summaryrefslogtreecommitdiff
path: root/src/backend/commands/analyze.c
blob: bd32c8c841e5f456445eb2c29006f08a8b0032ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
/*-------------------------------------------------------------------------
 *
 * analyze.c
 *	  the Postgres statistics generator
 *
 * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/commands/analyze.c,v 1.88 2005/07/29 19:30:03 tgl Exp $
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/heapam.h"
#include "access/tuptoaster.h"
#include "catalog/catalog.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/namespace.h"
#include "catalog/pg_operator.h"
#include "commands/vacuum.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "pgstat.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"


/* Data structure for Algorithm S from Knuth 3.4.2 */
typedef struct
{
	BlockNumber N;				/* number of blocks, known in advance */
	int			n;				/* desired sample size */
	BlockNumber t;				/* current block number */
	int			m;				/* blocks selected so far */
} BlockSamplerData;
typedef BlockSamplerData *BlockSampler;

/* Per-index data for ANALYZE */
typedef struct AnlIndexData
{
	IndexInfo  *indexInfo;		/* BuildIndexInfo result */
	double		tupleFract;		/* fraction of rows for partial index */
	VacAttrStats **vacattrstats;	/* index attrs to analyze */
	int			attr_cnt;
} AnlIndexData;


/* Default statistics target (GUC parameter) */
int			default_statistics_target = 10;

static int	elevel = -1;

static MemoryContext anl_context = NULL;


static void BlockSampler_Init(BlockSampler bs, BlockNumber nblocks,
				  int samplesize);
static bool BlockSampler_HasMore(BlockSampler bs);
static BlockNumber BlockSampler_Next(BlockSampler bs);
static void compute_index_stats(Relation onerel, double totalrows,
					AnlIndexData *indexdata, int nindexes,
					HeapTuple *rows, int numrows,
					MemoryContext col_context);
static VacAttrStats *examine_attribute(Relation onerel, int attnum);
static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
					int targrows, double *totalrows, double *totaldeadrows);
static double random_fract(void);
static double init_selection_state(int n);
static double get_next_S(double t, int n, double *stateptr);
static int	compare_rows(const void *a, const void *b);
static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);

static bool std_typanalyze(VacAttrStats *stats);


/*
 *	analyze_rel() -- analyze one relation
 */
void
analyze_rel(Oid relid, VacuumStmt *vacstmt)
{
	Relation	onerel;
	int			attr_cnt,
				tcnt,
				i,
				ind;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
	bool		analyzableindex;
	VacAttrStats **vacattrstats;
	AnlIndexData *indexdata;
	int			targrows,
				numrows;
	double		totalrows,
				totaldeadrows;
	HeapTuple  *rows;

	if (vacstmt->verbose)
		elevel = INFO;
	else
		elevel = DEBUG2;

	/*
	 * Use the current context for storing analysis info.  vacuum.c
	 * ensures that this context will be cleared when I return, thus
	 * releasing the memory allocated here.
	 */
	anl_context = CurrentMemoryContext;

	/*
	 * Check for user-requested abort.	Note we want this to be inside a
	 * transaction, so xact.c doesn't issue useless WARNING.
	 */
	CHECK_FOR_INTERRUPTS();

	/*
	 * Race condition -- if the pg_class tuple has gone away since the
	 * last time we saw it, we don't need to process it.
	 */
	if (!SearchSysCacheExists(RELOID,
							  ObjectIdGetDatum(relid),
							  0, 0, 0))
		return;

	/*
	 * Open the class, getting only a read lock on it, and check
	 * permissions. Permissions check should match vacuum's check!
	 */
	onerel = relation_open(relid, AccessShareLock);

	if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
		  (pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
	{
		/* No need for a WARNING if we already complained during VACUUM */
		if (!vacstmt->vacuum)
			ereport(WARNING,
					(errmsg("skipping \"%s\" --- only table or database owner can analyze it",
							RelationGetRelationName(onerel))));
		relation_close(onerel, AccessShareLock);
		return;
	}

	/*
	 * Check that it's a plain table; we used to do this in get_rel_oids()
	 * but seems safer to check after we've locked the relation.
	 */
	if (onerel->rd_rel->relkind != RELKIND_RELATION)
	{
		/* No need for a WARNING if we already complained during VACUUM */
		if (!vacstmt->vacuum)
			ereport(WARNING,
					(errmsg("skipping \"%s\" --- cannot analyze indexes, views, or special system tables",
							RelationGetRelationName(onerel))));
		relation_close(onerel, AccessShareLock);
		return;
	}

	/*
	 * Silently ignore tables that are temp tables of other backends ---
	 * trying to analyze these is rather pointless, since their contents
	 * are probably not up-to-date on disk.  (We don't throw a warning
	 * here; it would just lead to chatter during a database-wide
	 * ANALYZE.)
	 */
	if (isOtherTempNamespace(RelationGetNamespace(onerel)))
	{
		relation_close(onerel, AccessShareLock);
		return;
	}

	/*
	 * We can ANALYZE any table except pg_statistic. See update_attstats
	 */
	if (RelationGetRelid(onerel) == StatisticRelationId)
	{
		relation_close(onerel, AccessShareLock);
		return;
	}

	ereport(elevel,
			(errmsg("analyzing \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					RelationGetRelationName(onerel))));

	/*
	 * Determine which columns to analyze
	 *
	 * Note that system attributes are never analyzed.
	 */
	if (vacstmt->va_cols != NIL)
	{
		ListCell   *le;

		vacattrstats = (VacAttrStats **) palloc(list_length(vacstmt->va_cols) *
												sizeof(VacAttrStats *));
		tcnt = 0;
		foreach(le, vacstmt->va_cols)
		{
			char	   *col = strVal(lfirst(le));

			i = attnameAttNum(onerel, col, false);
			vacattrstats[tcnt] = examine_attribute(onerel, i);
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
		}
		attr_cnt = tcnt;
	}
	else
	{
		attr_cnt = onerel->rd_att->natts;
		vacattrstats = (VacAttrStats **)
			palloc(attr_cnt * sizeof(VacAttrStats *));
		tcnt = 0;
		for (i = 1; i <= attr_cnt; i++)
		{
			vacattrstats[tcnt] = examine_attribute(onerel, i);
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
		}
		attr_cnt = tcnt;
	}

	/*
	 * Open all indexes of the relation, and see if there are any
	 * analyzable columns in the indexes.  We do not analyze index columns
	 * if there was an explicit column list in the ANALYZE command,
	 * however.
	 */
	vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
	hasindex = (nindexes > 0);
	indexdata = NULL;
	analyzableindex = false;
	if (hasindex)
	{
		indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];
			IndexInfo  *indexInfo;

			thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
			thisdata->tupleFract = 1.0; /* fix later if partial */
			if (indexInfo->ii_Expressions != NIL && vacstmt->va_cols == NIL)
			{
				ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);

				thisdata->vacattrstats = (VacAttrStats **)
					palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
				tcnt = 0;
				for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
				{
					int			keycol = indexInfo->ii_KeyAttrNumbers[i];

					if (keycol == 0)
					{
						/* Found an index expression */
						Node	   *indexkey;

						if (indexpr_item == NULL)		/* shouldn't happen */
							elog(ERROR, "too few entries in indexprs list");
						indexkey = (Node *) lfirst(indexpr_item);
						indexpr_item = lnext(indexpr_item);

