summaryrefslogtreecommitdiff
path: root/src/backend/commands/vacuumlazy.c
blob: 38405f6c6cb774bcb572abe5d66796ca08612589 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
/*-------------------------------------------------------------------------
 *
 * vacuumlazy.c
 *	  Concurrent ("lazy") vacuuming.
 *
 *
 * The major space usage for LAZY VACUUM is storage for the array of dead
 * tuple TIDs, with the next biggest need being storage for per-disk-page
 * free space info.  We want to ensure we can vacuum even the very largest
 * relations with finite memory space usage.  To do that, we set upper bounds
 * on the number of tuples and pages we will keep track of at once.
 *
 * We are willing to use at most VacuumMem memory space to keep track of
 * dead tuples.  We initially allocate an array of TIDs of that size.
 * If the array threatens to overflow, we suspend the heap scan phase
 * and perform a pass of index cleanup and page compaction, then resume
 * the heap scan with an empty TID array.
 *
 * We can limit the storage for page free space to MaxFSMPages entries,
 * since that's the most the free space map will be willing to remember
 * anyway.  If the relation has fewer than that many pages with free space,
 * life is easy: just build an array of per-page info.  If it has more,
 * we store the free space info as a heap ordered by amount of free space,
 * so that we can discard the pages with least free space to ensure we never
 * have more than MaxFSMPages entries in all.  The surviving page entries
 * are passed to the free space map at conclusion of the scan.
 *
 *
 * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/commands/vacuumlazy.c,v 1.8 2001/09/29 04:02:22 tgl Exp $
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/heapam.h"
#include "access/xlog.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "storage/freespace.h"
#include "storage/sinval.h"
#include "storage/smgr.h"


/*
 * Space/time tradeoff parameters: do these need to be user-tunable?
 *
 * A page with less than PAGE_SPACE_THRESHOLD free space will be forgotten
 * immediately, and not even passed to the free space map.  Removing the
 * uselessly small entries early saves cycles, and in particular reduces
 * the amount of time we spend holding the FSM lock when we finally call
 * MultiRecordFreeSpace.  Since the FSM will ignore pages below its own
 * runtime threshold anyway, there's no point in making this really small.
 * XXX Is it worth trying to measure average tuple size, and using that to
 * set the threshold?  Problem is we don't know average tuple size very
 * accurately for the first few pages...
 *
 * To consider truncating the relation, we want there to be at least
 * relsize / REL_TRUNCATE_FRACTION potentially-freeable pages.
 */
#define PAGE_SPACE_THRESHOLD	((Size) (BLCKSZ / 32))

#define REL_TRUNCATE_FRACTION	16

/* MAX_TUPLES_PER_PAGE can be a conservative upper limit */
#define MAX_TUPLES_PER_PAGE		((int) (BLCKSZ / sizeof(HeapTupleHeaderData)))


typedef struct LVRelStats
{
	/* Overall statistics about rel */
	BlockNumber	rel_pages;
	double		rel_tuples;
	BlockNumber	nonempty_pages;		/* actually, last nonempty page + 1 */
	/* List of TIDs of tuples we intend to delete */
	/* NB: this list is ordered by TID address */
	int			num_dead_tuples;	/* current # of entries */
	int			max_dead_tuples;	/* # slots allocated in array */
	ItemPointer	dead_tuples;		/* array of ItemPointerData */
	/* Array or heap of per-page info about free space */
	/* We use a simple array until it fills up, then convert to heap */
	bool		fs_is_heap;			/* are we using heap organization? */
	int			num_free_pages;		/* current # of entries */
	int			max_free_pages;		/* # slots allocated in arrays */
	BlockNumber *free_pages;		/* array or heap of block numbers */
	Size	   *free_spaceavail;	/* array or heap of available space */
} LVRelStats;


static int	MESSAGE_LEVEL;		/* message level */

static TransactionId OldestXmin;
static TransactionId FreezeLimit;


/* non-export function prototypes */
static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
						   Relation *Irel, int nindexes);
static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats);
static void lazy_scan_index(Relation indrel, LVRelStats *vacrelstats);
static void lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats);
static int	lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
							 int tupindex, LVRelStats *vacrelstats);
static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats);
static BlockNumber count_nondeletable_pages(Relation onerel,
											LVRelStats *vacrelstats);
static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks);
static void lazy_record_dead_tuple(LVRelStats *vacrelstats,
								   ItemPointer itemptr);
static void lazy_record_free_space(LVRelStats *vacrelstats,
								   BlockNumber page, Size avail);
static bool lazy_tid_reaped(ItemPointer itemptr, void *state);
static bool dummy_tid_reaped(ItemPointer itemptr, void *state);
static void lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats);
static int	vac_cmp_itemptr(const void *left, const void *right);


