summaryrefslogtreecommitdiff
path: root/src/backend/commands/analyze.c
blob: c8192353ebe2643858ef9123a82c07c598523fc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
/*-------------------------------------------------------------------------
 *
 * analyze.c
 *	  the Postgres statistics generator
 *
 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/commands/analyze.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/genam.h"
#include "access/heapam.h"
#include "access/multixact.h"
#include "access/relation.h"
#include "access/sysattr.h"
#include "access/table.h"
#include "access/transam.h"
#include "access/tupconvert.h"
#include "access/tuptoaster.h"
#include "access/visibilitymap.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_statistic_ext.h"
#include "commands/dbcommands.h"
#include "commands/tablecmds.h"
#include "commands/vacuum.h"
#include "executor/executor.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "pgstat.h"
#include "postmaster/autovacuum.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "utils/acl.h"
#include "utils/attoptcache.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/sampling.h"
#include "utils/sortsupport.h"
#include "utils/syscache.h"
#include "utils/timestamp.h"


/* Per-index data for ANALYZE */
typedef struct AnlIndexData
{
	IndexInfo  *indexInfo;		/* BuildIndexInfo result */
	double		tupleFract;		/* fraction of rows for partial index */
	VacAttrStats **vacattrstats;	/* index attrs to analyze */
	int			attr_cnt;
} AnlIndexData;


/* Default statistics target (GUC parameter) */
int			default_statistics_target = 100;

/* A few variables that don't seem worth passing around as parameters */
static MemoryContext anl_context = NULL;
static BufferAccessStrategy vac_strategy;


static void do_analyze_rel(Relation onerel, int options,
			   VacuumParams *params, List *va_cols,
			   AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
			   bool inh, bool in_outer_xact, int elevel);
static void compute_index_stats(Relation onerel, double totalrows,
					AnlIndexData *indexdata, int nindexes,
					HeapTuple *rows, int numrows,
					MemoryContext col_context);
static VacAttrStats *examine_attribute(Relation onerel, int attnum,
				  Node *index_expr);
static int acquire_sample_rows(Relation onerel, int elevel,
					HeapTuple *rows, int targrows,
					double *totalrows, double *totaldeadrows);
static int	compare_rows(const void *a, const void *b);
static int acquire_inherited_sample_rows(Relation onerel, int elevel,
							  HeapTuple *rows, int targrows,
							  double *totalrows, double *totaldeadrows);
static void update_attstats(Oid relid, bool inh,
				int natts, VacAttrStats **vacattrstats);
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);


/*
 *	analyze_rel() -- analyze one relation
 *
 * relid identifies the relation to analyze.  If relation is supplied, use
 * the name therein for reporting any failure to open/lock the rel; do not
 * use it once we've successfully opened the rel, since it might be stale.
 */
void
analyze_rel(Oid relid, RangeVar *relation, int options,
			VacuumParams *params, List *va_cols, bool in_outer_xact,
			BufferAccessStrategy bstrategy)
{
	Relation	onerel;
	int			elevel;
	AcquireSampleRowsFunc acquirefunc = NULL;
	BlockNumber relpages = 0;

	/* Select logging level */
	if (options & VACOPT_VERBOSE)
		elevel = INFO;
	else
		elevel = DEBUG2;

	/* Set up static variables */
	vac_strategy = bstrategy;

	/*
	 * Check for user-requested abort.
	 */
	CHECK_FOR_INTERRUPTS();

	/*
	 * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
	 * ANALYZEs don't run on it concurrently.  (This also locks out a
	 * concurrent VACUUM, which doesn't matter much at the moment but might
	 * matter if we ever try to accumulate stats on dead tuples.) If the rel
	 * has been dropped since we last saw it, we don't need to process it.
	 *
	 * Make sure to generate only logs for ANALYZE in this case.
	 */
	onerel = vacuum_open_relation(relid, relation, params,
								  options & ~(VACOPT_VACUUM),
								  ShareUpdateExclusiveLock);

	/* leave if relation could not be opened or locked */
	if (!onerel)
		return;

	/*
	 * Check if relation needs to be skipped based on ownership.  This check
	 * happens also when building the relation list to analyze for a manual
	 * operation, and needs to be done additionally here as ANALYZE could
	 * happen across multiple transactions where relation ownership could have
	 * changed in-between.  Make sure to generate only logs for ANALYZE in
	 * this case.
	 */
	if (!vacuum_is_relation_owner(RelationGetRelid(onerel),
								  onerel->rd_rel,
								  options & VACOPT_ANALYZE))
	{
		relation_close(onerel, ShareUpdateExclusiveLock);
		return;
	}

	/*
	 * Silently ignore tables that are temp tables of other backends ---
	 * trying to analyze these is rather pointless, since their contents are
	 * probably not up-to-date on disk.  (We don't throw a warning here; it
	 * would just lead to chatter during a database-wide ANALYZE.)
	 */
	if (RELATION_IS_OTHER_TEMP(onerel))
	{
		relation_close(onerel, ShareUpdateExclusiveLock);
		return;
	}

	/*
	 * We can ANALYZE any table except pg_statistic. See update_attstats
	 */
	if (RelationGetRelid(onerel) == StatisticRelationId)
	{
		relation_close(onerel, ShareUpdateExclusiveLock);
		return;
	}

	/*
	 * Check that it's of an analyzable relkind, and set up appropriately.
	 */
	if (onerel->rd_rel->relkind == RELKIND_RELATION ||
		onerel->rd_rel->relkind == RELKIND_MATVIEW)
	{
		/* Regular table, so we'll use the regular row acquisition function */
		acquirefunc = acquire_sample_rows;
		/* Also get regular table's size */
		relpages = RelationGetNumberOfBlocks(onerel);
	}
	else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
	{
		/*
		 * For a foreign table, call the FDW's hook function to see whether it
		 * supports analysis.
		 */
		FdwRoutine *fdwroutine;
		bool		ok = false;

		fdwroutine = GetFdwRoutineForRelation(onerel, false);

		if (fdwroutine->AnalyzeForeignTable != NULL)
			ok = fdwroutine->AnalyzeForeignTable(onerel,
												 &acquirefunc,
												 &relpages);

		if (!ok)
		{
			ereport(WARNING,
					(errmsg("skipping \"%s\" --- cannot analyze this foreign table",
							RelationGetRelationName(onerel))));
			relation_close(onerel, ShareUpdateExclusiveLock);
			return;
		}
	}
	else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
	{
		/*
		 * For partitioned tables, we want to do the recursive ANALYZE below.
		 */
	}
	else
	{
		/* No need for a WARNING if we already complained during VACUUM */
		if (!(options & VACOPT_VACUUM))
			ereport(WARNING,
					(errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
							RelationGetRelationName(onerel))));
		relation_close(onerel, ShareUpdateExclusiveLock);
		return;
	}

	/*
	 * OK, let's do it.  First let other backends know I'm in ANALYZE.
	 */
	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
	MyPgXact->vacuumFlags |= PROC_IN_ANALYZE;
	LWLockRelease(ProcArrayLock);

	/*
	 * Do the normal non-recursive ANALYZE.  We can skip this for partitioned
	 * tables, which don't contain any rows.
	 */
	if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
		do_analyze_rel(onerel, options, params, va_cols, acquirefunc,
					   relpages, false, in_outer_xact, elevel);

	/*
	 * If there are child tables, do recursive ANALYZE.
	 */
	if (onerel->rd_rel->relhassubclass)
		do_analyze_rel(onerel, options, params, va_cols, acquirefunc, relpages,
					   true, in_outer_xact, elevel);

	/*
	 * Close source relation now, but keep lock so that no one deletes it
	 * before we commit.  (If someone did, they'd fail to clean up the entries
	 * we made in pg_statistic.  Also, releasing the lock before commit would
	 * expose us to concurrent-update failures in update_attstats.)
	 */
	relation_close(onerel, NoLock);

	/*
	 * Reset my PGXACT flag.  Note: we need this here, and not in vacuum_rel,
	 * because the vacuum flag is cleared by the end-of-xact code.
	 */
	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
	MyPgXact->vacuumFlags &= ~PROC_IN_ANALYZE;
	LWLockRelease(ProcArrayLock);
}

/*
 *	do_analyze_rel() -- analyze one relation, recursively or not
 *
 * Note that "acquirefunc" is only relevant for the non-inherited case.
 * For the inherited case, acquire_inherited_sample_rows() determines the
 * appropriate acquirefunc for each child table.
 */
static void
do_analyze_rel(Relation onerel, int options, VacuumParams *params,
			   List *va_cols, AcquireSampleRowsFunc acquirefunc,
			   BlockNumber relpages, bool inh, bool in_outer_xact,
			   int elevel)
{
	int			attr_cnt,
				tcnt,
				i,
				ind;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
	VacAttrStats **vacattrstats;
	AnlIndexData *indexdata;
	int			targrows,
				numrows;
	double		totalrows,
				totaldeadrows;
	HeapTuple  *rows;
	PGRUsage	ru0;
	TimestampTz starttime = 0;
	MemoryContext caller_context;
	Oid			save_userid;
	int			save_sec_context;
	int			save_nestlevel;

	if (inh)
		ereport(elevel,
				(errmsg("analyzing \"%s.%s\" inheritance tree",
						get_namespace_name(RelationGetNamespace(onerel)),
						RelationGetRelationName(onerel))));
	else
		ereport(elevel,
				(errmsg("analyzing \"%s.%s\"",
						get_namespace_name(RelationGetNamespace(onerel)),
						RelationGetRelationName(onerel))));

	/*
	 * Set up a working context so that we can easily free whatever junk gets
	 * created.
	 */
	anl_context = AllocSetContextCreate(CurrentMemoryContext,
										"Analyze",
										ALLOCSET_DEFAULT_SIZES);
	caller_context = MemoryContextSwitchTo(anl_context);

	/*
	 * Switch to the table owner's userid, so that any index functions are run
	 * as that user.  Also lock down security-restricted operations and
	 * arrange to make GUC variable changes local to this command.
	 */
	GetUserIdAndSecContext(&save_userid, &save_sec_context);
	SetUserIdAndSecContext(onerel->rd_rel->relowner,
						   save_sec_context | SECURITY_RESTRICTED_OPERATION);
	save_nestlevel = NewGUCNestLevel();

