************************************************
 *		PATHKEY COMPARISONS
 ****************************************************************************/

/*
 * compare_pathkeys
 *	  Compare two pathkeys to see if they are equivalent, and if not whether
 *	  one is "better" than the other.
 *
 *	  This function may only be applied to canonicalized pathkey lists.
 *	  In the canonical representation, sublists can be checked for equality
 *	  by simple pointer comparison.
 */
PathKeysComparison
compare_pathkeys(List *keys1, List *keys2)
{
	List	   *key1,
			   *key2;

	for (key1 = keys1, key2 = keys2;
		 key1 != NIL && key2 != NIL;
		 key1 = lnext(key1), key2 = lnext(key2))
	{
		List	   *subkey1 = lfirst(key1);
		List	   *subkey2 = lfirst(key2);

		/*
		 * XXX would like to check that we've been given canonicalized
		 * input, but query root not accessible here...
		 */
#ifdef NOT_USED
		Assert(ptrMember(subkey1, root->equi_key_list));
		Assert(ptrMember(subkey2, root->equi_key_list));
#endif

		/*
		 * We will never have two subkeys where one is a subset of the
		 * other, because of the canonicalization process.	Either they
		 * are equal or they ain't.  Furthermore, we only need pointer
		 * comparison to detect equality.
		 */
		if (subkey1 != subkey2)
			return PATHKEYS_DIFFERENT;	/* no need to keep looking */
	}

	/*
	 * If we reached the end of only one list, the other is longer and
	 * therefore not a subset.	(We assume the additional sublist(s) of
	 * the other list are not NIL --- no pathkey list should ever have a
	 * NIL sublist.)
	 */
	if (key1 == NIL && key2 == NIL)
		return PATHKEYS_EQUAL;
	if (key1 != NIL)
		return PATHKEYS_BETTER1;/* key1 is longer */
	return PATHKEYS_BETTER2;	/* key2 is longer */
}

/*
 * compare_noncanonical_pathkeys
 *	  Compare two pathkeys to see if they are equivalent, and if not whether
 *	  one is "better" than the other.  This is used when we must compare
 *	  non-canonicalized pathkeys.
 *
 *	  A pathkey can be considered better than another if it is a superset:
 *	  it contains all the keys of the other plus more.	For example, either
 *	  ((A) (B)) or ((A B)) is better than ((A)).
 *
 *	  Currently, the only user of this routine is grouping_planner(),
 *	  and it will only pass single-element sublists (from
 *	  make_pathkeys_for_sortclauses).  Therefore we don't have to do the
 *	  full two-way-subset-inclusion test on each pair of sublists that is
 *	  implied by the above statement.  Instead we just verify they are
 *	  singleton lists and then do an equal().  This could be improved if
 *	  necessary.
 */
PathKeysComparison
compare_noncanonical_pathkeys(List *keys1, List *keys2)
{
	List	   *key1,
			   *key2;

	for (key1 = keys1, key2 = keys2;
		 key1 != NIL && key2 != NIL;
		 key1 = lnext(key1), key2 = lnext(key2))
	{
		List	   *subkey1 = lfirst(key1);
		List	   *subkey2 = lfirst(key2);

		Assert(length(subkey1) == 1);
		Assert(length(subkey2) == 1);
		if (!equal(subkey1, subkey2))
			return PATHKEYS_DIFFERENT;	/* no need to keep looking */
	}

	/*
	 * If we reached the end of only one list, the other is longer and
	 * therefore not a subset.	(We assume the additional sublist(s) of
	 * the other list are not NIL --- no pathkey list should ever have a
	 * NIL sublist.)
	 */
	if (key1 == NIL && key2 == NIL)
		return PATHKEYS_EQUAL;
	if (key1 != NIL)
		return PATHKEYS_BETTER1;/* key1 is longer */
	return PATHKEYS_BETTER2;	/* key2 is longer */
}