/*
 *	lazy_vacuum_rel() -- perform LAZY VACUUM for one heap relation
 *
 *		This routine vacuums a single heap, cleans out its indexes, and
 *		updates its num_pages and num_tuples statistics.
 *
 *		At entry, we have already established a transaction and opened
 *		and locked the relation.
 */
void
lazy_vacuum_rel(Relation onerel, VacuumStmt *vacstmt)
{
	LVRelStats *vacrelstats;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
	BlockNumber	possibly_freeable;

	/* initialize */
	if (vacstmt->verbose)
		MESSAGE_LEVEL = NOTICE;
	else
		MESSAGE_LEVEL = DEBUG;

	vacuum_set_xid_limits(vacstmt, onerel->rd_rel->relisshared,
						  &OldestXmin, &FreezeLimit);

	vacrelstats = (LVRelStats *) palloc(sizeof(LVRelStats));
	MemSet(vacrelstats, 0, sizeof(LVRelStats));

	/* Open all indexes of the relation */
	vac_open_indexes(onerel, &nindexes, &Irel);
	hasindex = (nindexes > 0);

	/* Do the vacuuming */
	lazy_scan_heap(onerel, vacrelstats, Irel, nindexes);

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel);

	/*
	 * Optionally truncate the relation.
	 *
	 * Don't even think about it unless we have a shot at releasing a
	 * goodly number of pages.  Otherwise, the time taken isn't worth it.
	 */
	possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages;
	if (possibly_freeable > vacrelstats->rel_pages / REL_TRUNCATE_FRACTION)
		lazy_truncate_heap(onerel, vacrelstats);

	/* Update shared free space map with final free space info */
	lazy_update_fsm(onerel, vacrelstats);

	/* Update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(onerel), vacrelstats->rel_pages,
						vacrelstats->rel_tuples, hasindex);
}


/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
	BlockNumber	empty_pages,
				changed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
	bool		did_vacuum_index = false;
	int			i;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	relname = RelationGetRelationName(onerel);
	elog(MESSAGE_LEVEL, "--Relation %s--", relname);

	empty_pages = changed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->nonempty_pages = 0;

	lazy_space_alloc(vacrelstats, nblocks);

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;
		int			prev_dead_count;

		/*
		 * If we are close to overrunning the available space for dead-tuple
		 * TIDs, pause and do a cycle of vacuuming before we tackle this page.
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MAX_TUPLES_PER_PAGE &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i], vacrelstats);
			did_vacuum_index = true;
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);
			/* Forget the now-vacuumed tuples, and press on */
			vacrelstats->num_dead_tuples = 0;
		}

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/* Not sure we still need to handle this case, but... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
			if (PageIsNew(page))
			{
				elog(NOTICE, "Rel %s: Uninitialized page %u - fixing",
					 relname, blkno);
				PageInit(page, BufferGetPageSize(buf), 0);
				lazy_record_free_space(vacrelstats, blkno,
									   PageGetFreeSpace(page));
			}
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			WriteBuffer(buf);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
			{
				case HEAPTUPLE_DEAD:
					tupgone = true;	/* we can delete the tuple */
					break;
				case HEAPTUPLE_LIVE:
					/*
					 * Tuple is good.  Consider whether to replace its xmin
					 * value with FrozenTransactionId.
					 *
					 * NB: Since we hold only a shared buffer lock here,
					 * we are assuming that TransactionId read/write
					 * is atomic.  This is not the only place that makes
					 * such an assumption.  It'd be possible to avoid the
					 * assumption by momentarily acquiring exclusive lock,
					 * but for the moment I see no need to.
					 */
					if (TransactionIdIsNormal(tuple.t_data->t_xmin) &&
						TransactionIdPrecedes(tuple.t_data->t_xmin,
											  FreezeLimit))
					{
						tuple.t_data->t_xmin = FrozenTransactionId;
						/* infomask should be okay already */
						Assert(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED);
						pgchanged = true;
					}
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
					/*
					 * If tuple is recently deleted then we must not remove
					 * it from relation.
					 */
					nkeep += 1;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			/*
			 * Other checks...
			 */
			if (!OidIsValid(tuple.t_data->t_oid) &&
				onerel->rd_rel->relhasoids)
				elog(NOTICE, "Rel %s: TID %u/%u: OID IS INVALID. TUPGONE %d.",
					 relname, blkno, offnum, (int) tupgone);