	/* measure elapsed time iff autovacuum logging requires it */
	if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
	{
		pg_rusage_init(&ru0);
		if (params->log_min_duration > 0)
			starttime = GetCurrentTimestamp();
	}

	/*
	 * Determine which columns to analyze
	 *
	 * Note that system attributes are never analyzed, so we just reject them
	 * at the lookup stage.  We also reject duplicate column mentions.  (We
	 * could alternatively ignore duplicates, but analyzing a column twice
	 * won't work; we'd end up making a conflicting update in pg_statistic.)
	 */
	if (va_cols != NIL)
	{
		Bitmapset  *unique_cols = NULL;
		ListCell   *le;

		vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
												sizeof(VacAttrStats *));
		tcnt = 0;
		foreach(le, va_cols)
		{
			char	   *col = strVal(lfirst(le));

			i = attnameAttNum(onerel, col, false);
			if (i == InvalidAttrNumber)
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_COLUMN),
						 errmsg("column \"%s\" of relation \"%s\" does not exist",
								col, RelationGetRelationName(onerel))));
			if (bms_is_member(i, unique_cols))
				ereport(ERROR,
						(errcode(ERRCODE_DUPLICATE_COLUMN),
						 errmsg("column \"%s\" of relation \"%s\" appears more than once",
								col, RelationGetRelationName(onerel))));
			unique_cols = bms_add_member(unique_cols, i);

			vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
		}
		attr_cnt = tcnt;
	}
	else
	{
		attr_cnt = onerel->rd_att->natts;
		vacattrstats = (VacAttrStats **)
			palloc(attr_cnt * sizeof(VacAttrStats *));
		tcnt = 0;
		for (i = 1; i <= attr_cnt; i++)
		{
			vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
		}
		attr_cnt = tcnt;
	}

	/*
	 * Open all indexes of the relation, and see if there are any analyzable
	 * columns in the indexes.  We do not analyze index columns if there was
	 * an explicit column list in the ANALYZE command, however.  If we are
	 * doing a recursive scan, we don't want to touch the parent's indexes at
	 * all.
	 */
	if (!inh)
		vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
	else
	{
		Irel = NULL;
		nindexes = 0;
	}
	hasindex = (nindexes > 0);
	indexdata = NULL;
	if (hasindex)
	{
		indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];
			IndexInfo  *indexInfo;

			thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
			thisdata->tupleFract = 1.0; /* fix later if partial */
			if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
			{
				ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);

				thisdata->vacattrstats = (VacAttrStats **)
					palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
				tcnt = 0;
				for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
				{
					int			keycol = indexInfo->ii_IndexAttrNumbers[i];

					if (keycol == 0)
					{
						/* Found an index expression */
						Node	   *indexkey;

						if (indexpr_item == NULL)	/* shouldn't happen */
							elog(ERROR, "too few entries in indexprs list");
						indexkey = (Node *) lfirst(indexpr_item);
						indexpr_item = lnext(indexpr_item);
						thisdata->vacattrstats[tcnt] =
							examine_attribute(Irel[ind], i + 1, indexkey);
						if (thisdata->vacattrstats[tcnt] != NULL)
							tcnt++;
					}
				}
				thisdata->attr_cnt = tcnt;
			}
		}
	}

	/*
	 * Determine how many rows we need to sample, using the worst case from
	 * all analyzable columns.  We use a lower bound of 100 rows to avoid
	 * possible overflow in Vitter's algorithm.  (Note: that will also be the
	 * target in the corner case where there are no analyzable columns.)
	 */
	targrows = 100;
	for (i = 0; i < attr_cnt; i++)
	{
		if (targrows < vacattrstats[i]->minrows)
			targrows = vacattrstats[i]->minrows;
	}
	for (ind = 0; ind < nindexes; ind++)
	{
		AnlIndexData *thisdata = &indexdata[ind];

		for (i = 0; i < thisdata->attr_cnt; i++)
		{
			if (targrows < thisdata->vacattrstats[i]->minrows)
				targrows = thisdata->vacattrstats[i]->minrows;
		}
	}

	/*
	 * Acquire the sample rows
	 */
	rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
	if (inh)
		numrows = acquire_inherited_sample_rows(onerel, elevel,
												rows, targrows,
												&totalrows, &totaldeadrows);
	else
		numrows = (*acquirefunc) (onerel, elevel,
								  rows, targrows,
								  &totalrows, &totaldeadrows);

	/*
	 * Compute the statistics.  Temporary results during the calculations for
	 * each column are stored in a child context.  The calc routines are
	 * responsible to make sure that whatever they store into the VacAttrStats
	 * structure is allocated in anl_context.
	 */
	if (numrows > 0)
	{
		MemoryContext col_context,
					old_context;

		col_context = AllocSetContextCreate(anl_context,
											"Analyze Column",
											ALLOCSET_DEFAULT_SIZES);
		old_context = MemoryContextSwitchTo(col_context);

		for (i = 0; i < attr_cnt; i++)
		{
			VacAttrStats *stats = vacattrstats[i];
			AttributeOpts *aopt;

			stats->rows = rows;
			stats->tupDesc = onerel->rd_att;
			stats->compute_stats(stats,
								 std_fetch_func,
								 numrows,
								 totalrows);

			/*
			 * If the appropriate flavor of the n_distinct option is
			 * specified, override with the corresponding value.
			 */
			aopt = get_attribute_options(onerel->rd_id, stats->attr->attnum);
			if (aopt != NULL)
			{
				float8		n_distinct;

				n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
				if (n_distinct != 0.0)
					stats->stadistinct = n_distinct;
			}

			MemoryContextResetAndDeleteChildren(col_context);
		}

		if (hasindex)
			compute_index_stats(onerel, totalrows,
								indexdata, nindexes,
								rows, numrows,
								col_context);

		MemoryContextSwitchTo(old_context);
		MemoryContextDelete(col_context);

		/*
		 * Emit the completed stats rows into pg_statistic, replacing any
		 * previous statistics for the target columns.  (If there are stats in
		 * pg_statistic for columns we didn't process, we leave them alone.)
		 */
		update_attstats(RelationGetRelid(onerel), inh,
						attr_cnt, vacattrstats);

		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];

			update_attstats(RelationGetRelid(Irel[ind]), false,
							thisdata->attr_cnt, thisdata->vacattrstats);
		}

		/* Build extended statistics (if there are any). */
		BuildRelationExtStatistics(onerel, totalrows, numrows, rows, attr_cnt,
								   vacattrstats);
	}

	/*
	 * Update pages/tuples stats in pg_class ... but not if we're doing
	 * inherited stats.
	 */
	if (!inh)
	{
		BlockNumber relallvisible;

		visibilitymap_count(onerel, &relallvisible, NULL);

		vac_update_relstats(onerel,
							relpages,
							totalrows,
							relallvisible,
							hasindex,
							InvalidTransactionId,
							InvalidMultiXactId,
							in_outer_xact);
	}

	/*
	 * Same for indexes. Vacuum always scans all indexes, so if we're part of
	 * VACUUM ANALYZE, don't overwrite the accurate count already inserted by
	 * VACUUM.
	 */
	if (!inh && !(options & VACOPT_VACUUM))
	{
		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];
			double		totalindexrows;

			totalindexrows = ceil(thisdata->tupleFract * totalrows);
			vac_update_relstats(Irel[ind],
								RelationGetNumberOfBlocks(Irel[ind]),
								totalindexrows,
								0,
								false,
								InvalidTransactionId,
								InvalidMultiXactId,
								in_outer_xact);
		}
	}

	/*
	 * Report ANALYZE to the stats collector, too.  However, if doing
	 * inherited stats we shouldn't report, because the stats collector only
	 * tracks per-table stats.  Reset the changes_since_analyze counter only
	 * if we analyzed all columns; otherwise, there is still work for
	 * auto-analyze to do.
	 */
	if (!inh)
		pgstat_report_analyze(onerel, totalrows, totaldeadrows,
							  (va_cols == NIL));

	/* If this isn't part of VACUUM ANALYZE, let index AMs do cleanup */
	if (!(options & VACOPT_VACUUM))
	{
		for (ind = 0; ind < nindexes; ind++)
		{
			IndexBulkDeleteResult *stats;
			IndexVacuumInfo ivinfo;

			ivinfo.index = Irel[ind];
			ivinfo.analyze_only = true;
			ivinfo.estimated_count = true;
			ivinfo.message_level = elevel;
			ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
			ivinfo.strategy = vac_strategy;

			stats = index_vacuum_cleanup(&ivinfo, NULL);

			if (stats)
				pfree(stats);
		}
	}

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel, NoLock);

	/* Log the action if appropriate */
	if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
	{
		if (params->log_min_duration == 0 ||
			TimestampDifferenceExceeds(starttime, GetCurrentTimestamp(),
									   params->log_min_duration))
			ereport(LOG,
					(errmsg("automatic analyze of table \"%s.%s.%s\" system usage: %s",
							get_database_name(MyDatabaseId),
							get_namespace_name(RelationGetNamespace(onerel)),
							RelationGetRelationName(onerel),
							pg_rusage_show(&ru0))));
	}

	/* Roll back any GUC changes executed by index functions */
	AtEOXact_GUC(false, save_nestlevel);

	/* Restore userid and security context */
	SetUserIdAndSecContext(save_userid, save_sec_context);

	/* Restore current context and release memory */
	MemoryContextSwitchTo(caller_context);
	MemoryContextDelete(anl_context);
	anl_context = NULL;
}

/*
 * Compute statistics about indexes of a relation
 */
static void
compute_index_stats(Relation onerel, double totalrows,
					AnlIndexData *indexdata, int nindexes,
					HeapTuple *rows, int numrows,
					MemoryContext col_context)
{
	MemoryContext ind_context,
				old_context;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];
	int			ind,
				i;

	ind_context = AllocSetContextCreate(anl_context,
										"Analyze Index",
										ALLOCSET_DEFAULT_SIZES);
	old_context = MemoryContextSwitchTo(ind_context);

	for (ind = 0; ind < nindexes; ind++)
	{
		AnlIndexData *thisdata = &indexdata[ind];
		IndexInfo  *indexInfo = thisdata->indexInfo;
		int			attr_cnt = thisdata->attr_cnt;
		TupleTableSlot *slot;
		EState	   *estate;
		ExprContext *econtext;
		ExprState  *predicate;
		Datum	   *exprvals;
		bool	   *exprnulls;
		int			numindexrows,
					tcnt,
					rowno;
		double		totalindexrows;