/*
 * pathkeys_contained_in
 *	  Common special case of compare_pathkeys: we just want to know
 *	  if keys2 are at least as well sorted as keys1.
 */
bool
pathkeys_contained_in(List *keys1, List *keys2)
{
	switch (compare_pathkeys(keys1, keys2))
	{
			case PATHKEYS_EQUAL:
			case PATHKEYS_BETTER2:
			return true;
		default:
			break;
	}
	return false;
}

/*
 * noncanonical_pathkeys_contained_in
 *	  The same, when we don't have canonical pathkeys.
 */
bool
noncanonical_pathkeys_contained_in(List *keys1, List *keys2)
{
	switch (compare_noncanonical_pathkeys(keys1, keys2))
	{
			case PATHKEYS_EQUAL:
			case PATHKEYS_BETTER2:
			return true;
		default:
			break;
	}
	return false;
}

/*
 * get_cheapest_path_for_pathkeys
 *	  Find the cheapest path (according to the specified criterion) that
 *	  satisfies the given pathkeys.  Return NULL if no such path.
 *
 * 'paths' is a list of possible paths that all generate the same relation
 * 'pathkeys' represents a required ordering (already canonicalized!)
 * 'cost_criterion' is STARTUP_COST or TOTAL_COST
 */
Path *
get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
							   CostSelector cost_criterion)
{
	Path	   *matched_path = NULL;
	List	   *i;

	foreach(i, paths)
	{
		Path	   *path = (Path *) lfirst(i);

		/*
		 * Since cost comparison is a lot cheaper than pathkey comparison,
		 * do that first.  (XXX is that still true?)
		 */
		if (matched_path != NULL &&
			compare_path_costs(matched_path, path, cost_criterion) <= 0)
			continue;

		if (pathkeys_contained_in(pathkeys, path->pathkeys))
			matched_path = path;
	}
	return matched_path;
}

/*
 * get_cheapest_fractional_path_for_pathkeys
 *	  Find the cheapest path (for retrieving a specified fraction of all
 *	  the tuples) that satisfies the given pathkeys.
 *	  Return NULL if no such path.
 *
 * See compare_fractional_path_costs() for the interpretation of the fraction
 * parameter.
 *
 * 'paths' is a list of possible paths that all generate the same relation
 * 'pathkeys' represents a required ordering (already canonicalized!)
 * 'fraction' is the fraction of the total tuples expected to be retrieved
 */
Path *
get_cheapest_fractional_path_for_pathkeys(List *paths,
										  List *pathkeys,
										  double fraction)
{
	Path	   *matched_path = NULL;
	List	   *i;

	foreach(i, paths)
	{
		Path	   *path = (Path *) lfirst(i);

		/*
		 * Since cost comparison is a lot cheaper than pathkey comparison,
		 * do that first.
		 */
		if (matched_path != NULL &&
		compare_fractional_path_costs(matched_path, path, fraction) <= 0)
			continue;

		if (pathkeys_contained_in(pathkeys, path->pathkeys))
			matched_path = path;
	}
	return matched_path;
}

/****************************************************************************
 *		NEW PATHKEY FORMATION
 ****************************************************************************/

/*
 * build_index_pathkeys
 *	  Build a pathkeys list that describes the ordering induced by an index
 *	  scan using the given index.  (Note that an unordered index doesn't
 *	  induce any ordering; such an index will have no sortop OIDS in
 *	  its "ordering" field, and we will return NIL.)
 *
 * If 'scandir' is BackwardScanDirection, attempt to build pathkeys
 * representing a backwards scan of the index.	Return NIL if can't do it.
 */
List *
build_index_pathkeys(Query *root,
					 RelOptInfo *rel,
					 IndexOptInfo *index,
					 ScanDirection scandir)
{
	List	   *retval = NIL;
	int		   *indexkeys = index->indexkeys;
	Oid		   *ordering = index->ordering;
	PathKeyItem *item;
	Oid			sortop;

	if (!indexkeys || indexkeys[0] == 0 ||
		!ordering || ordering[0] == InvalidOid)
		return NIL;				/* unordered index? */