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				tups_vacuumed += 1;
			}
			else
			{
				num_tuples += 1;
				hastup = true;
			}
		} /* scan along page */

		/*
		 * If we remembered any tuples for deletion, then the page will
		 * be visited again by lazy_vacuum_heap, which will compute and
		 * record its post-compaction free space.  If not, then we're done
		 * with this page, so remember its free space as-is.
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
		{
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
		}

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
		{
			SetBufferCommitInfoNeedsSave(buf);
			changed_pages++;
		}

		ReleaseBuffer(buf);
	}

	/* save stats for use later */
	vacrelstats->rel_tuples = num_tuples;

	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min nuber of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i], vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
	}
	else if (! did_vacuum_index)
	{
		/* Scan indexes just to update pg_class statistics about them */
		for (i = 0; i < nindexes; i++)
			lazy_scan_index(Irel[i], vacrelstats);
	}

	elog(MESSAGE_LEVEL, "Pages %u: Changed %u, Empty %u; \
Tup %.0f: Vac %.0f, Keep %.0f, UnUsed %.0f.\n\tTotal %s",
		 nblocks, changed_pages, empty_pages,
		 num_tuples, tups_vacuumed, nkeep, nunused,
		 vac_show_rusage(&ru0));
}


/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	int			tupindex;
	int			npages;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);
	npages = 0;

	tupindex = 0;
	while (tupindex < vacrelstats->num_dead_tuples)
	{
		BlockNumber		tblk;
		Buffer		buf;
		Page		page;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		buf = ReadBuffer(onerel, tblk);
		LockBufferForCleanup(buf);
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);
		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		lazy_record_free_space(vacrelstats, tblk,
							   PageGetFreeSpace(page));
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		WriteBuffer(buf);
		npages++;
	}

	elog(MESSAGE_LEVEL, "Removed %d tuples in %d pages.\n\t%s",
		 tupindex, npages,
		 vac_show_rusage(&ru0));
}

/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller is expected to handle reading, locking, and writing the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
	OffsetNumber unbuf[BLCKSZ/sizeof(OffsetNumber)];
	OffsetNumber *unused = unbuf;
	int			uncnt;
	Page		page = BufferGetPage(buffer);
	ItemId		itemid;

	START_CRIT_SECTION();
	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
		BlockNumber		tblk;
		OffsetNumber	toff;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		itemid->lp_flags &= ~LP_USED;
	}

	uncnt = PageRepairFragmentation(page, unused);

	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer, (char *) unused,
						  (char *) (&(unused[uncnt])) - (char *) unused);
		PageSetLSN(page, recptr);
		PageSetSUI(page, ThisStartUpID);
	}
	END_CRIT_SECTION();

	return tupindex;
}

/*
 *	lazy_scan_index() -- scan one index relation to update pg_class statistic.
 *
 * We use this when we have no deletions to do.
 */
static void
lazy_scan_index(Relation indrel, LVRelStats *vacrelstats)
{
	IndexBulkDeleteResult *stats;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
	 * If the index is not partial, skip the scan, and just assume it
	 * has the same number of tuples as the heap.
	 */
	if (! vac_is_partial_index(indrel))
	{
		vac_update_relstats(RelationGetRelid(indrel),
							RelationGetNumberOfBlocks(indrel),
							vacrelstats->rel_tuples,
							false);
		return;
	}

	/*
	 * If index is unsafe for concurrent access, must lock it;
	 * but a shared lock should be sufficient.
	 */
	if (! indrel->rd_am->amconcurrent)
		LockRelation(indrel, AccessShareLock);

	/*
	 * Even though we're not planning to delete anything, use the
	 * ambulkdelete call, so that the scan happens within the index AM
	 * for more speed.
	 */
	stats = index_bulk_delete(indrel, dummy_tid_reaped, NULL);

	/*
	 * Release lock acquired above.
	 */
	if (! indrel->rd_am->amconcurrent)
		UnlockRelation(indrel, AccessShareLock);

	if (!stats)
		return;