		/* Ignore index if no columns to analyze and not partial */
		if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
			continue;

		/*
		 * Need an EState for evaluation of index expressions and
		 * partial-index predicates.  Create it in the per-index context to be
		 * sure it gets cleaned up at the bottom of the loop.
		 */
		estate = CreateExecutorState();
		econtext = GetPerTupleExprContext(estate);
		/* Need a slot to hold the current heap tuple, too */
		slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel),
										&TTSOpsHeapTuple);

		/* Arrange for econtext's scan tuple to be the tuple under test */
		econtext->ecxt_scantuple = slot;

		/* Set up execution state for predicate. */
		predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);

		/* Compute and save index expression values */
		exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
		exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
		numindexrows = 0;
		tcnt = 0;
		for (rowno = 0; rowno < numrows; rowno++)
		{
			HeapTuple	heapTuple = rows[rowno];

			vacuum_delay_point();

			/*
			 * Reset the per-tuple context each time, to reclaim any cruft
			 * left behind by evaluating the predicate or index expressions.
			 */
			ResetExprContext(econtext);

			/* Set up for predicate or expression evaluation */
			ExecStoreHeapTuple(heapTuple, slot, false);

			/* If index is partial, check predicate */
			if (predicate != NULL)
			{
				if (!ExecQual(predicate, econtext))
					continue;
			}
			numindexrows++;

			if (attr_cnt > 0)
			{
				/*
				 * Evaluate the index row to compute expression values. We
				 * could do this by hand, but FormIndexDatum is convenient.
				 */
				FormIndexDatum(indexInfo,
							   slot,
							   estate,
							   values,
							   isnull);

				/*
				 * Save just the columns we care about.  We copy the values
				 * into ind_context from the estate's per-tuple context.
				 */
				for (i = 0; i < attr_cnt; i++)
				{
					VacAttrStats *stats = thisdata->vacattrstats[i];
					int			attnum = stats->attr->attnum;

					if (isnull[attnum - 1])
					{
						exprvals[tcnt] = (Datum) 0;
						exprnulls[tcnt] = true;
					}
					else
					{
						exprvals[tcnt] = datumCopy(values[attnum - 1],
												   stats->attrtype->typbyval,
												   stats->attrtype->typlen);
						exprnulls[tcnt] = false;
					}
					tcnt++;
				}
			}
		}

		/*
		 * Having counted the number of rows that pass the predicate in the
		 * sample, we can estimate the total number of rows in the index.
		 */
		thisdata->tupleFract = (double) numindexrows / (double) numrows;
		totalindexrows = ceil(thisdata->tupleFract * totalrows);

		/*
		 * Now we can compute the statistics for the expression columns.
		 */
		if (numindexrows > 0)
		{
			MemoryContextSwitchTo(col_context);
			for (i = 0; i < attr_cnt; i++)
			{
				VacAttrStats *stats = thisdata->vacattrstats[i];
				AttributeOpts *aopt =
				get_attribute_options(stats->attr->attrelid,
									  stats->attr->attnum);

				stats->exprvals = exprvals + i;
				stats->exprnulls = exprnulls + i;
				stats->rowstride = attr_cnt;
				stats->compute_stats(stats,
									 ind_fetch_func,
									 numindexrows,
									 totalindexrows);

				/*
				 * If the n_distinct option is specified, it overrides the
				 * above computation.  For indices, we always use just
				 * n_distinct, not n_distinct_inherited.
				 */
				if (aopt != NULL && aopt->n_distinct != 0.0)
					stats->stadistinct = aopt->n_distinct;

				MemoryContextResetAndDeleteChildren(col_context);
			}
		}

		/* And clean up */
		MemoryContextSwitchTo(ind_context);

		ExecDropSingleTupleTableSlot(slot);
		FreeExecutorState(estate);
		MemoryContextResetAndDeleteChildren(ind_context);
	}

	MemoryContextSwitchTo(old_context);
	MemoryContextDelete(ind_context);
}

/*
 * examine_attribute -- pre-analysis of a single column
 *
 * Determine whether the column is analyzable; if so, create and initialize
 * a VacAttrStats struct for it.  If not, return NULL.
 *
 * If index_expr isn't NULL, then we're trying to analyze an expression index,
 * and index_expr is the expression tree representing the column's data.
 */
static VacAttrStats *
examine_attribute(Relation onerel, int attnum, Node *index_expr)
{
	Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
	HeapTuple	typtuple;
	VacAttrStats *stats;
	int			i;
	bool		ok;

	/* Never analyze dropped columns */
	if (attr->attisdropped)
		return NULL;

	/* Don't analyze column if user has specified not to */
	if (attr->attstattarget == 0)
		return NULL;

	/*
	 * Create the VacAttrStats struct.  Note that we only have a copy of the
	 * fixed fields of the pg_attribute tuple.
	 */
	stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
	stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_FIXED_PART_SIZE);
	memcpy(stats->attr, attr, ATTRIBUTE_FIXED_PART_SIZE);

	/*
	 * When analyzing an expression index, believe the expression tree's type
	 * not the column datatype --- the latter might be the opckeytype storage
	 * type of the opclass, which is not interesting for our purposes.  (Note:
	 * if we did anything with non-expression index columns, we'd need to
	 * figure out where to get the correct type info from, but for now that's
	 * not a problem.)	It's not clear whether anyone will care about the
	 * typmod, but we store that too just in case.
	 */
	if (index_expr)
	{
		stats->attrtypid = exprType(index_expr);
		stats->attrtypmod = exprTypmod(index_expr);

		/*
		 * If a collation has been specified for the index column, use that in
		 * preference to anything else; but if not, fall back to whatever we
		 * can get from the expression.
		 */
		if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
			stats->attrcollid = onerel->rd_indcollation[attnum - 1];
		else
			stats->attrcollid = exprCollation(index_expr);
	}
	else
	{
		stats->attrtypid = attr->atttypid;
		stats->attrtypmod = attr->atttypmod;
		stats->attrcollid = attr->attcollation;
	}

	typtuple = SearchSysCacheCopy1(TYPEOID,
								   ObjectIdGetDatum(stats->attrtypid));
	if (!HeapTupleIsValid(typtuple))
		elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
	stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
	stats->anl_context = anl_context;
	stats->tupattnum = attnum;

	/*
	 * The fields describing the stats->stavalues[n] element types default to
	 * the type of the data being analyzed, but the type-specific typanalyze
	 * function can change them if it wants to store something else.
	 */
	for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
	{
		stats->statypid[i] = stats->attrtypid;
		stats->statyplen[i] = stats->attrtype->typlen;
		stats->statypbyval[i] = stats->attrtype->typbyval;
		stats->statypalign[i] = stats->attrtype->typalign;
	}

	/*
	 * Call the type-specific typanalyze function.  If none is specified, use
	 * std_typanalyze().
	 */
	if (OidIsValid(stats->attrtype->typanalyze))
		ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
										   PointerGetDatum(stats)));
	else
		ok = std_typanalyze(stats);

	if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
	{
		heap_freetuple(typtuple);
		pfree(stats->attr);
		pfree(stats);
		return NULL;
	}

	return stats;
}

/*
 * acquire_sample_rows -- acquire a random sample of rows from the table
 *
 * Selected rows are returned in the caller-allocated array rows[], which
 * must have at least targrows entries.
 * The actual number of rows selected is returned as the function result.
 * We also estimate the total numbers of live and dead rows in the table,
 * and return them into *totalrows and *totaldeadrows, respectively.
 *
 * The returned list of tuples is in order by physical position in the table.
 * (We will rely on this later to derive correlation estimates.)
 *
 * As of May 2004 we use a new two-stage method:  Stage one selects up
 * to targrows random blocks (or all blocks, if there aren't so many).
 * Stage two scans these blocks and uses the Vitter algorithm to create
 * a random sample of targrows rows (or less, if there are less in the
 * sample of blocks).  The two stages are executed simultaneously: each
 * block is processed as soon as stage one returns its number and while
 * the rows are read stage two controls which ones are to be inserted
 * into the sample.
 *
 * Although every row has an equal chance of ending up in the final
 * sample, this sampling method is not perfect: not every possible
 * sample has an equal chance of being selected.  For large relations
 * the number of different blocks represented by the sample tends to be
 * too small.  We can live with that for now.  Improvements are welcome.
 *
 * An important property of this sampling method is that because we do
 * look at a statistically unbiased set of blocks, we should get
 * unbiased estimates of the average numbers of live and dead rows per
 * block.  The previous sampling method put too much credence in the row
 * density near the start of the table.
 */
static int
acquire_sample_rows(Relation onerel, int elevel,
					HeapTuple *rows, int targrows,
					double *totalrows, double *totaldeadrows)
{
	int			numrows = 0;	/* # rows now in reservoir */
	double		samplerows = 0; /* total # rows collected */
	double		liverows = 0;	/* # live rows seen */
	double		deadrows = 0;	/* # dead rows seen */
	double		rowstoskip = -1;	/* -1 means not set yet */
	BlockNumber totalblocks;
	TransactionId OldestXmin;
	BlockSamplerData bs;
	ReservoirStateData rstate;

	Assert(targrows > 0);

	totalblocks = RelationGetNumberOfBlocks(onerel);

	/* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
	OldestXmin = GetOldestXmin(onerel, PROCARRAY_FLAGS_VACUUM);

	/* Prepare for sampling block numbers */
	BlockSampler_Init(&bs, totalblocks, targrows, random());
	/* Prepare for sampling rows */
	reservoir_init_selection_state(&rstate, targrows);

	/* Outer loop over blocks to sample */
	while (BlockSampler_HasMore(&bs))
	{
		BlockNumber targblock = BlockSampler_Next(&bs);
		Buffer		targbuffer;
		Page		targpage;
		OffsetNumber targoffset,
					maxoffset;

		vacuum_delay_point();

		/*
		 * We must maintain a pin on the target page's buffer to ensure that
		 * the maxoffset value stays good (else concurrent VACUUM might delete
		 * tuples out from under us).  Hence, pin the page until we are done
		 * looking at it.  We also choose to hold sharelock on the buffer
		 * throughout --- we could release and re-acquire sharelock for each
		 * tuple, but since we aren't doing much work per tuple, the extra
		 * lock traffic is probably better avoided.
		 */
		targbuffer = ReadBufferExtended(onerel, MAIN_FORKNUM, targblock,
										RBM_NORMAL, vac_strategy);
		LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
		targpage = BufferGetPage(targbuffer);
		maxoffset = PageGetMaxOffsetNumber(targpage);