						/*
						 * Can't analyze if the opclass uses a storage
						 * type different from the expression result type.
						 * We'd get confused because the type shown in
						 * pg_attribute for the index column doesn't match
						 * what we are getting from the expression.
						 * Perhaps this can be fixed someday, but for now,
						 * punt.
						 */
						if (exprType(indexkey) !=
							Irel[ind]->rd_att->attrs[i]->atttypid)
							continue;

						thisdata->vacattrstats[tcnt] =
							examine_attribute(Irel[ind], i + 1);
						if (thisdata->vacattrstats[tcnt] != NULL)
						{
							tcnt++;
							analyzableindex = true;
						}
					}
				}
				thisdata->attr_cnt = tcnt;
			}
		}
	}

	/*
	 * Quit if no analyzable columns
	 */
	if (attr_cnt <= 0 && !analyzableindex)
	{
		/*
		 * We report that the table is empty; this is just so that the
		 * autovacuum code doesn't go nuts trying to get stats about
		 * a zero-column table.
		 */
		if (!vacstmt->vacuum)
			pgstat_report_analyze(RelationGetRelid(onerel),
								  onerel->rd_rel->relisshared,
				   				  0, 0);

		vac_close_indexes(nindexes, Irel, AccessShareLock);
		relation_close(onerel, AccessShareLock);
		return;
	}

	/*
	 * Determine how many rows we need to sample, using the worst case
	 * from all analyzable columns.  We use a lower bound of 100 rows to
	 * avoid possible overflow in Vitter's algorithm.
	 */
	targrows = 100;
	for (i = 0; i < attr_cnt; i++)
	{
		if (targrows < vacattrstats[i]->minrows)
			targrows = vacattrstats[i]->minrows;
	}
	for (ind = 0; ind < nindexes; ind++)
	{
		AnlIndexData *thisdata = &indexdata[ind];

		for (i = 0; i < thisdata->attr_cnt; i++)
		{
			if (targrows < thisdata->vacattrstats[i]->minrows)
				targrows = thisdata->vacattrstats[i]->minrows;
		}
	}

	/*
	 * Acquire the sample rows
	 */
	rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
	numrows = acquire_sample_rows(onerel, rows, targrows,
								  &totalrows, &totaldeadrows);

	/*
	 * Compute the statistics.	Temporary results during the calculations
	 * for each column are stored in a child context.  The calc routines
	 * are responsible to make sure that whatever they store into the
	 * VacAttrStats structure is allocated in anl_context.
	 */
	if (numrows > 0)
	{
		MemoryContext col_context,
					old_context;

		col_context = AllocSetContextCreate(anl_context,
											"Analyze Column",
											ALLOCSET_DEFAULT_MINSIZE,
											ALLOCSET_DEFAULT_INITSIZE,
											ALLOCSET_DEFAULT_MAXSIZE);
		old_context = MemoryContextSwitchTo(col_context);

		for (i = 0; i < attr_cnt; i++)
		{
			VacAttrStats *stats = vacattrstats[i];

			stats->rows = rows;
			stats->tupDesc = onerel->rd_att;
			(*stats->compute_stats) (stats,
									 std_fetch_func,
									 numrows,
									 totalrows);
			MemoryContextResetAndDeleteChildren(col_context);
		}

		if (hasindex)
			compute_index_stats(onerel, totalrows,
								indexdata, nindexes,
								rows, numrows,
								col_context);

		MemoryContextSwitchTo(old_context);
		MemoryContextDelete(col_context);

		/*
		 * Emit the completed stats rows into pg_statistic, replacing any
		 * previous statistics for the target columns.	(If there are
		 * stats in pg_statistic for columns we didn't process, we leave
		 * them alone.)
		 */
		update_attstats(relid, attr_cnt, vacattrstats);

		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];

			update_attstats(RelationGetRelid(Irel[ind]),
							thisdata->attr_cnt, thisdata->vacattrstats);
		}
	}

	/*
	 * If we are running a standalone ANALYZE, update pages/tuples stats
	 * in pg_class.  We know the accurate page count from the smgr, but
	 * only an approximate number of tuples; therefore, if we are part of
	 * VACUUM ANALYZE do *not* overwrite the accurate count already
	 * inserted by VACUUM.	The same consideration applies to indexes.
	 */
	if (!vacstmt->vacuum)
	{
		vac_update_relstats(RelationGetRelid(onerel),
							RelationGetNumberOfBlocks(onerel),
							totalrows,
							hasindex);
		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];
			double		totalindexrows;

			totalindexrows = ceil(thisdata->tupleFract * totalrows);
			vac_update_relstats(RelationGetRelid(Irel[ind]),
								RelationGetNumberOfBlocks(Irel[ind]),
								totalindexrows,
								false);
		}

		/* report results to the stats collector, too */
		pgstat_report_analyze(RelationGetRelid(onerel),
							  onerel->rd_rel->relisshared,
			   				  totalrows, totaldeadrows);
	}

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel, NoLock);

	/*
	 * Close source relation now, but keep lock so that no one deletes it
	 * before we commit.  (If someone did, they'd fail to clean up the
	 * entries we made in pg_statistic.)
	 */
	relation_close(onerel, NoLock);
}

/*
 * Compute statistics about indexes of a relation
 */
static void
compute_index_stats(Relation onerel, double totalrows,
					AnlIndexData *indexdata, int nindexes,
					HeapTuple *rows, int numrows,
					MemoryContext col_context)
{
	MemoryContext ind_context,
				old_context;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];
	int			ind,
				i;

	ind_context = AllocSetContextCreate(anl_context,
										"Analyze Index",
										ALLOCSET_DEFAULT_MINSIZE,
										ALLOCSET_DEFAULT_INITSIZE,
										ALLOCSET_DEFAULT_MAXSIZE);
	old_context = MemoryContextSwitchTo(ind_context);

	for (ind = 0; ind < nindexes; ind++)
	{
		AnlIndexData *thisdata = &indexdata[ind];
		IndexInfo  *indexInfo = thisdata->indexInfo;
		int			attr_cnt = thisdata->attr_cnt;
		TupleTableSlot *slot;
		EState	   *estate;
		ExprContext *econtext;
		List	   *predicate;
		Datum	   *exprvals;
		bool	   *exprnulls;
		int			numindexrows,
					tcnt,
					rowno;
		double		totalindexrows;

		/* Ignore index if no columns to analyze and not partial */
		if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
			continue;

		/*
		 * Need an EState for evaluation of index expressions and
		 * partial-index predicates.  Create it in the per-index context
		 * to be sure it gets cleaned up at the bottom of the loop.
		 */
		estate = CreateExecutorState();
		econtext = GetPerTupleExprContext(estate);
		/* Need a slot to hold the current heap tuple, too */
		slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel));

		/* Arrange for econtext's scan tuple to be the tuple under test */
		econtext->ecxt_scantuple = slot;

		/* Set up execution state for predicate. */
		predicate = (List *)
			ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
							estate);

		/* Compute and save index expression values */
		exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
		exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
		numindexrows = 0;
		tcnt = 0;
		for (rowno = 0; rowno < numrows; rowno++)
		{
			HeapTuple	heapTuple = rows[rowno];

			/* Set up for predicate or expression evaluation */
			ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);

			/* If index is partial, check predicate */
			if (predicate != NIL)
			{
				if (!ExecQual(predicate, econtext, false))
					continue;
			}
			numindexrows++;

			if (attr_cnt > 0)
			{
				/*
				 * Evaluate the index row to compute expression values. We
				 * could do this by hand, but FormIndexDatum is
				 * convenient.
				 */
				FormIndexDatum(indexInfo,
							   slot,
							   estate,
							   values,
							   isnull);

				/*
				 * Save just the columns we care about.
				 */
				for (i = 0; i < attr_cnt; i++)
				{
					VacAttrStats *stats = thisdata->vacattrstats[i];
					int			attnum = stats->attr->attnum;

					exprvals[tcnt] = values[attnum - 1];
					exprnulls[tcnt] = isnull[attnum - 1];
					tcnt++;
				}
			}
		}