	/* now update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(indrel),
						stats->num_pages, stats->num_index_tuples,
						false);

	elog(MESSAGE_LEVEL, "Index %s: Pages %u; Tuples %.0f.\n\t%s",
		 RelationGetRelationName(indrel),
		 stats->num_pages, stats->num_index_tuples,
		 vac_show_rusage(&ru0));

	pfree(stats);
}

/*
 *	lazy_vacuum_index() -- vacuum one index relation.
 *
 *		Delete all the index entries pointing to tuples listed in
 *		vacrelstats->dead_tuples.
 *
 *		Finally, we arrange to update the index relation's statistics in
 *		pg_class.
 */
static void
lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats)
{
	IndexBulkDeleteResult *stats;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
	 * If index is unsafe for concurrent access, must lock it.
	 */
	if (! indrel->rd_am->amconcurrent)
		LockRelation(indrel, AccessExclusiveLock);

	/* Do bulk deletion */
	stats = index_bulk_delete(indrel, lazy_tid_reaped, (void *) vacrelstats);

	/*
	 * Release lock acquired above.
	 */
	if (! indrel->rd_am->amconcurrent)
		UnlockRelation(indrel, AccessExclusiveLock);

	/* now update statistics in pg_class */
	if (stats)
	{
		vac_update_relstats(RelationGetRelid(indrel),
							stats->num_pages, stats->num_index_tuples,
							false);

		elog(MESSAGE_LEVEL, "Index %s: Pages %u; Tuples %.0f: Deleted %.0f.\n\t%s",
			 RelationGetRelationName(indrel), stats->num_pages,
			 stats->num_index_tuples, stats->tuples_removed,
			 vac_show_rusage(&ru0));

		pfree(stats);
	}
}

/*
 * lazy_truncate_heap - try to truncate off any empty pages at the end
 */
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber	old_rel_pages = vacrelstats->rel_pages;
	BlockNumber	new_rel_pages;
	BlockNumber *pages;
	Size	   *spaceavail;
	int			n;
	int			i,
				j;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
	 * We need full exclusive lock on the relation in order to do truncation.
	 * If we can't get it, give up rather than waiting --- we don't want
	 * to block other backends, and we don't want to deadlock (which is
	 * quite possible considering we already hold a lower-grade lock).
	 */
	if (! ConditionalLockRelation(onerel, AccessExclusiveLock))
		return;

	/*
	 * Now that we have exclusive lock, look to see if the rel has grown
	 * whilst we were vacuuming with non-exclusive lock.  If so, give up;
	 * the newly added pages presumably contain non-deletable tuples.
	 */
	new_rel_pages = RelationGetNumberOfBlocks(onerel);
	if (new_rel_pages != old_rel_pages)
	{
		/* might as well use the latest news when we update pg_class stats */
		vacrelstats->rel_pages = new_rel_pages;
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Scan backwards from the end to verify that the end pages actually
	 * contain nothing we need to keep.  This is *necessary*, not optional,
	 * because other backends could have added tuples to these pages whilst
	 * we were vacuuming.
	 */
	new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);

	if (new_rel_pages >= old_rel_pages)
	{
		/* can't do anything after all */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Okay to truncate.
	 *
	 * First, flush any shared buffers for the blocks we intend to delete.
	 * FlushRelationBuffers is a bit more than we need for this, since it
	 * will also write out dirty buffers for blocks we aren't deleting,
	 * but it's the closest thing in bufmgr's API.
	 */
	i = FlushRelationBuffers(onerel, new_rel_pages);
	if (i < 0)
		elog(ERROR, "VACUUM (lazy_truncate_heap): FlushRelationBuffers returned %d",
			 i);

	/*
	 * Do the physical truncation.
	 */
	new_rel_pages = smgrtruncate(DEFAULT_SMGR, onerel, new_rel_pages);
	onerel->rd_nblocks = new_rel_pages;	/* update relcache immediately */
	onerel->rd_targblock = InvalidBlockNumber;
	vacrelstats->rel_pages = new_rel_pages; /* save new number of blocks */

	/*
	 * Drop free-space info for removed blocks; these must not get entered
	 * into the FSM!
	 */
	pages = vacrelstats->free_pages;
	spaceavail = vacrelstats->free_spaceavail;
	n = vacrelstats->num_free_pages;
	j = 0;
	for (i = 0; i < n; i++)
	{
		if (pages[i] < new_rel_pages)
		{
			pages[j] = pages[i];
			spaceavail[j] = spaceavail[i];
			j++;
		}
	}
	vacrelstats->num_free_pages = j;