	if (index->indproc)
	{
		/* Functional index: build a representation of the function call */
		Func	   *funcnode = makeNode(Func);
		List	   *funcargs = NIL;

		funcnode->funcid = index->indproc;
		funcnode->functype = get_func_rettype(index->indproc);
		funcnode->func_fcache = NULL;

		while (*indexkeys != 0)
		{
			funcargs = lappend(funcargs,
							   find_indexkey_var(root, rel, *indexkeys));
			indexkeys++;
		}

		sortop = *ordering;
		if (ScanDirectionIsBackward(scandir))
		{
			sortop = get_commutator(sortop);
			if (sortop == InvalidOid)
				return NIL;		/* oops, no reverse sort operator? */
		}

		/* Make a one-sublist pathkeys list for the function expression */
		item = makePathKeyItem((Node *) make_funcclause(funcnode, funcargs),
							   sortop);
		retval = makeList1(make_canonical_pathkey(root, item));
	}
	else
	{
		/* Normal non-functional index */
		while (*indexkeys != 0 && *ordering != InvalidOid)
		{
			Var		   *relvar = find_indexkey_var(root, rel, *indexkeys);
			List	   *cpathkey;

			sortop = *ordering;
			if (ScanDirectionIsBackward(scandir))
			{
				sortop = get_commutator(sortop);
				if (sortop == InvalidOid)
					break;		/* oops, no reverse sort operator? */
			}

			/* OK, make a sublist for this sort key */
			item = makePathKeyItem((Node *) relvar, sortop);
			cpathkey = make_canonical_pathkey(root, item);

			/*
			 * Eliminate redundant ordering info; could happen if query is
			 * such that index keys are equijoined...
			 */
			if (!ptrMember(cpathkey, retval))
				retval = lappend(retval, cpathkey);
			indexkeys++;
			ordering++;
		}
	}

	return retval;
}

/*
 * Find or make a Var node for the specified attribute of the rel.
 *
 * We first look for the var in the rel's target list, because that's
 * easy and fast.  But the var might not be there (this should normally
 * only happen for vars that are used in WHERE restriction clauses,
 * but not in join clauses or in the SELECT target list).  In that case,
 * gin up a Var node the hard way.
 */
static Var *
find_indexkey_var(Query *root, RelOptInfo *rel, AttrNumber varattno)
{
	List	   *temp;
	int			relid;
	Oid			reloid,
				vartypeid;
	int32		type_mod;

	foreach(temp, rel->targetlist)
	{
		Var		   *tle_var = get_expr(lfirst(temp));

		if (IsA(tle_var, Var) &&tle_var->varattno == varattno)
			return tle_var;
	}

	relid = lfirsti(rel->relids);
	reloid = getrelid(relid, root->rtable);
	vartypeid = get_atttype(reloid, varattno);
	type_mod = get_atttypmod(reloid, varattno);

	return makeVar(relid, varattno, vartypeid, type_mod, 0);
}

/*
 * build_join_pathkeys
 *	  Build the path keys for a join relation constructed by mergejoin or
 *	  nestloop join.  These keys should include all the path key vars of the
 *	  outer path (since the join will retain the ordering of the outer path)
 *	  plus any vars of the inner path that are equijoined to the outer vars.
 *
 *	  Per the discussion in backend/optimizer/README, equijoined inner vars
 *	  can be considered path keys of the result, just the same as the outer
 *	  vars they were joined with; furthermore, it doesn't matter what kind
 *	  of join algorithm is actually used.
 *
 * 'joinrel' is the join relation that paths are being formed for
 * 'outer_pathkeys' is the list of the current outer path's path keys
 *
 * Returns the list of new path keys.
 */
List *
build_join_pathkeys(Query *root,
					RelOptInfo *joinrel,
					List *outer_pathkeys)
{