		/*
		 * Having counted the number of rows that pass the predicate in
		 * the sample, we can estimate the total number of rows in the
		 * index.
		 */
		thisdata->tupleFract = (double) numindexrows / (double) numrows;
		totalindexrows = ceil(thisdata->tupleFract * totalrows);

		/*
		 * Now we can compute the statistics for the expression columns.
		 */
		if (numindexrows > 0)
		{
			MemoryContextSwitchTo(col_context);
			for (i = 0; i < attr_cnt; i++)
			{
				VacAttrStats *stats = thisdata->vacattrstats[i];

				stats->exprvals = exprvals + i;
				stats->exprnulls = exprnulls + i;
				stats->rowstride = attr_cnt;
				(*stats->compute_stats) (stats,
										 ind_fetch_func,
										 numindexrows,
										 totalindexrows);
				MemoryContextResetAndDeleteChildren(col_context);
			}
		}

		/* And clean up */
		MemoryContextSwitchTo(ind_context);

		ExecDropSingleTupleTableSlot(slot);
		FreeExecutorState(estate);
		MemoryContextResetAndDeleteChildren(ind_context);
	}

	MemoryContextSwitchTo(old_context);
	MemoryContextDelete(ind_context);
}

/*
 * examine_attribute -- pre-analysis of a single column
 *
 * Determine whether the column is analyzable; if so, create and initialize
 * a VacAttrStats struct for it.  If not, return NULL.
 */
static VacAttrStats *
examine_attribute(Relation onerel, int attnum)
{
	Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1];
	HeapTuple	typtuple;
	VacAttrStats *stats;
	bool		ok;

	/* Never analyze dropped columns */
	if (attr->attisdropped)
		return NULL;

	/* Don't analyze column if user has specified not to */
	if (attr->attstattarget == 0)
		return NULL;

	/*
	 * Create the VacAttrStats struct.
	 */
	stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
	stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE);
	memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE);
	typtuple = SearchSysCache(TYPEOID,
							  ObjectIdGetDatum(attr->atttypid),
							  0, 0, 0);
	if (!HeapTupleIsValid(typtuple))
		elog(ERROR, "cache lookup failed for type %u", attr->atttypid);
	stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type));
	memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type));
	ReleaseSysCache(typtuple);
	stats->anl_context = anl_context;
	stats->tupattnum = attnum;

	/*
	 * Call the type-specific typanalyze function.	If none is specified,
	 * use std_typanalyze().
	 */
	if (OidIsValid(stats->attrtype->typanalyze))
		ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
										   PointerGetDatum(stats)));
	else
		ok = std_typanalyze(stats);

	if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
	{
		pfree(stats->attrtype);
		pfree(stats->attr);
		pfree(stats);
		return NULL;
	}

	return stats;
}

/*
 * BlockSampler_Init -- prepare for random sampling of blocknumbers
 *
 * BlockSampler is used for stage one of our new two-stage tuple
 * sampling mechanism as discussed on pgsql-hackers 2004-04-02 (subject
 * "Large DB").  It selects a random sample of samplesize blocks out of
 * the nblocks blocks in the table.  If the table has less than
 * samplesize blocks, all blocks are selected.
 *
 * Since we know the total number of blocks in advance, we can use the
 * straightforward Algorithm S from Knuth 3.4.2, rather than Vitter's
 * algorithm.
 */
static void
BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize)
{
	bs->N = nblocks;			/* measured table size */

	/*
	 * If we decide to reduce samplesize for tables that have less or not
	 * much more than samplesize blocks, here is the place to do it.
	 */
	bs->n = samplesize;
	bs->t = 0;					/* blocks scanned so far */
	bs->m = 0;					/* blocks selected so far */
}

static bool
BlockSampler_HasMore(BlockSampler bs)
{
	return (bs->t < bs->N) && (bs->m < bs->n);
}

static BlockNumber
BlockSampler_Next(BlockSampler bs)
{
	BlockNumber K = bs->N - bs->t;		/* remaining blocks */
	int			k = bs->n - bs->m;		/* blocks still to sample */
	double		p;				/* probability to skip block */
	double		V;				/* random */

	Assert(BlockSampler_HasMore(bs));	/* hence K > 0 and k > 0 */

	if ((BlockNumber) k >= K)
	{
		/* need all the rest */
		bs->m++;
		return bs->t++;
	}

	/*----------
	 * It is not obvious that this code matches Knuth's Algorithm S.
	 * Knuth says to skip the current block with probability 1 - k/K.
	 * If we are to skip, we should advance t (hence decrease K), and
	 * repeat the same probabilistic test for the next block.  The naive
	 * implementation thus requires a random_fract() call for each block
	 * number.	But we can reduce this to one random_fract() call per
	 * selected block, by noting that each time the while-test succeeds,
	 * we can reinterpret V as a uniform random number in the range 0 to p.
	 * Therefore, instead of choosing a new V, we just adjust p to be
	 * the appropriate fraction of its former value, and our next loop
	 * makes the appropriate probabilistic test.
	 *
	 * We have initially K > k > 0.  If the loop reduces K to equal k,
	 * the next while-test must fail since p will become exactly zero
	 * (we assume there will not be roundoff error in the division).
	 * (Note: Knuth suggests a "<=" loop condition, but we use "<" just
	 * to be doubly sure about roundoff error.)  Therefore K cannot become
	 * less than k, which means that we cannot fail to select enough blocks.
	 *----------
	 */
	V = random_fract();
	p = 1.0 - (double) k / (double) K;
	while (V < p)
	{
		/* skip */
		bs->t++;
		K--;					/* keep K == N - t */

		/* adjust p to be new cutoff point in reduced range */
		p *= 1.0 - (double) k / (double) K;
	}

	/* select */
	bs->m++;
	return bs->t++;
}

/*
 * acquire_sample_rows -- acquire a random sample of rows from the table
 *
 * As of May 2004 we use a new two-stage method:  Stage one selects up
 * to targrows random blocks (or all blocks, if there aren't so many).
 * Stage two scans these blocks and uses the Vitter algorithm to create
 * a random sample of targrows rows (or less, if there are less in the
 * sample of blocks).  The two stages are executed simultaneously: each
 * block is processed as soon as stage one returns its number and while
 * the rows are read stage two controls which ones are to be inserted
 * into the sample.
 *
 * Although every row has an equal chance of ending up in the final
 * sample, this sampling method is not perfect: not every possible
 * sample has an equal chance of being selected.  For large relations
 * the number of different blocks represented by the sample tends to be
 * too small.  We can live with that for now.  Improvements are welcome.
 *
 * We also estimate the total numbers of live and dead rows in the table,
 * and return them into *totalrows and *totaldeadrows, respectively.
 *
 * An important property of this sampling method is that because we do
 * look at a statistically unbiased set of blocks, we should get
 * unbiased estimates of the average numbers of live and dead rows per
 * block.  The previous sampling method put too much credence in the row
 * density near the start of the table.
 *
 * The returned list of tuples is in order by physical position in the table.
 * (We will rely on this later to derive correlation estimates.)
 */
static int
acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
					double *totalrows, double *totaldeadrows)
{
	int			numrows = 0;	/* # rows collected */
	double		liverows = 0;	/* # rows seen */
	double		deadrows = 0;	/* # dead rows seen */
	double		rowstoskip = -1;	/* -1 means not set yet */
	BlockNumber totalblocks;
	BlockSamplerData bs;
	double		rstate;