	/*
	 * We keep the exclusive lock until commit (perhaps not necessary)?
	 */

	elog(MESSAGE_LEVEL, "Truncated %u --> %u pages.\n\t%s",
		 old_rel_pages, new_rel_pages,
		 vac_show_rusage(&ru0));
}

/*
 * Rescan end pages to verify that they are (still) empty of needed tuples.
 *
 * Returns number of nondeletable pages (last nonempty page + 1).
 */
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber blkno;
	HeapTupleData tuple;

	/* Strange coding of loop control is needed because blkno is unsigned */
	blkno = vacrelstats->rel_pages;
	while (blkno > vacrelstats->nonempty_pages)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;

		blkno--;

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page) || PageIsEmpty(page))
		{
			/* PageIsNew robably shouldn't happen... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
				continue;

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
			{
				case HEAPTUPLE_DEAD:
					tupgone = true;	/* we can delete the tuple */
					break;
				case HEAPTUPLE_LIVE:
					/* Shouldn't be necessary to re-freeze anything */
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
					/*
					 * If tuple is recently deleted then we must not remove
					 * it from relation.
					 */
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			if (!tupgone)
			{
				hastup = true;
				break;			/* can stop scanning */
			}
		} /* scan along page */

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
			WriteBuffer(buf);
		else
			ReleaseBuffer(buf);

		/* Done scanning if we found a tuple here */
		if (hastup)
			return blkno + 1;
	}

	/*
	 * If we fall out of the loop, all the previously-thought-to-be-empty
	 * pages really are; we need not bother to look at the last known-nonempty
	 * page.
	 */
	return vacrelstats->nonempty_pages;
}

/*
 * lazy_space_alloc - space allocation decisions for lazy vacuum
 *
 * See the comments at the head of this file for rationale.
 */
static void
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)
{
	int			maxtuples;
	int			maxpages;

	maxtuples = (int) ((VacuumMem * 1024L) / sizeof(ItemPointerData));
	/* stay sane if small VacuumMem */
	if (maxtuples < MAX_TUPLES_PER_PAGE)
		maxtuples = MAX_TUPLES_PER_PAGE;

	vacrelstats->num_dead_tuples = 0;
	vacrelstats->max_dead_tuples = maxtuples;
	vacrelstats->dead_tuples = (ItemPointer)
		palloc(maxtuples * sizeof(ItemPointerData));

	maxpages = MaxFSMPages;
	/* No need to allocate more pages than the relation has blocks */
	if (relblocks < (BlockNumber) maxpages)
		maxpages = (int) relblocks;
	/* avoid palloc(0) */
	if (maxpages < 1)
		maxpages = 1;

	vacrelstats->fs_is_heap = false;
	vacrelstats->num_free_pages = 0;
	vacrelstats->max_free_pages = maxpages;
	vacrelstats->free_pages = (BlockNumber *)
		palloc(maxpages * sizeof(BlockNumber));
	vacrelstats->free_spaceavail = (Size *)
		palloc(maxpages * sizeof(Size));
}

/*
 * lazy_record_dead_tuple - remember one deletable tuple
 */
static void
lazy_record_dead_tuple(LVRelStats *vacrelstats,
					   ItemPointer itemptr)
{
	/*
	 * The array shouldn't overflow under normal behavior,
	 * but perhaps it could if we are given a really small VacuumMem.
	 * In that case, just forget the last few tuples.
	 */
	if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples)
	{
		vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr;
		vacrelstats->num_dead_tuples++;
	}
}

/*
 * lazy_record_free_space - remember free space on one page
 */
static void
lazy_record_free_space(LVRelStats *vacrelstats,
					   BlockNumber page,
					   Size avail)
{
	BlockNumber *pages;
	Size	   *spaceavail;
	int			n;

	/* Ignore pages with little free space */
	if (avail < PAGE_SPACE_THRESHOLD)
		return;

	/* Copy pointers to local variables for notational simplicity */
	pages = vacrelstats->free_pages;
	spaceavail = vacrelstats->free_spaceavail;
	n = vacrelstats->max_free_pages;

	/* If we haven't filled the array yet, just keep adding entries */
	if (vacrelstats->num_free_pages < n)
	{
		pages[vacrelstats->num_free_pages] = page;
		spaceavail[vacrelstats->num_free_pages] = avail;
		vacrelstats->num_free_pages++;
		return;
	}