		/* Inner loop over all tuples on the selected page */
		for (targoffset = FirstOffsetNumber; targoffset <= maxoffset; targoffset++)
		{
			ItemId		itemid;
			HeapTupleData targtuple;
			bool		sample_it = false;

			itemid = PageGetItemId(targpage, targoffset);

			/*
			 * We ignore unused and redirect line pointers.  DEAD line
			 * pointers should be counted as dead, because we need vacuum to
			 * run to get rid of them.  Note that this rule agrees with the
			 * way that heap_page_prune() counts things.
			 */
			if (!ItemIdIsNormal(itemid))
			{
				if (ItemIdIsDead(itemid))
					deadrows += 1;
				continue;
			}

			ItemPointerSet(&targtuple.t_self, targblock, targoffset);

			targtuple.t_tableOid = RelationGetRelid(onerel);
			targtuple.t_data = (HeapTupleHeader) PageGetItem(targpage, itemid);
			targtuple.t_len = ItemIdGetLength(itemid);

			switch (HeapTupleSatisfiesVacuum(&targtuple,
											 OldestXmin,
											 targbuffer))
			{
				case HEAPTUPLE_LIVE:
					sample_it = true;
					liverows += 1;
					break;

				case HEAPTUPLE_DEAD:
				case HEAPTUPLE_RECENTLY_DEAD:
					/* Count dead and recently-dead rows */
					deadrows += 1;
					break;

				case HEAPTUPLE_INSERT_IN_PROGRESS:

					/*
					 * Insert-in-progress rows are not counted.  We assume
					 * that when the inserting transaction commits or aborts,
					 * it will send a stats message to increment the proper
					 * count.  This works right only if that transaction ends
					 * after we finish analyzing the table; if things happen
					 * in the other order, its stats update will be
					 * overwritten by ours.  However, the error will be large
					 * only if the other transaction runs long enough to
					 * insert many tuples, so assuming it will finish after us
					 * is the safer option.
					 *
					 * A special case is that the inserting transaction might
					 * be our own.  In this case we should count and sample
					 * the row, to accommodate users who load a table and
					 * analyze it in one transaction.  (pgstat_report_analyze
					 * has to adjust the numbers we send to the stats
					 * collector to make this come out right.)
					 */
					if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(targtuple.t_data)))
					{
						sample_it = true;
						liverows += 1;
					}
					break;

				case HEAPTUPLE_DELETE_IN_PROGRESS:

					/*
					 * We count and sample delete-in-progress rows the same as
					 * live ones, so that the stats counters come out right if
					 * the deleting transaction commits after us, per the same
					 * reasoning given above.
					 *
					 * If the delete was done by our own transaction, however,
					 * we must count the row as dead to make
					 * pgstat_report_analyze's stats adjustments come out
					 * right.  (Note: this works out properly when the row was
					 * both inserted and deleted in our xact.)
					 *
					 * The net effect of these choices is that we act as
					 * though an IN_PROGRESS transaction hasn't happened yet,
					 * except if it is our own transaction, which we assume
					 * has happened.
					 *
					 * This approach ensures that we behave sanely if we see
					 * both the pre-image and post-image rows for a row being
					 * updated by a concurrent transaction: we will sample the
					 * pre-image but not the post-image.  We also get sane
					 * results if the concurrent transaction never commits.
					 */
					if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetUpdateXid(targtuple.t_data)))
						deadrows += 1;
					else
					{
						sample_it = true;
						liverows += 1;
					}
					break;

				default:
					elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			if (sample_it)
			{
				/*
				 * The first targrows sample rows are simply copied into the
				 * reservoir. Then we start replacing tuples in the sample
				 * until we reach the end of the relation.  This algorithm is
				 * from Jeff Vitter's paper (see full citation below). It
				 * works by repeatedly computing the number of tuples to skip
				 * before selecting a tuple, which replaces a randomly chosen
				 * element of the reservoir (current set of tuples).  At all
				 * times the reservoir is a true random sample of the tuples
				 * we've passed over so far, so when we fall off the end of
				 * the relation we're done.
				 */
				if (numrows < targrows)
					rows[numrows++] = heap_copytuple(&targtuple);
				else
				{
					/*
					 * t in Vitter's paper is the number of records already
					 * processed.  If we need to compute a new S value, we
					 * must use the not-yet-incremented value of samplerows as
					 * t.
					 */
					if (rowstoskip < 0)
						rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);

					if (rowstoskip <= 0)
					{
						/*
						 * Found a suitable tuple, so save it, replacing one
						 * old tuple at random
						 */
						int			k = (int) (targrows * sampler_random_fract(rstate.randstate));

						Assert(k >= 0 && k < targrows);
						heap_freetuple(rows[k]);
						rows[k] = heap_copytuple(&targtuple);
					}

					rowstoskip -= 1;
				}

				samplerows += 1;
			}
		}

		/* Now release the lock and pin on the page */
		UnlockReleaseBuffer(targbuffer);
	}

	/*
	 * If we didn't find as many tuples as we wanted then we're done. No sort
	 * is needed, since they're already in order.
	 *
	 * Otherwise we need to sort the collected tuples by position
	 * (itempointer). It's not worth worrying about corner cases where the
	 * tuples are already sorted.
	 */
	if (numrows == targrows)
		qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);

	/*
	 * Estimate total numbers of live and dead rows in relation, extrapolating
	 * on the assumption that the average tuple density in pages we didn't
	 * scan is the same as in the pages we did scan.  Since what we scanned is
	 * a random sample of the pages in the relation, this should be a good
	 * assumption.
	 */
	if (bs.m > 0)
	{
		*totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
		*totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
	}
	else
	{
		*totalrows = 0.0;
		*totaldeadrows = 0.0;
	}

	/*
	 * Emit some interesting relation info
	 */
	ereport(elevel,
			(errmsg("\"%s\": scanned %d of %u pages, "
					"containing %.0f live rows and %.0f dead rows; "
					"%d rows in sample, %.0f estimated total rows",
					RelationGetRelationName(onerel),
					bs.m, totalblocks,
					liverows, deadrows,
					numrows, *totalrows)));

	return numrows;
}

/*
 * qsort comparator for sorting rows[] array
 */
static int
compare_rows(const void *a, const void *b)
{
	HeapTuple	ha = *(const HeapTuple *) a;
	HeapTuple	hb = *(const HeapTuple *) b;
	BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
	OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
	BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
	OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);

	if (ba < bb)
		return -1;
	if (ba > bb)
		return 1;
	if (oa < ob)
		return -1;
	if (oa > ob)
		return 1;
	return 0;
}


/*
 * acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
 *
 * This has the same API as acquire_sample_rows, except that rows are
 * collected from all inheritance children as well as the specified table.
 * We fail and return zero if there are no inheritance children, or if all
 * children are foreign tables that don't support ANALYZE.
 */
static int
acquire_inherited_sample_rows(Relation onerel, int elevel,
							  HeapTuple *rows, int targrows,
							  double *totalrows, double *totaldeadrows)
{
	List	   *tableOIDs;
	Relation   *rels;
	AcquireSampleRowsFunc *acquirefuncs;
	double	   *relblocks;
	double		totalblocks;
	int			numrows,
				nrels,
				i;
	ListCell   *lc;
	bool		has_child;

	/*
	 * Find all members of inheritance set.  We only need AccessShareLock on
	 * the children.
	 */
	tableOIDs =
		find_all_inheritors(RelationGetRelid(onerel), AccessShareLock, NULL);

	/*
	 * Check that there's at least one descendant, else fail.  This could
	 * happen despite analyze_rel's relhassubclass check, if table once had a
	 * child but no longer does.  In that case, we can clear the
	 * relhassubclass field so as not to make the same mistake again later.
	 * (This is safe because we hold ShareUpdateExclusiveLock.)
	 */
	if (list_length(tableOIDs) < 2)
	{
		/* CCI because we already updated the pg_class row in this command */
		CommandCounterIncrement();
		SetRelationHasSubclass(RelationGetRelid(onerel), false);
		ereport(elevel,
				(errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
						get_namespace_name(RelationGetNamespace(onerel)),
						RelationGetRelationName(onerel))));
		return 0;
	}

	/*
	 * Identify acquirefuncs to use, and count blocks in all the relations.
	 * The result could overflow BlockNumber, so we use double arithmetic.
	 */
	rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
	acquirefuncs = (AcquireSampleRowsFunc *)
		palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
	relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
	totalblocks = 0;
	nrels = 0;
	has_child = false;
	foreach(lc, tableOIDs)
	{
		Oid			childOID = lfirst_oid(lc);
		Relation	childrel;
		AcquireSampleRowsFunc acquirefunc = NULL;
		BlockNumber relpages = 0;

		/* We already got the needed lock */
		childrel = table_open(childOID, NoLock);

		/* Ignore if temp table of another backend */
		if (RELATION_IS_OTHER_TEMP(childrel))
		{
			/* ... but release the lock on it */
			Assert(childrel != onerel);
			table_close(childrel, AccessShareLock);
			continue;
		}

		/* Check table type (MATVIEW can't happen, but might as well allow) */
		if (childrel->rd_rel->relkind == RELKIND_RELATION ||
			childrel->rd_rel->relkind == RELKIND_MATVIEW)
		{
			/* Regular table, so use the regular row acquisition function */
			acquirefunc = acquire_sample_rows;
			relpages = RelationGetNumberOfBlocks(childrel);
		}
		else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
		{
			/*
			 * For a foreign table, call the FDW's hook function to see
			 * whether it supports analysis.
			 */
			FdwRoutine *fdwroutine;
			bool		ok = false;

			fdwroutine = GetFdwRoutineForRelation(childrel, false);

			if (fdwroutine->AnalyzeForeignTable != NULL)
				ok = fdwroutine->AnalyzeForeignTable(childrel,
													 &acquirefunc,
													 &relpages);

			if (!ok)
			{
				/* ignore, but release the lock on it */
				Assert(childrel != onerel);
				table_close(childrel, AccessShareLock);
				continue;
			}
		}
		else
		{
			/*
			 * ignore, but release the lock on it.  don't try to unlock the
			 * passed-in relation
			 */
			Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
			if (childrel != onerel)
				table_close(childrel, AccessShareLock);
			else
				table_close(childrel, NoLock);
			continue;
		}