	Assert(targrows > 1);

	totalblocks = RelationGetNumberOfBlocks(onerel);

	/* Prepare for sampling block numbers */
	BlockSampler_Init(&bs, totalblocks, targrows);
	/* Prepare for sampling rows */
	rstate = init_selection_state(targrows);

	/* Outer loop over blocks to sample */
	while (BlockSampler_HasMore(&bs))
	{
		BlockNumber targblock = BlockSampler_Next(&bs);
		Buffer		targbuffer;
		Page		targpage;
		OffsetNumber targoffset,
					maxoffset;

		vacuum_delay_point();

		/*
		 * We must maintain a pin on the target page's buffer to ensure
		 * that the maxoffset value stays good (else concurrent VACUUM
		 * might delete tuples out from under us).	Hence, pin the page
		 * until we are done looking at it.  We don't maintain a lock on
		 * the page, so tuples could get added to it, but we ignore such
		 * tuples.
		 */
		targbuffer = ReadBuffer(onerel, targblock);
		LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
		targpage = BufferGetPage(targbuffer);
		maxoffset = PageGetMaxOffsetNumber(targpage);
		LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK);

		/* Inner loop over all tuples on the selected page */
		for (targoffset = FirstOffsetNumber; targoffset <= maxoffset; targoffset++)
		{
			HeapTupleData targtuple;

			ItemPointerSet(&targtuple.t_self, targblock, targoffset);
			/* We use heap_release_fetch to avoid useless bufmgr traffic */
			if (heap_release_fetch(onerel, SnapshotNow,
								   &targtuple, &targbuffer,
								   true, NULL))
			{
				/*
				 * The first targrows live rows are simply copied into the
				 * reservoir. Then we start replacing tuples in the sample
				 * until we reach the end of the relation.	This algorithm
				 * is from Jeff Vitter's paper (see full citation below).
				 * It works by repeatedly computing the number of tuples
				 * to skip before selecting a tuple, which replaces a
				 * randomly chosen element of the reservoir (current set
				 * of tuples).	At all times the reservoir is a true
				 * random sample of the tuples we've passed over so far,
				 * so when we fall off the end of the relation we're done.
				 */
				if (numrows < targrows)
					rows[numrows++] = heap_copytuple(&targtuple);
				else
				{
					/*
					 * t in Vitter's paper is the number of records
					 * already processed.  If we need to compute a new S
					 * value, we must use the not-yet-incremented value of
					 * liverows as t.
					 */
					if (rowstoskip < 0)
						rowstoskip = get_next_S(liverows, targrows, &rstate);

					if (rowstoskip <= 0)
					{
						/*
						 * Found a suitable tuple, so save it, replacing
						 * one old tuple at random
						 */
						int			k = (int) (targrows * random_fract());

						Assert(k >= 0 && k < targrows);
						heap_freetuple(rows[k]);
						rows[k] = heap_copytuple(&targtuple);
					}

					rowstoskip -= 1;
				}

				liverows += 1;
			}
			else
			{
				/* Count dead rows, but not empty slots */
				if (targtuple.t_data != NULL)
					deadrows += 1;
			}
		}

		/* Now release the pin on the page */
		ReleaseBuffer(targbuffer);
	}

	/*
	 * If we didn't find as many tuples as we wanted then we're done. No
	 * sort is needed, since they're already in order.
	 *
	 * Otherwise we need to sort the collected tuples by position
	 * (itempointer).  It's not worth worrying about corner cases where
	 * the tuples are already sorted.
	 */
	if (numrows == targrows)
		qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);

	/*
	 * Estimate total numbers of rows in relation.
	 */
	if (bs.m > 0)
	{
		*totalrows = floor((liverows * totalblocks) / bs.m + 0.5);
		*totaldeadrows = floor((deadrows * totalblocks) / bs.m + 0.5);
	}
	else
	{
		*totalrows = 0.0;
		*totaldeadrows = 0.0;
	}

	/*
	 * Emit some interesting relation info
	 */
	ereport(elevel,
			(errmsg("\"%s\": scanned %d of %u pages, "
					"containing %.0f live rows and %.0f dead rows; "
					"%d rows in sample, %.0f estimated total rows",
					RelationGetRelationName(onerel),
					bs.m, totalblocks,
					liverows, deadrows,
					numrows, *totalrows)));

	return numrows;
}

/* Select a random value R uniformly distributed in 0 < R < 1 */
static double
random_fract(void)
{
	long		z;

	/* random() can produce endpoint values, try again if so */
	do
	{
		z = random();
	} while (z <= 0 || z >= MAX_RANDOM_VALUE);
	return (double) z / (double) MAX_RANDOM_VALUE;
}

/*
 * These two routines embody Algorithm Z from "Random sampling with a
 * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
 * (Mar. 1985), Pages 37-57.  Vitter describes his algorithm in terms
 * of the count S of records to skip before processing another record.
 * It is computed primarily based on t, the number of records already read.
 * The only extra state needed between calls is W, a random state variable.
 *
 * init_selection_state computes the initial W value.
 *
 * Given that we've already read t records (t >= n), get_next_S
 * determines the number of records to skip before the next record is
 * processed.
 */
static double
init_selection_state(int n)
{
	/* Initial value of W (for use when Algorithm Z is first applied) */
	return exp(-log(random_fract()) / n);
}

static double
get_next_S(double t, int n, double *stateptr)
{
	double		S;

	/* The magic constant here is T from Vitter's paper */
	if (t <= (22.0 * n))
	{
		/* Process records using Algorithm X until t is large enough */
		double		V,
					quot;

		V = random_fract();		/* Generate V */
		S = 0;
		t += 1;
		/* Note: "num" in Vitter's code is always equal to t - n */
		quot = (t - (double) n) / t;
		/* Find min S satisfying (4.1) */
		while (quot > V)
		{
			S += 1;
			t += 1;
			quot *= (t - (double) n) / t;
		}
	}
	else
	{
		/* Now apply Algorithm Z */
		double		W = *stateptr;
		double		term = t - (double) n + 1;

		for (;;)
		{
			double		numer,
						numer_lim,
						denom;
			double		U,
						X,
						lhs,
						rhs,
						y,
						tmp;

			/* Generate U and X */
			U = random_fract();
			X = t * (W - 1.0);
			S = floor(X);		/* S is tentatively set to floor(X) */
			/* Test if U <= h(S)/cg(X) in the manner of (6.3) */
			tmp = (t + 1) / term;
			lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
			rhs = (((t + X) / (term + S)) * term) / t;
			if (lhs <= rhs)
			{
				W = rhs / lhs;
				break;
			}
			/* Test if U <= f(S)/cg(X) */
			y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
			if ((double) n < S)
			{
				denom = t;
				numer_lim = term + S;
			}
			else
			{
				denom = t - (double) n + S;
				numer_lim = t + 1;
			}
			for (numer = t + S; numer >= numer_lim; numer -= 1)
			{
				y *= numer / denom;
				denom -= 1;
			}
			W = exp(-log(random_fract()) / n);	/* Generate W in advance */
			if (exp(log(y) / n) <= (t + X) / t)
				break;
		}
		*stateptr = W;
	}
	return S;
}

/*
 * qsort comparator for sorting rows[] array
 */
static int
compare_rows(const void *a, const void *b)
{
	HeapTuple	ha = *(HeapTuple *) a;
	HeapTuple	hb = *(HeapTuple *) b;
	BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
	OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
	BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
	OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);

	if (ba < bb)
		return -1;
	if (ba > bb)
		return 1;
	if (oa < ob)
		return -1;
	if (oa > ob)
		return 1;
	return 0;
}