	/*----------
	 * The rest of this routine works with "heap" organization of the
	 * free space arrays, wherein we maintain the heap property
	 *			spaceavail[(j-1) div 2] <= spaceavail[j]  for 0 < j < n.
	 * In particular, the zero'th element always has the smallest available
	 * space and can be discarded to make room for a new page with more space.
	 * See Knuth's discussion of heap-based priority queues, sec 5.2.3;
	 * but note he uses 1-origin array subscripts, not 0-origin.
	 *----------
	 */

	/* If we haven't yet converted the array to heap organization, do it */
	if (! vacrelstats->fs_is_heap)
	{
		/*
		 * Scan backwards through the array, "sift-up" each value into its
		 * correct position.  We can start the scan at n/2-1 since each entry
		 * above that position has no children to worry about.
		 */
		int		l = n / 2;

		while (--l >= 0)
		{
			BlockNumber	R = pages[l];
			Size		K = spaceavail[l];
			int			i;		/* i is where the "hole" is */

			i = l;
			for (;;)
			{
				int		j = 2*i + 1;

				if (j >= n)
					break;
				if (j+1 < n && spaceavail[j] > spaceavail[j+1])
					j++;
				if (K <= spaceavail[j])
					break;
				pages[i] = pages[j];
				spaceavail[i] = spaceavail[j];
				i = j;
			}
			pages[i] = R;
			spaceavail[i] = K;
		}

		vacrelstats->fs_is_heap = true;
	}

	/* If new page has more than zero'th entry, insert it into heap */
	if (avail > spaceavail[0])
	{
		/*
		 * Notionally, we replace the zero'th entry with the new data,
		 * and then sift-up to maintain the heap property.  Physically,
		 * the new data doesn't get stored into the arrays until we find
		 * the right location for it.
		 */
		int		i = 0;			/* i is where the "hole" is */

		for (;;)
		{
			int		j = 2*i + 1;

			if (j >= n)
				break;
			if (j+1 < n && spaceavail[j] > spaceavail[j+1])
				j++;
			if (avail <= spaceavail[j])
				break;
			pages[i] = pages[j];
			spaceavail[i] = spaceavail[j];
			i = j;
		}
		pages[i] = page;
		spaceavail[i] = avail;
	}
}

/*
 *	lazy_tid_reaped() -- is a particular tid deletable?
 *
 *		This has the right signature to be an IndexBulkDeleteCallback.
 *
 *		Assumes dead_tuples array is in sorted order.
 */
static bool
lazy_tid_reaped(ItemPointer itemptr, void *state)
{
	LVRelStats *vacrelstats = (LVRelStats *) state;
	ItemPointer	res;

	res = (ItemPointer) bsearch((void *) itemptr,
								(void *) vacrelstats->dead_tuples,
								vacrelstats->num_dead_tuples,
								sizeof(ItemPointerData),
								vac_cmp_itemptr);

	return (res != NULL);
}

/*
 * Dummy version for lazy_scan_index.
 */
static bool
dummy_tid_reaped(ItemPointer itemptr, void *state)
{
	return false;
}

/*
 * Update the shared Free Space Map with the info we now have about
 * free space in the relation, discarding any old info the map may have.
 */
static void
lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats)
{
	/*
	 * Since MultiRecordFreeSpace doesn't currently impose any restrictions
	 * on the ordering of the input, we can just pass it the arrays as-is,
	 * whether they are in heap or linear order.
	 */
	MultiRecordFreeSpace(&onerel->rd_node,
						 0, MaxBlockNumber,
						 vacrelstats->num_free_pages,
						 vacrelstats->free_pages,
						 vacrelstats->free_spaceavail);
}

/*
 * Comparator routines for use with qsort() and bsearch().
 */
static int
vac_cmp_itemptr(const void *left, const void *right)
{
	BlockNumber lblk,
				rblk;
	OffsetNumber loff,
				roff;

	lblk = ItemPointerGetBlockNumber((ItemPointer) left);
	rblk = ItemPointerGetBlockNumber((ItemPointer) right);

	if (lblk < rblk)
		return -1;
	if (lblk > rblk)
		return 1;

	loff = ItemPointerGetOffsetNumber((ItemPointer) left);
	roff = ItemPointerGetOffsetNumber((ItemPointer) right);

	if (loff < roff)
		return -1;
	if (loff > roff)
		return 1;

	return 0;
}