	/*
	 * This used to be quite a complex bit of code, but now that all
	 * pathkey sublists start out life canonicalized, we don't have to do
	 * a darn thing here!  The inner-rel vars we used to need to add are
	 * *already* part of the outer pathkey!
	 *
	 * We do, however, need to truncate the pathkeys list, since it may
	 * contain pathkeys that were useful for forming this joinrel but are
	 * uninteresting to higher levels.
	 */
	return truncate_useless_pathkeys(root, joinrel, outer_pathkeys);
}

/****************************************************************************
 *		PATHKEYS AND SORT CLAUSES
 ****************************************************************************/

/*
 * make_pathkeys_for_sortclauses
 *		Generate a pathkeys list that represents the sort order specified
 *		by a list of SortClauses (GroupClauses will work too!)
 *
 * NB: the result is NOT in canonical form, but must be passed through
 * canonicalize_pathkeys() before it can be used for comparisons or
 * labeling relation sort orders.  (We do things this way because
 * grouping_planner needs to be able to construct requested pathkeys
 * before the pathkey equivalence sets have been created for the query.)
 *
 * 'sortclauses' is a list of SortClause or GroupClause nodes
 * 'tlist' is the targetlist to find the referenced tlist entries in
 */
List *
make_pathkeys_for_sortclauses(List *sortclauses,
							  List *tlist)
{
	List	   *pathkeys = NIL;
	List	   *i;

	foreach(i, sortclauses)
	{
		SortClause *sortcl = (SortClause *) lfirst(i);
		Node	   *sortkey;
		PathKeyItem *pathkey;

		sortkey = get_sortgroupclause_expr(sortcl, tlist);
		pathkey = makePathKeyItem(sortkey, sortcl->sortop);

		/*
		 * The pathkey becomes a one-element sublist, for now;
		 * canonicalize_pathkeys() might replace it with a longer sublist
		 * later.
		 */
		pathkeys = lappend(pathkeys, makeList1(pathkey));
	}
	return pathkeys;
}

/****************************************************************************
 *		PATHKEYS AND MERGECLAUSES
 ****************************************************************************/

/*
 * cache_mergeclause_pathkeys
 *		Make the cached pathkeys valid in a mergeclause restrictinfo.
 *
 * RestrictInfo contains fields in which we may cache the result
 * of looking up the canonical pathkeys for the left and right sides
 * of the mergeclause.	(Note that in normal cases they will be the
 * same, but not if the mergeclause appears above an OUTER JOIN.)
 * This is a worthwhile savings because these routines will be invoked
 * many times when dealing with a many-relation query.
 */
static void
cache_mergeclause_pathkeys(Query *root, RestrictInfo *restrictinfo)
{
	Node	   *key;
	PathKeyItem *item;

	Assert(restrictinfo->mergejoinoperator != InvalidOid);

	if (restrictinfo->left_pathkey == NIL)
	{
		key = (Node *) get_leftop(restrictinfo->clause);
		item = makePathKeyItem(key, restrictinfo->left_sortop);
		restrictinfo->left_pathkey = make_canonical_pathkey(root, item);
	}
	if (restrictinfo->right_pathkey == NIL)
	{
		key = (Node *) get_rightop(restrictinfo->clause);
		item = makePathKeyItem(key, restrictinfo->right_sortop);
		restrictinfo->right_pathkey = make_canonical_pathkey(root, item);
	}
}

/*
 * find_mergeclauses_for_pathkeys
 *	  This routine attempts to find a set of mergeclauses that can be
 *	  used with a specified ordering for one of the input relations.
 *	  If successful, it returns a list of mergeclauses.
 *
 * 'pathkeys' is a pathkeys list showing the ordering of an input path.
 *			It doesn't matter whether it is for the inner or outer path.
 * 'restrictinfos' is a list of mergejoinable restriction clauses for the
 *			join relation being formed.
 *
 * The result is NIL if no merge can be done, else a maximal list of
 * usable mergeclauses (represented as a list of their restrictinfo nodes).
 *
 * XXX Ideally we ought to be considering context, ie what path orderings
 * are available on the other side of the join, rather than just making
 * an arbitrary choice among the mergeclauses that will work for this side
 * of the join.
 */
List *
find_mergeclauses_for_pathkeys(Query *root,
							   List *pathkeys,
							   List *restrictinfos)
{
	List	   *mergeclauses = NIL;
	List	   *i;

	foreach(i, pathkeys)
	{
		List	   *pathkey = lfirst(i);
		RestrictInfo *matched_restrictinfo = NULL;
		List	   *j;