/*
 *	update_attstats() -- update attribute statistics for one relation
 *
 *		Statistics are stored in several places: the pg_class row for the
 *		relation has stats about the whole relation, and there is a
 *		pg_statistic row for each (non-system) attribute that has ever
 *		been analyzed.	The pg_class values are updated by VACUUM, not here.
 *
 *		pg_statistic rows are just added or updated normally.  This means
 *		that pg_statistic will probably contain some deleted rows at the
 *		completion of a vacuum cycle, unless it happens to get vacuumed last.
 *
 *		To keep things simple, we punt for pg_statistic, and don't try
 *		to compute or store rows for pg_statistic itself in pg_statistic.
 *		This could possibly be made to work, but it's not worth the trouble.
 *		Note analyze_rel() has seen to it that we won't come here when
 *		vacuuming pg_statistic itself.
 *
 *		Note: if two backends concurrently try to analyze the same relation,
 *		the second one is likely to fail here with a "tuple concurrently
 *		updated" error.  This is slightly annoying, but no real harm is done.
 *		We could prevent the problem by using a stronger lock on the
 *		relation for ANALYZE (ie, ShareUpdateExclusiveLock instead
 *		of AccessShareLock); but that cure seems worse than the disease,
 *		especially now that ANALYZE doesn't start a new transaction
 *		for each relation.	The lock could be held for a long time...
 */
static void
update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats)
{
	Relation	sd;
	int			attno;

	if (natts <= 0)
		return;					/* nothing to do */

	sd = heap_open(StatisticRelationId, RowExclusiveLock);

	for (attno = 0; attno < natts; attno++)
	{
		VacAttrStats *stats = vacattrstats[attno];
		HeapTuple	stup,
					oldtup;
		int			i,
					k,
					n;
		Datum		values[Natts_pg_statistic];
		char		nulls[Natts_pg_statistic];
		char		replaces[Natts_pg_statistic];

		/* Ignore attr if we weren't able to collect stats */
		if (!stats->stats_valid)
			continue;

		/*
		 * Construct a new pg_statistic tuple
		 */
		for (i = 0; i < Natts_pg_statistic; ++i)
		{
			nulls[i] = ' ';
			replaces[i] = 'r';
		}

		i = 0;
		values[i++] = ObjectIdGetDatum(relid);	/* starelid */
		values[i++] = Int16GetDatum(stats->attr->attnum);		/* staattnum */
		values[i++] = Float4GetDatum(stats->stanullfrac);		/* stanullfrac */
		values[i++] = Int32GetDatum(stats->stawidth);	/* stawidth */
		values[i++] = Float4GetDatum(stats->stadistinct);		/* stadistinct */
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = Int16GetDatum(stats->stakind[k]);		/* stakindN */
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = ObjectIdGetDatum(stats->staop[k]);	/* staopN */
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			int			nnum = stats->numnumbers[k];

			if (nnum > 0)
			{
				Datum	   *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
				ArrayType  *arry;

				for (n = 0; n < nnum; n++)
					numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
				/* XXX knows more than it should about type float4: */
				arry = construct_array(numdatums, nnum,
									   FLOAT4OID,
									   sizeof(float4), false, 'i');
				values[i++] = PointerGetDatum(arry);	/* stanumbersN */
			}
			else
			{
				nulls[i] = 'n';
				values[i++] = (Datum) 0;
			}
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			if (stats->numvalues[k] > 0)
			{
				ArrayType  *arry;

				arry = construct_array(stats->stavalues[k],
									   stats->numvalues[k],
									   stats->attr->atttypid,
									   stats->attrtype->typlen,
									   stats->attrtype->typbyval,
									   stats->attrtype->typalign);
				values[i++] = PointerGetDatum(arry);	/* stavaluesN */
			}
			else
			{
				nulls[i] = 'n';
				values[i++] = (Datum) 0;
			}
		}

		/* Is there already a pg_statistic tuple for this attribute? */
		oldtup = SearchSysCache(STATRELATT,
								ObjectIdGetDatum(relid),
								Int16GetDatum(stats->attr->attnum),
								0, 0);

		if (HeapTupleIsValid(oldtup))
		{
			/* Yes, replace it */
			stup = heap_modifytuple(oldtup,
									RelationGetDescr(sd),
									values,
									nulls,
									replaces);
			ReleaseSysCache(oldtup);
			simple_heap_update(sd, &stup->t_self, stup);
		}
		else
		{
			/* No, insert new tuple */
			stup = heap_formtuple(sd->rd_att, values, nulls);
			simple_heap_insert(sd, stup);
		}

		/* update indexes too */
		CatalogUpdateIndexes(sd, stup);

		heap_freetuple(stup);
	}

	heap_close(sd, RowExclusiveLock);
}

/*
 * Standard fetch function for use by compute_stats subroutines.
 *
 * This exists to provide some insulation between compute_stats routines
 * and the actual storage of the sample data.
 */
static Datum
std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			attnum = stats->tupattnum;
	HeapTuple	tuple = stats->rows[rownum];
	TupleDesc	tupDesc = stats->tupDesc;

	return heap_getattr(tuple, attnum, tupDesc, isNull);
}

/*
 * Fetch function for analyzing index expressions.
 *
 * We have not bothered to construct index tuples, instead the data is
 * just in Datum arrays.
 */
static Datum
ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			i;

	/* exprvals and exprnulls are already offset for proper column */
	i = rownum * stats->rowstride;
	*isNull = stats->exprnulls[i];
	return stats->exprvals[i];
}


/*==========================================================================
 *
 * Code below this point represents the "standard" type-specific statistics
 * analysis algorithms.  This code can be replaced on a per-data-type basis
 * by setting a nonzero value in pg_type.typanalyze.
 *
 *==========================================================================
 */


/*
 * To avoid consuming too much memory during analysis and/or too much space
 * in the resulting pg_statistic rows, we ignore varlena datums that are wider
 * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
 * and distinct-value calculations since a wide value is unlikely to be
 * duplicated at all, much less be a most-common value.  For the same reason,
 * ignoring wide values will not affect our estimates of histogram bin
 * boundaries very much.
 */
#define WIDTH_THRESHOLD  1024

#define swapInt(a,b)	do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
#define swapDatum(a,b)	do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)

/*
 * Extra information used by the default analysis routines
 */
typedef struct
{
	Oid			eqopr;			/* '=' operator for datatype, if any */
	Oid			eqfunc;			/* and associated function */
	Oid			ltopr;			/* '<' operator for datatype, if any */
} StdAnalyzeData;

typedef struct
{
	Datum		value;			/* a data value */
	int			tupno;			/* position index for tuple it came from */
} ScalarItem;

typedef struct
{
	int			count;			/* # of duplicates */
	int			first;			/* values[] index of first occurrence */
} ScalarMCVItem;


/* context information for compare_scalars() */
static FmgrInfo *datumCmpFn;
static SortFunctionKind datumCmpFnKind;
static int *datumCmpTupnoLink;


static void compute_minimal_stats(VacAttrStatsP stats,
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows);
static void compute_scalar_stats(VacAttrStatsP stats,
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows);
static int	compare_scalars(const void *a, const void *b);
static int	compare_mcvs(const void *a, const void *b);


/*
 * std_typanalyze -- the default type-specific typanalyze function
 */
static bool
std_typanalyze(VacAttrStats *stats)
{
	Form_pg_attribute attr = stats->attr;
	Operator	func_operator;
	Oid			eqopr = InvalidOid;
	Oid			eqfunc = InvalidOid;
	Oid			ltopr = InvalidOid;
	StdAnalyzeData *mystats;

	/* If the attstattarget column is negative, use the default value */
	/* NB: it is okay to scribble on stats->attr since it's a copy */
	if (attr->attstattarget < 0)
		attr->attstattarget = default_statistics_target;