		/* OK, we'll process this child */
		has_child = true;
		rels[nrels] = childrel;
		acquirefuncs[nrels] = acquirefunc;
		relblocks[nrels] = (double) relpages;
		totalblocks += (double) relpages;
		nrels++;
	}

	/*
	 * If we don't have at least one child table to consider, fail.  If the
	 * relation is a partitioned table, it's not counted as a child table.
	 */
	if (!has_child)
	{
		ereport(elevel,
				(errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
						get_namespace_name(RelationGetNamespace(onerel)),
						RelationGetRelationName(onerel))));
		return 0;
	}

	/*
	 * Now sample rows from each relation, proportionally to its fraction of
	 * the total block count.  (This might be less than desirable if the child
	 * rels have radically different free-space percentages, but it's not
	 * clear that it's worth working harder.)
	 */
	numrows = 0;
	*totalrows = 0;
	*totaldeadrows = 0;
	for (i = 0; i < nrels; i++)
	{
		Relation	childrel = rels[i];
		AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
		double		childblocks = relblocks[i];

		if (childblocks > 0)
		{
			int			childtargrows;

			childtargrows = (int) rint(targrows * childblocks / totalblocks);
			/* Make sure we don't overrun due to roundoff error */
			childtargrows = Min(childtargrows, targrows - numrows);
			if (childtargrows > 0)
			{
				int			childrows;
				double		trows,
							tdrows;

				/* Fetch a random sample of the child's rows */
				childrows = (*acquirefunc) (childrel, elevel,
											rows + numrows, childtargrows,
											&trows, &tdrows);

				/* We may need to convert from child's rowtype to parent's */
				if (childrows > 0 &&
					!equalTupleDescs(RelationGetDescr(childrel),
									 RelationGetDescr(onerel)))
				{
					TupleConversionMap *map;

					map = convert_tuples_by_name(RelationGetDescr(childrel),
												 RelationGetDescr(onerel),
												 gettext_noop("could not convert row type"));
					if (map != NULL)
					{
						int			j;

						for (j = 0; j < childrows; j++)
						{
							HeapTuple	newtup;

							newtup = execute_attr_map_tuple(rows[numrows + j], map);
							heap_freetuple(rows[numrows + j]);
							rows[numrows + j] = newtup;
						}
						free_conversion_map(map);
					}
				}

				/* And add to counts */
				numrows += childrows;
				*totalrows += trows;
				*totaldeadrows += tdrows;
			}
		}

		/*
		 * Note: we cannot release the child-table locks, since we may have
		 * pointers to their TOAST tables in the sampled rows.
		 */
		table_close(childrel, NoLock);
	}

	return numrows;
}


/*
 *	update_attstats() -- update attribute statistics for one relation
 *
 *		Statistics are stored in several places: the pg_class row for the
 *		relation has stats about the whole relation, and there is a
 *		pg_statistic row for each (non-system) attribute that has ever
 *		been analyzed.  The pg_class values are updated by VACUUM, not here.
 *
 *		pg_statistic rows are just added or updated normally.  This means
 *		that pg_statistic will probably contain some deleted rows at the
 *		completion of a vacuum cycle, unless it happens to get vacuumed last.
 *
 *		To keep things simple, we punt for pg_statistic, and don't try
 *		to compute or store rows for pg_statistic itself in pg_statistic.
 *		This could possibly be made to work, but it's not worth the trouble.
 *		Note analyze_rel() has seen to it that we won't come here when
 *		vacuuming pg_statistic itself.
 *
 *		Note: there would be a race condition here if two backends could
 *		ANALYZE the same table concurrently.  Presently, we lock that out
 *		by taking a self-exclusive lock on the relation in analyze_rel().
 */
static void
update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
{
	Relation	sd;
	int			attno;

	if (natts <= 0)
		return;					/* nothing to do */

	sd = table_open(StatisticRelationId, RowExclusiveLock);

	for (attno = 0; attno < natts; attno++)
	{
		VacAttrStats *stats = vacattrstats[attno];
		HeapTuple	stup,
					oldtup;
		int			i,
					k,
					n;
		Datum		values[Natts_pg_statistic];
		bool		nulls[Natts_pg_statistic];
		bool		replaces[Natts_pg_statistic];

		/* Ignore attr if we weren't able to collect stats */
		if (!stats->stats_valid)
			continue;

		/*
		 * Construct a new pg_statistic tuple
		 */
		for (i = 0; i < Natts_pg_statistic; ++i)
		{
			nulls[i] = false;
			replaces[i] = true;
		}

		values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
		values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->attr->attnum);
		values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
		values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
		values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
		values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
		i = Anum_pg_statistic_stakind1 - 1;
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
		}
		i = Anum_pg_statistic_staop1 - 1;
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = ObjectIdGetDatum(stats->staop[k]);	/* staopN */
		}
		i = Anum_pg_statistic_stacoll1 - 1;
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = ObjectIdGetDatum(stats->stacoll[k]);	/* stacollN */
		}
		i = Anum_pg_statistic_stanumbers1 - 1;
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			int			nnum = stats->numnumbers[k];

			if (nnum > 0)
			{
				Datum	   *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
				ArrayType  *arry;

				for (n = 0; n < nnum; n++)
					numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
				/* XXX knows more than it should about type float4: */
				arry = construct_array(numdatums, nnum,
									   FLOAT4OID,
									   sizeof(float4), FLOAT4PASSBYVAL, 'i');
				values[i++] = PointerGetDatum(arry);	/* stanumbersN */
			}
			else
			{
				nulls[i] = true;
				values[i++] = (Datum) 0;
			}
		}
		i = Anum_pg_statistic_stavalues1 - 1;
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			if (stats->numvalues[k] > 0)
			{
				ArrayType  *arry;

				arry = construct_array(stats->stavalues[k],
									   stats->numvalues[k],
									   stats->statypid[k],
									   stats->statyplen[k],
									   stats->statypbyval[k],
									   stats->statypalign[k]);
				values[i++] = PointerGetDatum(arry);	/* stavaluesN */
			}
			else
			{
				nulls[i] = true;
				values[i++] = (Datum) 0;
			}
		}

		/* Is there already a pg_statistic tuple for this attribute? */
		oldtup = SearchSysCache3(STATRELATTINH,
								 ObjectIdGetDatum(relid),
								 Int16GetDatum(stats->attr->attnum),
								 BoolGetDatum(inh));

		if (HeapTupleIsValid(oldtup))
		{
			/* Yes, replace it */
			stup = heap_modify_tuple(oldtup,
									 RelationGetDescr(sd),
									 values,
									 nulls,
									 replaces);
			ReleaseSysCache(oldtup);
			CatalogTupleUpdate(sd, &stup->t_self, stup);
		}
		else
		{
			/* No, insert new tuple */
			stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
			CatalogTupleInsert(sd, stup);
		}

		heap_freetuple(stup);
	}

	table_close(sd, RowExclusiveLock);
}

/*
 * Standard fetch function for use by compute_stats subroutines.
 *
 * This exists to provide some insulation between compute_stats routines
 * and the actual storage of the sample data.
 */
static Datum
std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			attnum = stats->tupattnum;
	HeapTuple	tuple = stats->rows[rownum];
	TupleDesc	tupDesc = stats->tupDesc;

	return heap_getattr(tuple, attnum, tupDesc, isNull);
}

/*
 * Fetch function for analyzing index expressions.
 *
 * We have not bothered to construct index tuples, instead the data is
 * just in Datum arrays.
 */
static Datum
ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			i;

	/* exprvals and exprnulls are already offset for proper column */
	i = rownum * stats->rowstride;
	*isNull = stats->exprnulls[i];
	return stats->exprvals[i];
}


/*==========================================================================
 *
 * Code below this point represents the "standard" type-specific statistics
 * analysis algorithms.  This code can be replaced on a per-data-type basis
 * by setting a nonzero value in pg_type.typanalyze.
 *
 *==========================================================================
 */


/*
 * To avoid consuming too much memory during analysis and/or too much space
 * in the resulting pg_statistic rows, we ignore varlena datums that are wider
 * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
 * and distinct-value calculations since a wide value is unlikely to be
 * duplicated at all, much less be a most-common value.  For the same reason,
 * ignoring wide values will not affect our estimates of histogram bin
 * boundaries very much.
 */
#define WIDTH_THRESHOLD  1024

#define swapInt(a,b)	do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
#define swapDatum(a,b)	do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)

/*
 * Extra information used by the default analysis routines
 */
typedef struct
{
	int			count;			/* # of duplicates */
	int			first;			/* values[] index of first occurrence */
} ScalarMCVItem;

typedef struct
{
	SortSupport ssup;
	int		   *tupnoLink;
} CompareScalarsContext;


static void compute_trivial_stats(VacAttrStatsP stats,
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows);
static void compute_distinct_stats(VacAttrStatsP stats,
					   AnalyzeAttrFetchFunc fetchfunc,
					   int samplerows,
					   double totalrows);
static void compute_scalar_stats(VacAttrStatsP stats,
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows);
static int	compare_scalars(const void *a, const void *b, void *arg);
static int	compare_mcvs(const void *a, const void *b);
static int analyze_mcv_list(int *mcv_counts,
				 int num_mcv,
				 double stadistinct,
				 double stanullfrac,
				 int samplerows,
				 double totalrows);


/*
 * std_typanalyze -- the default type-specific typanalyze function
 */
bool
std_typanalyze(VacAttrStats *stats)
{
	Form_pg_attribute attr = stats->attr;
	Oid			ltopr;
	Oid			eqopr;
	StdAnalyzeData *mystats;

	/* If the attstattarget column is negative, use the default value */
	/* NB: it is okay to scribble on stats->attr since it's a copy */
	if (attr->attstattarget < 0)
		attr->attstattarget = default_statistics_target;

	/* Look for default "<" and "=" operators for column's type */
	get_sort_group_operators(stats->attrtypid,
							 false, false, false,
							 &ltopr, &eqopr, NULL,
							 NULL);