		/*
		 * We can match a pathkey against either left or right side of any
		 * mergejoin clause we haven't used yet.  For the moment we use a
		 * dumb "greedy" algorithm with no backtracking.  Is it worth
		 * being any smarter to make a longer list of usable mergeclauses?
		 * Probably not.
		 */
		foreach(j, restrictinfos)
		{
			RestrictInfo *restrictinfo = lfirst(j);

			cache_mergeclause_pathkeys(root, restrictinfo);

			/*
			 * We can compare canonical pathkey sublists by simple pointer
			 * equality; see compare_pathkeys.
			 */
			if ((pathkey == restrictinfo->left_pathkey ||
				 pathkey == restrictinfo->right_pathkey) &&
				!ptrMember(restrictinfo, mergeclauses))
			{
				matched_restrictinfo = restrictinfo;
				break;
			}
		}

		/*
		 * If we didn't find a mergeclause, we're done --- any additional
		 * sort-key positions in the pathkeys are useless.	(But we can
		 * still mergejoin if we found at least one mergeclause.)
		 */
		if (!matched_restrictinfo)
			break;

		/*
		 * If we did find a usable mergeclause for this sort-key position,
		 * add it to result list.
		 */
		mergeclauses = lappend(mergeclauses, matched_restrictinfo);
	}

	return mergeclauses;
}

/*
 * make_pathkeys_for_mergeclauses
 *	  Builds a pathkey list representing the explicit sort order that
 *	  must be applied to a path in order to make it usable for the
 *	  given mergeclauses.
 *
 * 'mergeclauses' is a list of RestrictInfos for mergejoin clauses
 *			that will be used in a merge join.
 * 'rel' is the relation the pathkeys will apply to (ie, either the inner
 *			or outer side of the proposed join rel).
 *
 * Returns a pathkeys list that can be applied to the indicated relation.
 *
 * Note that it is not this routine's job to decide whether sorting is
 * actually needed for a particular input path.  Assume a sort is necessary;
 * just make the keys, eh?
 */
List *
make_pathkeys_for_mergeclauses(Query *root,
							   List *mergeclauses,
							   RelOptInfo *rel)
{
	List	   *pathkeys = NIL;
	List	   *i;

	foreach(i, mergeclauses)
	{
		RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
		Node	   *key;
		List	   *pathkey;

		cache_mergeclause_pathkeys(root, restrictinfo);

		key = (Node *) get_leftop(restrictinfo->clause);
		if (IsA(key, Var) &&intMember(((Var *) key)->varno, rel->relids))
		{
			/* Rel is left side of mergeclause */
			pathkey = restrictinfo->left_pathkey;
		}
		else
		{
			key = (Node *) get_rightop(restrictinfo->clause);
			if (IsA(key, Var) &&intMember(((Var *) key)->varno, rel->relids))
			{
				/* Rel is right side of mergeclause */
				pathkey = restrictinfo->right_pathkey;
			}
			else
			{
				elog(ERROR, "make_pathkeys_for_mergeclauses: can't identify which side of mergeclause to use");
				pathkey = NIL;	/* keep compiler quiet */
			}
		}