	/* If column has no "=" operator, we can't do much of anything */
	func_operator = equality_oper(attr->atttypid, true);
	if (func_operator != NULL)
	{
		eqopr = oprid(func_operator);
		eqfunc = oprfuncid(func_operator);
		ReleaseSysCache(func_operator);
	}
	if (!OidIsValid(eqfunc))
		return false;

	/* Is there a "<" operator with suitable semantics? */
	func_operator = ordering_oper(attr->atttypid, true);
	if (func_operator != NULL)
	{
		ltopr = oprid(func_operator);
		ReleaseSysCache(func_operator);
	}

	/* Save the operator info for compute_stats routines */
	mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
	mystats->eqopr = eqopr;
	mystats->eqfunc = eqfunc;
	mystats->ltopr = ltopr;
	stats->extra_data = mystats;

	/*
	 * Determine which standard statistics algorithm to use
	 */
	if (OidIsValid(ltopr))
	{
		/* Seems to be a scalar datatype */
		stats->compute_stats = compute_scalar_stats;
		/*--------------------
		 * The following choice of minrows is based on the paper
		 * "Random sampling for histogram construction: how much is enough?"
		 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
		 * Proceedings of ACM SIGMOD International Conference on Management
		 * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
		 * says that for table size n, histogram size k, maximum relative
		 * error in bin size f, and error probability gamma, the minimum
		 * random sample size is
		 *		r = 4 * k * ln(2*n/gamma) / f^2
		 * Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain
		 *		r = 305.82 * k
		 * Note that because of the log function, the dependence on n is
		 * quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59
		 * bin size error with probability 0.99.  So there's no real need to
		 * scale for n, which is a good thing because we don't necessarily
		 * know it at this point.
		 *--------------------
		 */
		stats->minrows = 300 * attr->attstattarget;
	}
	else
	{
		/* Can't do much but the minimal stuff */
		stats->compute_stats = compute_minimal_stats;
		/* Might as well use the same minrows as above */
		stats->minrows = 300 * attr->attstattarget;
	}

	return true;
}

/*
 *	compute_minimal_stats() -- compute minimal column statistics
 *
 *	We use this when we can find only an "=" operator for the datatype.
 *
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, and the (estimated) number of distinct values.
 *
 *	The most common values are determined by brute force: we keep a list
 *	of previously seen values, ordered by number of times seen, as we scan
 *	the samples.  A newly seen value is inserted just after the last
 *	multiply-seen value, causing the bottommost (oldest) singly-seen value
 *	to drop off the list.  The accuracy of this method, and also its cost,
 *	depend mainly on the length of the list we are willing to keep.
 */
static void
compute_minimal_stats(VacAttrStatsP stats,
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows)
{
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attr->attbyval &&
							  stats->attr->attlen == -1);
	bool		is_varwidth = (!stats->attr->attbyval &&
							   stats->attr->attlen < 0);
	FmgrInfo	f_cmpeq;
	typedef struct
	{
		Datum		value;
		int			count;
	} TrackItem;
	TrackItem  *track;
	int			track_cnt,
				track_max;
	int			num_mcv = stats->attr->attstattarget;
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;

	/*
	 * We track up to 2*n values for an n-element MCV list; but at least
	 * 10
	 */
	track_max = 2 * num_mcv;
	if (track_max < 10)
		track_max = 10;
	track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
	track_cnt = 0;

	fmgr_info(mystats->eqfunc, &f_cmpeq);

	for (i = 0; i < samplerows; i++)
	{
		Datum		value;
		bool		isnull;
		bool		match;
		int			firstcount1,
					j;

		vacuum_delay_point();

		value = fetchfunc(stats, i, &isnull);

		/* Check for null/nonnull */
		if (isnull)
		{
			null_cnt++;
			continue;
		}
		nonnull_cnt++;

		/*
		 * If it's a variable-width field, add up widths for average width
		 * calculation.  Note that if the value is toasted, we use the
		 * toasted width.  We don't bother with this calculation if it's a
		 * fixed-width type.
		 */
		if (is_varlena)
		{
			total_width += VARSIZE(DatumGetPointer(value));

			/*
			 * If the value is toasted, we want to detoast it just once to
			 * avoid repeated detoastings and resultant excess memory
			 * usage during the comparisons.  Also, check to see if the
			 * value is excessively wide, and if so don't detoast at all
			 * --- just ignore the value.
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
			{
				toowide_cnt++;
				continue;
			}
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
		}
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}

		/*
		 * See if the value matches anything we're already tracking.
		 */
		match = false;
		firstcount1 = track_cnt;
		for (j = 0; j < track_cnt; j++)
		{
			if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value)))
			{
				match = true;
				break;
			}
			if (j < firstcount1 && track[j].count == 1)
				firstcount1 = j;
		}

		if (match)
		{
			/* Found a match */
			track[j].count++;
			/* This value may now need to "bubble up" in the track list */
			while (j > 0 && track[j].count > track[j - 1].count)
			{
				swapDatum(track[j].value, track[j - 1].value);
				swapInt(track[j].count, track[j - 1].count);
				j--;
			}
		}
		else
		{
			/* No match.  Insert at head of count-1 list */
			if (track_cnt < track_max)
				track_cnt++;
			for (j = track_cnt - 1; j > firstcount1; j--)
			{
				track[j].value = track[j - 1].value;
				track[j].count = track[j - 1].count;
			}
			if (firstcount1 < track_cnt)
			{
				track[firstcount1].value = value;
				track[firstcount1].count = 1;
			}
		}
	}

	/* We can only compute real stats if we found some non-null values. */
	if (nonnull_cnt > 0)
	{
		int			nmultiple,
					summultiple;

		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		if (is_varwidth)
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;

		/* Count the number of values we found multiple times */
		summultiple = 0;
		for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
		{
			if (track[nmultiple].count == 1)
				break;
			summultiple += track[nmultiple].count;
		}

		if (nmultiple == 0)
		{
			/* If we found no repeated values, assume it's a unique column */
			stats->stadistinct = -1.0;
		}
		else if (track_cnt < track_max && toowide_cnt == 0 &&
				 nmultiple == track_cnt)
		{
			/*
			 * Our track list includes every value in the sample, and
			 * every value appeared more than once.  Assume the column has
			 * just these values.
			 */
			stats->stadistinct = track_cnt;
		}
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
			 * We assume (not very reliably!) that all the multiply-occurring
			 * values are reflected in the final track[] list, and the other
			 * nonnull values all appeared but once.  (XXX this usually
			 * results in a drastic overestimate of ndistinct.	Can we do
			 * any better?)
			 *----------
			 */
			int			f1 = nonnull_cnt - summultiple;
			int			d = f1 + nmultiple;
			double		numer,
						denom,
						stadistinct;

			numer = (double) samplerows *(double) d;

			denom = (double) (samplerows - f1) +
				(double) f1 *(double) samplerows / totalrows;

			stadistinct = numer / denom;
			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < (double) d)
				stadistinct = (double) d;
			if (stadistinct > totalrows)
				stadistinct = totalrows;
			stats->stadistinct = floor(stadistinct + 0.5);
		}

		/*
		 * If we estimated the number of distinct values at more than 10%
		 * of the total row count (a very arbitrary limit), then assume
		 * that stadistinct should scale with the row count rather than be
		 * a fixed value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
			stats->stadistinct = -(stats->stadistinct / totalrows);