	/* Save the operator info for compute_stats routines */
	mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
	mystats->eqopr = eqopr;
	mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
	mystats->ltopr = ltopr;
	stats->extra_data = mystats;

	/*
	 * Determine which standard statistics algorithm to use
	 */
	if (OidIsValid(eqopr) && OidIsValid(ltopr))
	{
		/* Seems to be a scalar datatype */
		stats->compute_stats = compute_scalar_stats;
		/*--------------------
		 * The following choice of minrows is based on the paper
		 * "Random sampling for histogram construction: how much is enough?"
		 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
		 * Proceedings of ACM SIGMOD International Conference on Management
		 * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
		 * says that for table size n, histogram size k, maximum relative
		 * error in bin size f, and error probability gamma, the minimum
		 * random sample size is
		 *		r = 4 * k * ln(2*n/gamma) / f^2
		 * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
		 *		r = 305.82 * k
		 * Note that because of the log function, the dependence on n is
		 * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
		 * bin size error with probability 0.99.  So there's no real need to
		 * scale for n, which is a good thing because we don't necessarily
		 * know it at this point.
		 *--------------------
		 */
		stats->minrows = 300 * attr->attstattarget;
	}
	else if (OidIsValid(eqopr))
	{
		/* We can still recognize distinct values */
		stats->compute_stats = compute_distinct_stats;
		/* Might as well use the same minrows as above */
		stats->minrows = 300 * attr->attstattarget;
	}
	else
	{
		/* Can't do much but the trivial stuff */
		stats->compute_stats = compute_trivial_stats;
		/* Might as well use the same minrows as above */
		stats->minrows = 300 * attr->attstattarget;
	}

	return true;
}


/*
 *	compute_trivial_stats() -- compute very basic column statistics
 *
 *	We use this when we cannot find a hash "=" operator for the datatype.
 *
 *	We determine the fraction of non-null rows and the average datum width.
 */
static void
compute_trivial_stats(VacAttrStatsP stats,
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows)
{
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attrtype->typbyval &&
							  stats->attrtype->typlen == -1);
	bool		is_varwidth = (!stats->attrtype->typbyval &&
							   stats->attrtype->typlen < 0);

	for (i = 0; i < samplerows; i++)
	{
		Datum		value;
		bool		isnull;

		vacuum_delay_point();

		value = fetchfunc(stats, i, &isnull);

		/* Check for null/nonnull */
		if (isnull)
		{
			null_cnt++;
			continue;
		}
		nonnull_cnt++;

		/*
		 * If it's a variable-width field, add up widths for average width
		 * calculation.  Note that if the value is toasted, we use the toasted
		 * width.  We don't bother with this calculation if it's a fixed-width
		 * type.
		 */
		if (is_varlena)
		{
			total_width += VARSIZE_ANY(DatumGetPointer(value));
		}
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}
	}

	/* We can only compute average width if we found some non-null values. */
	if (nonnull_cnt > 0)
	{
		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		if (is_varwidth)
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;
		stats->stadistinct = 0.0;	/* "unknown" */
	}
	else if (null_cnt > 0)
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		if (is_varwidth)
			stats->stawidth = 0;	/* "unknown" */
		else
			stats->stawidth = stats->attrtype->typlen;
		stats->stadistinct = 0.0;	/* "unknown" */
	}
}


/*
 *	compute_distinct_stats() -- compute column statistics including ndistinct
 *
 *	We use this when we can find only an "=" operator for the datatype.
 *
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, and the (estimated) number of distinct values.
 *
 *	The most common values are determined by brute force: we keep a list
 *	of previously seen values, ordered by number of times seen, as we scan
 *	the samples.  A newly seen value is inserted just after the last
 *	multiply-seen value, causing the bottommost (oldest) singly-seen value
 *	to drop off the list.  The accuracy of this method, and also its cost,
 *	depend mainly on the length of the list we are willing to keep.
 */
static void
compute_distinct_stats(VacAttrStatsP stats,
					   AnalyzeAttrFetchFunc fetchfunc,
					   int samplerows,
					   double totalrows)
{
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attrtype->typbyval &&
							  stats->attrtype->typlen == -1);
	bool		is_varwidth = (!stats->attrtype->typbyval &&
							   stats->attrtype->typlen < 0);
	FmgrInfo	f_cmpeq;
	typedef struct
	{
		Datum		value;
		int			count;
	} TrackItem;
	TrackItem  *track;
	int			track_cnt,
				track_max;
	int			num_mcv = stats->attr->attstattarget;
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;

	/*
	 * We track up to 2*n values for an n-element MCV list; but at least 10
	 */
	track_max = 2 * num_mcv;
	if (track_max < 10)
		track_max = 10;
	track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
	track_cnt = 0;

	fmgr_info(mystats->eqfunc, &f_cmpeq);

	for (i = 0; i < samplerows; i++)
	{
		Datum		value;
		bool		isnull;
		bool		match;
		int			firstcount1,
					j;

		vacuum_delay_point();

		value = fetchfunc(stats, i, &isnull);

		/* Check for null/nonnull */
		if (isnull)
		{
			null_cnt++;
			continue;
		}
		nonnull_cnt++;

		/*
		 * If it's a variable-width field, add up widths for average width
		 * calculation.  Note that if the value is toasted, we use the toasted
		 * width.  We don't bother with this calculation if it's a fixed-width
		 * type.
		 */
		if (is_varlena)
		{
			total_width += VARSIZE_ANY(DatumGetPointer(value));

			/*
			 * If the value is toasted, we want to detoast it just once to
			 * avoid repeated detoastings and resultant excess memory usage
			 * during the comparisons.  Also, check to see if the value is
			 * excessively wide, and if so don't detoast at all --- just
			 * ignore the value.
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
			{
				toowide_cnt++;
				continue;
			}
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
		}
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}

		/*
		 * See if the value matches anything we're already tracking.
		 */
		match = false;
		firstcount1 = track_cnt;
		for (j = 0; j < track_cnt; j++)
		{
			if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
											   stats->attrcollid,
											   value, track[j].value)))
			{
				match = true;
				break;
			}
			if (j < firstcount1 && track[j].count == 1)
				firstcount1 = j;
		}

		if (match)
		{
			/* Found a match */
			track[j].count++;
			/* This value may now need to "bubble up" in the track list */
			while (j > 0 && track[j].count > track[j - 1].count)
			{
				swapDatum(track[j].value, track[j - 1].value);
				swapInt(track[j].count, track[j - 1].count);
				j--;
			}
		}
		else
		{
			/* No match.  Insert at head of count-1 list */
			if (track_cnt < track_max)
				track_cnt++;
			for (j = track_cnt - 1; j > firstcount1; j--)
			{
				track[j].value = track[j - 1].value;
				track[j].count = track[j - 1].count;
			}
			if (firstcount1 < track_cnt)
			{
				track[firstcount1].value = value;
				track[firstcount1].count = 1;
			}
		}
	}

	/* We can only compute real stats if we found some non-null values. */
	if (nonnull_cnt > 0)
	{
		int			nmultiple,
					summultiple;

		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		if (is_varwidth)
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;

		/* Count the number of values we found multiple times */
		summultiple = 0;
		for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
		{
			if (track[nmultiple].count == 1)
				break;
			summultiple += track[nmultiple].count;
		}

		if (nmultiple == 0)
		{
			/*
			 * If we found no repeated non-null values, assume it's a unique
			 * column; but be sure to discount for any nulls we found.
			 */
			stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
		}
		else if (track_cnt < track_max && toowide_cnt == 0 &&
				 nmultiple == track_cnt)
		{
			/*
			 * Our track list includes every value in the sample, and every
			 * value appeared more than once.  Assume the column has just
			 * these values.  (This case is meant to address columns with
			 * small, fixed sets of possible values, such as boolean or enum
			 * columns.  If there are any values that appear just once in the
			 * sample, including too-wide values, we should assume that that's
			 * not what we're dealing with.)
			 */
			stats->stadistinct = track_cnt;
		}
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
			 * In this calculation, we consider only non-nulls.  We used to
			 * include rows with null values in the n and N counts, but that
			 * leads to inaccurate answers in columns with many nulls, and
			 * it's intuitively bogus anyway considering the desired result is
			 * the number of distinct non-null values.
			 *
			 * We assume (not very reliably!) that all the multiply-occurring
			 * values are reflected in the final track[] list, and the other
			 * nonnull values all appeared but once.  (XXX this usually
			 * results in a drastic overestimate of ndistinct.  Can we do
			 * any better?)
			 *----------
			 */
			int			f1 = nonnull_cnt - summultiple;
			int			d = f1 + nmultiple;
			double		n = samplerows - null_cnt;
			double		N = totalrows * (1.0 - stats->stanullfrac);
			double		stadistinct;

			/* N == 0 shouldn't happen, but just in case ... */
			if (N > 0)
				stadistinct = (n * d) / ((n - f1) + f1 * n / N);
			else
				stadistinct = 0;

			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < d)
				stadistinct = d;
			if (stadistinct > N)
				stadistinct = N;
			/* And round to integer */
			stats->stadistinct = floor(stadistinct + 0.5);
		}

		/*
		 * If we estimated the number of distinct values at more than 10% of
		 * the total row count (a very arbitrary limit), then assume that
		 * stadistinct should scale with the row count rather than be a fixed
		 * value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
			stats->stadistinct = -(stats->stadistinct / totalrows);

		/*
		 * Decide how many values are worth storing as most-common values. If
		 * we are able to generate a complete MCV list (all the values in the
		 * sample will fit, and we think these are all the ones in the table),
		 * then do so.  Otherwise, store only those values that are
		 * significantly more common than the values not in the list.
		 *
		 * Note: the first of these cases is meant to address columns with
		 * small, fixed sets of possible values, such as boolean or enum
		 * columns.  If we can *completely* represent the column population by
		 * an MCV list that will fit into the stats target, then we should do
		 * so and thus provide the planner with complete information.  But if
		 * the MCV list is not complete, it's generally worth being more
		 * selective, and not just filling it all the way up to the stats
		 * target.
		 */
		if (track_cnt < track_max && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
			int		   *mcv_counts;

			/* Incomplete list; decide how many values are worth keeping */
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;

			if (num_mcv > 0)
			{
				mcv_counts = (int *) palloc(num_mcv * sizeof(int));
				for (i = 0; i < num_mcv; i++)
					mcv_counts[i] = track[i].count;

				num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
										   stats->stadistinct,
										   stats->stanullfrac,
										   samplerows, totalrows);
			}
		}