		/*
		 * When we are given multiple merge clauses, it's possible that
		 * some clauses refer to the same vars as earlier clauses.
		 * There's no reason for us to specify sort keys like (A,B,A) when
		 * (A,B) will do --- and adding redundant sort keys makes add_path
		 * think that this sort order is different from ones that are
		 * really the same, so don't do it.  Since we now have a
		 * canonicalized pathkey, a simple ptrMember test is sufficient to
		 * detect redundant keys.
		 */
		if (!ptrMember(pathkey, pathkeys))
			pathkeys = lappend(pathkeys, pathkey);
	}

	return pathkeys;
}

/****************************************************************************
 *		PATHKEY USEFULNESS CHECKS
 *
 * We only want to remember as many of the pathkeys of a path as have some
 * potential use, either for subsequent mergejoins or for meeting the query's
 * requested output ordering.  This ensures that add_path() won't consider
 * a path to have a usefully different ordering unless it really is useful.
 * These routines check for usefulness of given pathkeys.
 ****************************************************************************/

/*
 * pathkeys_useful_for_merging
 *		Count the number of pathkeys that may be useful for mergejoins
 *		above the given relation (by looking at its joininfo lists).
 *
 * We consider a pathkey potentially useful if it corresponds to the merge
 * ordering of either side of any joinclause for the rel.  This might be
 * overoptimistic, since joinclauses that appear in different join lists
 * might never be usable at the same time, but trying to be exact is likely
 * to be more trouble than it's worth.
 */
int
pathkeys_useful_for_merging(Query *root, RelOptInfo *rel, List *pathkeys)
{
	int			useful = 0;
	List	   *i;

	foreach(i, pathkeys)
	{
		List	   *pathkey = lfirst(i);
		bool		matched = false;
		List	   *j;

		foreach(j, rel->joininfo)
		{
			JoinInfo   *joininfo = (JoinInfo *) lfirst(j);
			List	   *k;

			foreach(k, joininfo->jinfo_restrictinfo)
			{
				RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(k);

				if (restrictinfo->mergejoinoperator == InvalidOid)
					continue;
				cache_mergeclause_pathkeys(root, restrictinfo);

				/*
				 * We can compare canonical pathkey sublists by simple
				 * pointer equality; see compare_pathkeys.
				 */
				if (pathkey == restrictinfo->left_pathkey ||
					pathkey == restrictinfo->right_pathkey)
				{
					matched = true;
					break;
				}
			}

			if (matched)
				break;
		}

		/*
		 * If we didn't find a mergeclause, we're done --- any additional
		 * sort-key positions in the pathkeys are useless.	(But we can
		 * still mergejoin if we found at least one mergeclause.)
		 */
		if (matched)
			useful++;
		else
			break;
	}

	return useful;
}

/*
 * pathkeys_useful_for_ordering
 *		Count the number of pathkeys that are useful for meeting the
 *		query's requested output ordering.
 *
 * Unlike merge pathkeys, this is an all-or-nothing affair: it does us
 * no good to order by just the first key(s) of the requested ordering.
 * So the result is always either 0 or length(root->query_pathkeys).
 */
int
pathkeys_useful_for_ordering(Query *root, List *pathkeys)
{
	if (root->query_pathkeys == NIL)
		return 0;				/* no special ordering requested */

	if (pathkeys == NIL)
		return 0;				/* unordered path */

	if (pathkeys_contained_in(root->query_pathkeys, pathkeys))
	{
		/* It's useful ... or at least the first N keys are */
		return length(root->query_pathkeys);
	}

	return 0;					/* path ordering not useful */
}

/*
 * truncate_useless_pathkeys
 *		Shorten the given pathkey list to just the useful pathkeys.
 */
List *
truncate_useless_pathkeys(Query *root,
						  RelOptInfo *rel,
						  List *pathkeys)
{
	int			nuseful;
	int			nuseful2;

	nuseful = pathkeys_useful_for_merging(root, rel, pathkeys);
	nuseful2 = pathkeys_useful_for_ordering(root, pathkeys);
	if (nuseful2 > nuseful)
		nuseful = nuseful2;

	/*
	 * Note: not safe to modify input list destructively, but we can avoid
	 * copying the list if we're not actually going to change it
	 */
	if (nuseful == length(pathkeys))
		return pathkeys;
	else
		return ltruncate(nuseful, listCopy(pathkeys));
}