		/*
		 * Decide how many values are worth storing as most-common values.
		 * If we are able to generate a complete MCV list (all the values
		 * in the sample will fit, and we think these are all the ones in
		 * the table), then do so.	Otherwise, store only those values
		 * that are significantly more common than the (estimated)
		 * average. We set the threshold rather arbitrarily at 25% more
		 * than average, with at least 2 instances in the sample.
		 */
		if (track_cnt < track_max && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
			double		ndistinct = stats->stadistinct;
			double		avgcount,
						mincount;

			if (ndistinct < 0)
				ndistinct = -ndistinct * totalrows;
			/* estimate # of occurrences in sample of a typical value */
			avgcount = (double) samplerows / ndistinct;
			/* set minimum threshold count to store a value */
			mincount = avgcount * 1.25;
			if (mincount < 2)
				mincount = 2;
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;
			for (i = 0; i < num_mcv; i++)
			{
				if (track[i].count < mincount)
				{
					num_mcv = i;
					break;
				}
			}
		}

		/* Generate MCV slot entry */
		if (num_mcv > 0)
		{
			MemoryContext old_context;
			Datum	   *mcv_values;
			float4	   *mcv_freqs;

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(track[i].value,
										  stats->attr->attbyval,
										  stats->attr->attlen);
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCV;
			stats->staop[0] = mystats->eqopr;
			stats->stanumbers[0] = mcv_freqs;
			stats->numnumbers[0] = num_mcv;
			stats->stavalues[0] = mcv_values;
			stats->numvalues[0] = num_mcv;
		}
	}
	else if (null_cnt > 0)
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		if (is_varwidth)
			stats->stawidth = 0;				/* "unknown" */
		else
			stats->stawidth = stats->attrtype->typlen;
		stats->stadistinct = 0.0;				/* "unknown" */
	}

	/* We don't need to bother cleaning up any of our temporary palloc's */
}


/*
 *	compute_scalar_stats() -- compute column statistics
 *
 *	We use this when we can find "=" and "<" operators for the datatype.
 *
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, the (estimated) number of distinct values, the
 *	distribution histogram, and the correlation of physical to logical order.
 *
 *	The desired stats can be determined fairly easily after sorting the
 *	data values into order.
 */
static void
compute_scalar_stats(VacAttrStatsP stats,
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows)
{
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attr->attbyval &&
							  stats->attr->attlen == -1);
	bool		is_varwidth = (!stats->attr->attbyval &&
							   stats->attr->attlen < 0);
	double		corr_xysum;
	RegProcedure cmpFn;
	SortFunctionKind cmpFnKind;
	FmgrInfo	f_cmpfn;
	ScalarItem *values;
	int			values_cnt = 0;
	int		   *tupnoLink;
	ScalarMCVItem *track;
	int			track_cnt = 0;
	int			num_mcv = stats->attr->attstattarget;
	int			num_bins = stats->attr->attstattarget;
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;

	values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
	tupnoLink = (int *) palloc(samplerows * sizeof(int));
	track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));

	SelectSortFunction(mystats->ltopr, &cmpFn, &cmpFnKind);
	fmgr_info(cmpFn, &f_cmpfn);

	/* Initial scan to find sortable values */
	for (i = 0; i < samplerows; i++)
	{
		Datum		value;
		bool		isnull;

		vacuum_delay_point();

		value = fetchfunc(stats, i, &isnull);

		/* Check for null/nonnull */
		if (isnull)
		{
			null_cnt++;
			continue;
		}
		nonnull_cnt++;

		/*
		 * If it's a variable-width field, add up widths for average width
		 * calculation.  Note that if the value is toasted, we use the
		 * toasted width.  We don't bother with this calculation if it's a
		 * fixed-width type.
		 */
		if (is_varlena)
		{
			total_width += VARSIZE(DatumGetPointer(value));

			/*
			 * If the value is toasted, we want to detoast it just once to
			 * avoid repeated detoastings and resultant excess memory
			 * usage during the comparisons.  Also, check to see if the
			 * value is excessively wide, and if so don't detoast at all
			 * --- just ignore the value.
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
			{
				toowide_cnt++;
				continue;
			}
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
		}
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}

		/* Add it to the list to be sorted */
		values[values_cnt].value = value;
		values[values_cnt].tupno = values_cnt;
		tupnoLink[values_cnt] = values_cnt;
		values_cnt++;
	}

	/* We can only compute real stats if we found some sortable values. */
	if (values_cnt > 0)
	{
		int			ndistinct,	/* # distinct values in sample */
					nmultiple,	/* # that appear multiple times */
					num_hist,
					dups_cnt;
		int			slot_idx = 0;

		/* Sort the collected values */
		datumCmpFn = &f_cmpfn;
		datumCmpFnKind = cmpFnKind;
		datumCmpTupnoLink = tupnoLink;
		qsort((void *) values, values_cnt,
			  sizeof(ScalarItem), compare_scalars);

		/*
		 * Now scan the values in order, find the most common ones, and
		 * also accumulate ordering-correlation statistics.
		 *
		 * To determine which are most common, we first have to count the
		 * number of duplicates of each value.	The duplicates are
		 * adjacent in the sorted list, so a brute-force approach is to
		 * compare successive datum values until we find two that are not
		 * equal. However, that requires N-1 invocations of the datum
		 * comparison routine, which are completely redundant with work
		 * that was done during the sort.  (The sort algorithm must at
		 * some point have compared each pair of items that are adjacent
		 * in the sorted order; otherwise it could not know that it's
		 * ordered the pair correctly.) We exploit this by having
		 * compare_scalars remember the highest tupno index that each
		 * ScalarItem has been found equal to.	At the end of the sort, a
		 * ScalarItem's tupnoLink will still point to itself if and only
		 * if it is the last item of its group of duplicates (since the
		 * group will be ordered by tupno).
		 */
		corr_xysum = 0;
		ndistinct = 0;
		nmultiple = 0;
		dups_cnt = 0;
		for (i = 0; i < values_cnt; i++)
		{
			int			tupno = values[i].tupno;

			corr_xysum += ((double) i) * ((double) tupno);
			dups_cnt++;
			if (tupnoLink[tupno] == tupno)
			{
				/* Reached end of duplicates of this value */
				ndistinct++;
				if (dups_cnt > 1)
				{
					nmultiple++;
					if (track_cnt < num_mcv ||
						dups_cnt > track[track_cnt - 1].count)
					{
						/*
						 * Found a new item for the mcv list; find its
						 * position, bubbling down old items if needed.
						 * Loop invariant is that j points at an empty/
						 * replaceable slot.
						 */
						int			j;

						if (track_cnt < num_mcv)
							track_cnt++;
						for (j = track_cnt - 1; j > 0; j--)
						{
							if (dups_cnt <= track[j - 1].count)
								break;
							track[j].count = track[j - 1].count;
							track[j].first = track[j - 1].first;
						}
						track[j].count = dups_cnt;
						track[j].first = i + 1 - dups_cnt;
					}
				}
				dups_cnt = 0;
			}
		}

		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		if (is_varwidth)
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;

		if (nmultiple == 0)
		{
			/* If we found no repeated values, assume it's a unique column */
			stats->stadistinct = -1.0;
		}
		else if (toowide_cnt == 0 && nmultiple == ndistinct)
		{
			/*
			 * Every value in the sample appeared more than once.  Assume
			 * the column has just these values.
			 */
			stats->stadistinct = ndistinct;
		}
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
			 * Overwidth values are assumed to have been distinct.
			 *----------
			 */
			int			f1 = ndistinct - nmultiple + toowide_cnt;
			int			d = f1 + nmultiple;
			double		numer,
						denom,
						stadistinct;

			numer = (double) samplerows *(double) d;

			denom = (double) (samplerows - f1) +
				(double) f1 *(double) samplerows / totalrows;

			stadistinct = numer / denom;
			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < (double) d)
				stadistinct = (double) d;
			if (stadistinct > totalrows)
				stadistinct = totalrows;
			stats->stadistinct = floor(stadistinct + 0.5);
		}