		/* Generate MCV slot entry */
		if (num_mcv > 0)
		{
			MemoryContext old_context;
			Datum	   *mcv_values;
			float4	   *mcv_freqs;

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(track[i].value,
										  stats->attrtype->typbyval,
										  stats->attrtype->typlen);
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCV;
			stats->staop[0] = mystats->eqopr;
			stats->stacoll[0] = stats->attrcollid;
			stats->stanumbers[0] = mcv_freqs;
			stats->numnumbers[0] = num_mcv;
			stats->stavalues[0] = mcv_values;
			stats->numvalues[0] = num_mcv;

			/*
			 * Accept the defaults for stats->statypid and others. They have
			 * been set before we were called (see vacuum.h)
			 */
		}
	}
	else if (null_cnt > 0)
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		if (is_varwidth)
			stats->stawidth = 0;	/* "unknown" */
		else
			stats->stawidth = stats->attrtype->typlen;
		stats->stadistinct = 0.0;	/* "unknown" */
	}

	/* We don't need to bother cleaning up any of our temporary palloc's */
}


/*
 *	compute_scalar_stats() -- compute column statistics
 *
 *	We use this when we can find "=" and "<" operators for the datatype.
 *
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, the (estimated) number of distinct values, the
 *	distribution histogram, and the correlation of physical to logical order.
 *
 *	The desired stats can be determined fairly easily after sorting the
 *	data values into order.
 */
static void
compute_scalar_stats(VacAttrStatsP stats,
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows)
{
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attrtype->typbyval &&
							  stats->attrtype->typlen == -1);
	bool		is_varwidth = (!stats->attrtype->typbyval &&
							   stats->attrtype->typlen < 0);
	double		corr_xysum;
	SortSupportData ssup;
	ScalarItem *values;
	int			values_cnt = 0;
	int		   *tupnoLink;
	ScalarMCVItem *track;
	int			track_cnt = 0;
	int			num_mcv = stats->attr->attstattarget;
	int			num_bins = stats->attr->attstattarget;
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;

	values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
	tupnoLink = (int *) palloc(samplerows * sizeof(int));
	track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));

	memset(&ssup, 0, sizeof(ssup));
	ssup.ssup_cxt = CurrentMemoryContext;
	ssup.ssup_collation = stats->attrcollid;
	ssup.ssup_nulls_first = false;

	/*
	 * For now, don't perform abbreviated key conversion, because full values
	 * are required for MCV slot generation.  Supporting that optimization
	 * would necessitate teaching compare_scalars() to call a tie-breaker.
	 */
	ssup.abbreviate = false;

	PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);

	/* Initial scan to find sortable values */
	for (i = 0; i < samplerows; i++)
	{
		Datum		value;
		bool		isnull;

		vacuum_delay_point();

		value = fetchfunc(stats, i, &isnull);

		/* Check for null/nonnull */
		if (isnull)
		{
			null_cnt++;
			continue;
		}
		nonnull_cnt++;

		/*
		 * If it's a variable-width field, add up widths for average width
		 * calculation.  Note that if the value is toasted, we use the toasted
		 * width.  We don't bother with this calculation if it's a fixed-width
		 * type.
		 */
		if (is_varlena)
		{
			total_width += VARSIZE_ANY(DatumGetPointer(value));

			/*
			 * If the value is toasted, we want to detoast it just once to
			 * avoid repeated detoastings and resultant excess memory usage
			 * during the comparisons.  Also, check to see if the value is
			 * excessively wide, and if so don't detoast at all --- just
			 * ignore the value.
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
			{
				toowide_cnt++;
				continue;
			}
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
		}
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}

		/* Add it to the list to be sorted */
		values[values_cnt].value = value;
		values[values_cnt].tupno = values_cnt;
		tupnoLink[values_cnt] = values_cnt;
		values_cnt++;
	}

	/* We can only compute real stats if we found some sortable values. */
	if (values_cnt > 0)
	{
		int			ndistinct,	/* # distinct values in sample */
					nmultiple,	/* # that appear multiple times */
					num_hist,
					dups_cnt;
		int			slot_idx = 0;
		CompareScalarsContext cxt;

		/* Sort the collected values */
		cxt.ssup = &ssup;
		cxt.tupnoLink = tupnoLink;
		qsort_arg((void *) values, values_cnt, sizeof(ScalarItem),
				  compare_scalars, (void *) &cxt);

		/*
		 * Now scan the values in order, find the most common ones, and also
		 * accumulate ordering-correlation statistics.
		 *
		 * To determine which are most common, we first have to count the
		 * number of duplicates of each value.  The duplicates are adjacent in
		 * the sorted list, so a brute-force approach is to compare successive
		 * datum values until we find two that are not equal. However, that
		 * requires N-1 invocations of the datum comparison routine, which are
		 * completely redundant with work that was done during the sort.  (The
		 * sort algorithm must at some point have compared each pair of items
		 * that are adjacent in the sorted order; otherwise it could not know
		 * that it's ordered the pair correctly.) We exploit this by having
		 * compare_scalars remember the highest tupno index that each
		 * ScalarItem has been found equal to.  At the end of the sort, a
		 * ScalarItem's tupnoLink will still point to itself if and only if it
		 * is the last item of its group of duplicates (since the group will
		 * be ordered by tupno).
		 */
		corr_xysum = 0;
		ndistinct = 0;
		nmultiple = 0;
		dups_cnt = 0;
		for (i = 0; i < values_cnt; i++)
		{
			int			tupno = values[i].tupno;

			corr_xysum += ((double) i) * ((double) tupno);
			dups_cnt++;
			if (tupnoLink[tupno] == tupno)
			{
				/* Reached end of duplicates of this value */
				ndistinct++;
				if (dups_cnt > 1)
				{
					nmultiple++;
					if (track_cnt < num_mcv ||
						dups_cnt > track[track_cnt - 1].count)
					{
						/*
						 * Found a new item for the mcv list; find its
						 * position, bubbling down old items if needed. Loop
						 * invariant is that j points at an empty/ replaceable
						 * slot.
						 */
						int			j;

						if (track_cnt < num_mcv)
							track_cnt++;
						for (j = track_cnt - 1; j > 0; j--)
						{
							if (dups_cnt <= track[j - 1].count)
								break;
							track[j].count = track[j - 1].count;
							track[j].first = track[j - 1].first;
						}
						track[j].count = dups_cnt;
						track[j].first = i + 1 - dups_cnt;
					}
				}
				dups_cnt = 0;
			}
		}

		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		if (is_varwidth)
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;

		if (nmultiple == 0)
		{
			/*
			 * If we found no repeated non-null values, assume it's a unique
			 * column; but be sure to discount for any nulls we found.
			 */
			stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
		}
		else if (toowide_cnt == 0 && nmultiple == ndistinct)
		{
			/*
			 * Every value in the sample appeared more than once.  Assume the
			 * column has just these values.  (This case is meant to address
			 * columns with small, fixed sets of possible values, such as
			 * boolean or enum columns.  If there are any values that appear
			 * just once in the sample, including too-wide values, we should
			 * assume that that's not what we're dealing with.)
			 */
			stats->stadistinct = ndistinct;
		}
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
			 * In this calculation, we consider only non-nulls.  We used to
			 * include rows with null values in the n and N counts, but that
			 * leads to inaccurate answers in columns with many nulls, and
			 * it's intuitively bogus anyway considering the desired result is
			 * the number of distinct non-null values.
			 *
			 * Overwidth values are assumed to have been distinct.
			 *----------
			 */
			int			f1 = ndistinct - nmultiple + toowide_cnt;
			int			d = f1 + nmultiple;
			double		n = samplerows - null_cnt;
			double		N = totalrows * (1.0 - stats->stanullfrac);
			double		stadistinct;

			/* N == 0 shouldn't happen, but just in case ... */
			if (N > 0)
				stadistinct = (n * d) / ((n - f1) + f1 * n / N);
			else
				stadistinct = 0;

			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < d)
				stadistinct = d;
			if (stadistinct > N)
				stadistinct = N;
			/* And round to integer */
			stats->stadistinct = floor(stadistinct + 0.5);
		}

		/*
		 * If we estimated the number of distinct values at more than 10% of
		 * the total row count (a very arbitrary limit), then assume that
		 * stadistinct should scale with the row count rather than be a fixed
		 * value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
			stats->stadistinct = -(stats->stadistinct / totalrows);

		/*
		 * Decide how many values are worth storing as most-common values. If
		 * we are able to generate a complete MCV list (all the values in the
		 * sample will fit, and we think these are all the ones in the table),
		 * then do so.  Otherwise, store only those values that are
		 * significantly more common than the values not in the list.
		 *
		 * Note: the first of these cases is meant to address columns with
		 * small, fixed sets of possible values, such as boolean or enum
		 * columns.  If we can *completely* represent the column population by
		 * an MCV list that will fit into the stats target, then we should do
		 * so and thus provide the planner with complete information.  But if
		 * the MCV list is not complete, it's generally worth being more
		 * selective, and not just filling it all the way up to the stats
		 * target.
		 */
		if (track_cnt == ndistinct && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
			int		   *mcv_counts;

			/* Incomplete list; decide how many values are worth keeping */
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;

			if (num_mcv > 0)
			{
				mcv_counts = (int *) palloc(num_mcv * sizeof(int));
				for (i = 0; i < num_mcv; i++)
					mcv_counts[i] = track[i].count;

				num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
										   stats->stadistinct,
										   stats->stanullfrac,
										   samplerows, totalrows);
			}
		}

		/* Generate MCV slot entry */
		if (num_mcv > 0)
		{
			MemoryContext old_context;
			Datum	   *mcv_values;
			float4	   *mcv_freqs;

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(values[track[i].first].value,
										  stats->attrtype->typbyval,
										  stats->attrtype->typlen);
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
			stats->staop[slot_idx] = mystats->eqopr;
			stats->stacoll[slot_idx] = stats->attrcollid;
			stats->stanumbers[slot_idx] = mcv_freqs;
			stats->numnumbers[slot_idx] = num_mcv;
			stats->stavalues[slot_idx] = mcv_values;
			stats->numvalues[slot_idx] = num_mcv;