		/*
		 * If we estimated the number of distinct values at more than 10%
		 * of the total row count (a very arbitrary limit), then assume
		 * that stadistinct should scale with the row count rather than be
		 * a fixed value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
			stats->stadistinct = -(stats->stadistinct / totalrows);

		/*
		 * Decide how many values are worth storing as most-common values.
		 * If we are able to generate a complete MCV list (all the values
		 * in the sample will fit, and we think these are all the ones in
		 * the table), then do so.	Otherwise, store only those values
		 * that are significantly more common than the (estimated)
		 * average. We set the threshold rather arbitrarily at 25% more
		 * than average, with at least 2 instances in the sample.  Also,
		 * we won't suppress values that have a frequency of at least 1/K
		 * where K is the intended number of histogram bins; such values
		 * might otherwise cause us to emit duplicate histogram bin
		 * boundaries.
		 */
		if (track_cnt == ndistinct && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
			double		ndistinct = stats->stadistinct;
			double		avgcount,
						mincount,
						maxmincount;

			if (ndistinct < 0)
				ndistinct = -ndistinct * totalrows;
			/* estimate # of occurrences in sample of a typical value */
			avgcount = (double) samplerows / ndistinct;
			/* set minimum threshold count to store a value */
			mincount = avgcount * 1.25;
			if (mincount < 2)
				mincount = 2;
			/* don't let threshold exceed 1/K, however */
			maxmincount = (double) samplerows / (double) num_bins;
			if (mincount > maxmincount)
				mincount = maxmincount;
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;
			for (i = 0; i < num_mcv; i++)
			{
				if (track[i].count < mincount)
				{
					num_mcv = i;
					break;
				}
			}
		}

		/* Generate MCV slot entry */
		if (num_mcv > 0)
		{
			MemoryContext old_context;
			Datum	   *mcv_values;
			float4	   *mcv_freqs;

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(values[track[i].first].value,
										  stats->attr->attbyval,
										  stats->attr->attlen);
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
			stats->staop[slot_idx] = mystats->eqopr;
			stats->stanumbers[slot_idx] = mcv_freqs;
			stats->numnumbers[slot_idx] = num_mcv;
			stats->stavalues[slot_idx] = mcv_values;
			stats->numvalues[slot_idx] = num_mcv;
			slot_idx++;
		}

		/*
		 * Generate a histogram slot entry if there are at least two
		 * distinct values not accounted for in the MCV list.  (This
		 * ensures the histogram won't collapse to empty or a singleton.)
		 */
		num_hist = ndistinct - num_mcv;
		if (num_hist > num_bins)
			num_hist = num_bins + 1;
		if (num_hist >= 2)
		{
			MemoryContext old_context;
			Datum	   *hist_values;
			int			nvals;

			/* Sort the MCV items into position order to speed next loop */
			qsort((void *) track, num_mcv,
				  sizeof(ScalarMCVItem), compare_mcvs);

			/*
			 * Collapse out the MCV items from the values[] array.
			 *
			 * Note we destroy the values[] array here... but we don't need
			 * it for anything more.  We do, however, still need
			 * values_cnt. nvals will be the number of remaining entries
			 * in values[].
			 */
			if (num_mcv > 0)
			{
				int			src,
							dest;
				int			j;

				src = dest = 0;
				j = 0;			/* index of next interesting MCV item */
				while (src < values_cnt)
				{
					int			ncopy;

					if (j < num_mcv)
					{
						int			first = track[j].first;

						if (src >= first)
						{
							/* advance past this MCV item */
							src = first + track[j].count;
							j++;
							continue;
						}
						ncopy = first - src;
					}
					else
						ncopy = values_cnt - src;
					memmove(&values[dest], &values[src],
							ncopy * sizeof(ScalarItem));
					src += ncopy;
					dest += ncopy;
				}
				nvals = dest;
			}
			else
				nvals = values_cnt;
			Assert(nvals >= num_hist);

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
			for (i = 0; i < num_hist; i++)
			{
				int			pos;

				pos = (i * (nvals - 1)) / (num_hist - 1);
				hist_values[i] = datumCopy(values[pos].value,
										   stats->attr->attbyval,
										   stats->attr->attlen);
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
			stats->staop[slot_idx] = mystats->ltopr;
			stats->stavalues[slot_idx] = hist_values;
			stats->numvalues[slot_idx] = num_hist;
			slot_idx++;
		}

		/* Generate a correlation entry if there are multiple values */
		if (values_cnt > 1)
		{
			MemoryContext old_context;
			float4	   *corrs;
			double		corr_xsum,
						corr_x2sum;

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			corrs = (float4 *) palloc(sizeof(float4));
			MemoryContextSwitchTo(old_context);

			/*----------
			 * Since we know the x and y value sets are both
			 *		0, 1, ..., values_cnt-1
			 * we have sum(x) = sum(y) =
			 *		(values_cnt-1)*values_cnt / 2
			 * and sum(x^2) = sum(y^2) =
			 *		(values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
			 *----------
			 */
			corr_xsum = ((double) (values_cnt - 1)) *
				((double) values_cnt) / 2.0;
			corr_x2sum = ((double) (values_cnt - 1)) *
				((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;

			/* And the correlation coefficient reduces to */
			corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
				(values_cnt * corr_x2sum - corr_xsum * corr_xsum);

			stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
			stats->staop[slot_idx] = mystats->ltopr;
			stats->stanumbers[slot_idx] = corrs;
			stats->numnumbers[slot_idx] = 1;
			slot_idx++;
		}
	}
	else if (nonnull_cnt == 0 && null_cnt > 0)
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		if (is_varwidth)
			stats->stawidth = 0;				/* "unknown" */
		else
			stats->stawidth = stats->attrtype->typlen;
		stats->stadistinct = 0.0;				/* "unknown" */
	}

	/* We don't need to bother cleaning up any of our temporary palloc's */
}

/*
 * qsort comparator for sorting ScalarItems
 *
 * Aside from sorting the items, we update the datumCmpTupnoLink[] array
 * whenever two ScalarItems are found to contain equal datums.	The array
 * is indexed by tupno; for each ScalarItem, it contains the highest
 * tupno that that item's datum has been found to be equal to.  This allows
 * us to avoid additional comparisons in compute_scalar_stats().
 */
static int
compare_scalars(const void *a, const void *b)
{
	Datum		da = ((ScalarItem *) a)->value;
	int			ta = ((ScalarItem *) a)->tupno;
	Datum		db = ((ScalarItem *) b)->value;
	int			tb = ((ScalarItem *) b)->tupno;
	int32		compare;

	compare = ApplySortFunction(datumCmpFn, datumCmpFnKind,
								da, false, db, false);
	if (compare != 0)
		return compare;

	/*
	 * The two datums are equal, so update datumCmpTupnoLink[].
	 */
	if (datumCmpTupnoLink[ta] < tb)
		datumCmpTupnoLink[ta] = tb;
	if (datumCmpTupnoLink[tb] < ta)
		datumCmpTupnoLink[tb] = ta;

	/*
	 * For equal datums, sort by tupno
	 */
	return ta - tb;
}

/*
 * qsort comparator for sorting ScalarMCVItems by position
 */
static int
compare_mcvs(const void *a, const void *b)
{
	int			da = ((ScalarMCVItem *) a)->first;
	int			db = ((ScalarMCVItem *) b)->first;

	return da - db;
}