			/*
			 * Accept the defaults for stats->statypid and others. They have
			 * been set before we were called (see vacuum.h)
			 */
			slot_idx++;
		}

		/*
		 * Generate a histogram slot entry if there are at least two distinct
		 * values not accounted for in the MCV list.  (This ensures the
		 * histogram won't collapse to empty or a singleton.)
		 */
		num_hist = ndistinct - num_mcv;
		if (num_hist > num_bins)
			num_hist = num_bins + 1;
		if (num_hist >= 2)
		{
			MemoryContext old_context;
			Datum	   *hist_values;
			int			nvals;
			int			pos,
						posfrac,
						delta,
						deltafrac;

			/* Sort the MCV items into position order to speed next loop */
			qsort((void *) track, num_mcv,
				  sizeof(ScalarMCVItem), compare_mcvs);

			/*
			 * Collapse out the MCV items from the values[] array.
			 *
			 * Note we destroy the values[] array here... but we don't need it
			 * for anything more.  We do, however, still need values_cnt.
			 * nvals will be the number of remaining entries in values[].
			 */
			if (num_mcv > 0)
			{
				int			src,
							dest;
				int			j;

				src = dest = 0;
				j = 0;			/* index of next interesting MCV item */
				while (src < values_cnt)
				{
					int			ncopy;

					if (j < num_mcv)
					{
						int			first = track[j].first;

						if (src >= first)
						{
							/* advance past this MCV item */
							src = first + track[j].count;
							j++;
							continue;
						}
						ncopy = first - src;
					}
					else
						ncopy = values_cnt - src;
					memmove(&values[dest], &values[src],
							ncopy * sizeof(ScalarItem));
					src += ncopy;
					dest += ncopy;
				}
				nvals = dest;
			}
			else
				nvals = values_cnt;
			Assert(nvals >= num_hist);

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			hist_values = (Datum *) palloc(num_hist * sizeof(Datum));

			/*
			 * The object of this loop is to copy the first and last values[]
			 * entries along with evenly-spaced values in between.  So the
			 * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)].  But
			 * computing that subscript directly risks integer overflow when
			 * the stats target is more than a couple thousand.  Instead we
			 * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
			 * the integral and fractional parts of the sum separately.
			 */
			delta = (nvals - 1) / (num_hist - 1);
			deltafrac = (nvals - 1) % (num_hist - 1);
			pos = posfrac = 0;

			for (i = 0; i < num_hist; i++)
			{
				hist_values[i] = datumCopy(values[pos].value,
										   stats->attrtype->typbyval,
										   stats->attrtype->typlen);
				pos += delta;
				posfrac += deltafrac;
				if (posfrac >= (num_hist - 1))
				{
					/* fractional part exceeds 1, carry to integer part */
					pos++;
					posfrac -= (num_hist - 1);
				}
			}

			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
			stats->staop[slot_idx] = mystats->ltopr;
			stats->stacoll[slot_idx] = stats->attrcollid;
			stats->stavalues[slot_idx] = hist_values;
			stats->numvalues[slot_idx] = num_hist;

			/*
			 * Accept the defaults for stats->statypid and others. They have
			 * been set before we were called (see vacuum.h)
			 */
			slot_idx++;
		}

		/* Generate a correlation entry if there are multiple values */
		if (values_cnt > 1)
		{
			MemoryContext old_context;
			float4	   *corrs;
			double		corr_xsum,
						corr_x2sum;

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);
			corrs = (float4 *) palloc(sizeof(float4));
			MemoryContextSwitchTo(old_context);

			/*----------
			 * Since we know the x and y value sets are both
			 *		0, 1, ..., values_cnt-1
			 * we have sum(x) = sum(y) =
			 *		(values_cnt-1)*values_cnt / 2
			 * and sum(x^2) = sum(y^2) =
			 *		(values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
			 *----------
			 */
			corr_xsum = ((double) (values_cnt - 1)) *
				((double) values_cnt) / 2.0;
			corr_x2sum = ((double) (values_cnt - 1)) *
				((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;

			/* And the correlation coefficient reduces to */
			corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
				(values_cnt * corr_x2sum - corr_xsum * corr_xsum);

			stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
			stats->staop[slot_idx] = mystats->ltopr;
			stats->stacoll[slot_idx] = stats->attrcollid;
			stats->stanumbers[slot_idx] = corrs;
			stats->numnumbers[slot_idx] = 1;
			slot_idx++;
		}
	}
	else if (nonnull_cnt > 0)
	{
		/* We found some non-null values, but they were all too wide */
		Assert(nonnull_cnt == toowide_cnt);
		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		if (is_varwidth)
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;
		/* Assume all too-wide values are distinct, so it's a unique column */
		stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
	}
	else if (null_cnt > 0)
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		if (is_varwidth)
			stats->stawidth = 0;	/* "unknown" */
		else
			stats->stawidth = stats->attrtype->typlen;
		stats->stadistinct = 0.0;	/* "unknown" */
	}

	/* We don't need to bother cleaning up any of our temporary palloc's */
}

/*
 * qsort_arg comparator for sorting ScalarItems
 *
 * Aside from sorting the items, we update the tupnoLink[] array
 * whenever two ScalarItems are found to contain equal datums.  The array
 * is indexed by tupno; for each ScalarItem, it contains the highest
 * tupno that that item's datum has been found to be equal to.  This allows
 * us to avoid additional comparisons in compute_scalar_stats().
 */
static int
compare_scalars(const void *a, const void *b, void *arg)
{
	Datum		da = ((const ScalarItem *) a)->value;
	int			ta = ((const ScalarItem *) a)->tupno;
	Datum		db = ((const ScalarItem *) b)->value;
	int			tb = ((const ScalarItem *) b)->tupno;
	CompareScalarsContext *cxt = (CompareScalarsContext *) arg;
	int			compare;

	compare = ApplySortComparator(da, false, db, false, cxt->ssup);
	if (compare != 0)
		return compare;

	/*
	 * The two datums are equal, so update cxt->tupnoLink[].
	 */
	if (cxt->tupnoLink[ta] < tb)
		cxt->tupnoLink[ta] = tb;
	if (cxt->tupnoLink[tb] < ta)
		cxt->tupnoLink[tb] = ta;

	/*
	 * For equal datums, sort by tupno
	 */
	return ta - tb;
}

/*
 * qsort comparator for sorting ScalarMCVItems by position
 */
static int
compare_mcvs(const void *a, const void *b)
{
	int			da = ((const ScalarMCVItem *) a)->first;
	int			db = ((const ScalarMCVItem *) b)->first;

	return da - db;
}

/*
 * Analyze the list of common values in the sample and decide how many are
 * worth storing in the table's MCV list.
 *
 * mcv_counts is assumed to be a list of the counts of the most common values
 * seen in the sample, starting with the most common.  The return value is the
 * number that are significantly more common than the values not in the list,
 * and which are therefore deemed worth storing in the table's MCV list.
 */
static int
analyze_mcv_list(int *mcv_counts,
				 int num_mcv,
				 double stadistinct,
				 double stanullfrac,
				 int samplerows,
				 double totalrows)
{
	double		ndistinct_table;
	double		sumcount;
	int			i;

	/*
	 * If the entire table was sampled, keep the whole list.  This also
	 * protects us against division by zero in the code below.
	 */
	if (samplerows == totalrows || totalrows <= 1.0)
		return num_mcv;

	/* Re-extract the estimated number of distinct nonnull values in table */
	ndistinct_table = stadistinct;
	if (ndistinct_table < 0)
		ndistinct_table = -ndistinct_table * totalrows;

	/*
	 * Exclude the least common values from the MCV list, if they are not
	 * significantly more common than the estimated selectivity they would
	 * have if they weren't in the list.  All non-MCV values are assumed to be
	 * equally common, after taking into account the frequencies of all the
	 * values in the MCV list and the number of nulls (c.f. eqsel()).
	 *
	 * Here sumcount tracks the total count of all but the last (least common)
	 * value in the MCV list, allowing us to determine the effect of excluding
	 * that value from the list.
	 *
	 * Note that we deliberately do this by removing values from the full
	 * list, rather than starting with an empty list and adding values,
	 * because the latter approach can fail to add any values if all the most
	 * common values have around the same frequency and make up the majority
	 * of the table, so that the overall average frequency of all values is
	 * roughly the same as that of the common values.  This would lead to any
	 * uncommon values being significantly overestimated.
	 */
	sumcount = 0.0;
	for (i = 0; i < num_mcv - 1; i++)
		sumcount += mcv_counts[i];

	while (num_mcv > 0)
	{
		double		selec,
					otherdistinct,
					N,
					n,
					K,
					variance,
					stddev;

		/*
		 * Estimated selectivity the least common value would have if it
		 * wasn't in the MCV list (c.f. eqsel()).
		 */
		selec = 1.0 - sumcount / samplerows - stanullfrac;
		if (selec < 0.0)
			selec = 0.0;
		if (selec > 1.0)
			selec = 1.0;
		otherdistinct = ndistinct_table - (num_mcv - 1);
		if (otherdistinct > 1)
			selec /= otherdistinct;

		/*
		 * If the value is kept in the MCV list, its population frequency is
		 * assumed to equal its sample frequency.  We use the lower end of a
		 * textbook continuity-corrected Wald-type confidence interval to
		 * determine if that is significantly more common than the non-MCV
		 * frequency --- specifically we assume the population frequency is
		 * highly likely to be within around 2 standard errors of the sample
		 * frequency, which equates to an interval of 2 standard deviations
		 * either side of the sample count, plus an additional 0.5 for the
		 * continuity correction.  Since we are sampling without replacement,
		 * this is a hypergeometric distribution.
		 *
		 * XXX: Empirically, this approach seems to work quite well, but it
		 * may be worth considering more advanced techniques for estimating
		 * the confidence interval of the hypergeometric distribution.
		 */
		N = totalrows;
		n = samplerows;
		K = N * mcv_counts[num_mcv - 1] / n;
		variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
		stddev = sqrt(variance);

		if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
		{
			/*
			 * The value is significantly more common than the non-MCV
			 * selectivity would suggest.  Keep it, and all the other more
			 * common values in the list.
			 */
			break;
		}
		else
		{
			/* Discard this value and consider the next least common value */
			num_mcv--;
			if (num_mcv == 0)
				break;
			sumcount -= mcv_counts[num_mcv - 1];
		}
	}
	return num_mcv;
}