summaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtutils.c
blob: 1649307251cd8b0fdcb95f1af005c119509c45f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
/*-------------------------------------------------------------------------
 *
 * nbtutils.c
 *	  Utility code for Postgres btree implementation.
 *
 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/access/nbtree/nbtutils.c,v 1.93 2009/01/05 17:14:28 alvherre Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <time.h>

#include "access/genam.h"
#include "access/nbtree.h"
#include "access/reloptions.h"
#include "access/relscan.h"
#include "executor/execdebug.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/lwlock.h"
#include "storage/shmem.h"
#include "utils/lsyscache.h"


static bool _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
						 ScanKey leftarg, ScanKey rightarg,
						 bool *result);
static void _bt_mark_scankey_with_indoption(ScanKey skey, int16 *indoption);
static void _bt_mark_scankey_required(ScanKey skey);
static bool _bt_check_rowcompare(ScanKey skey,
					 IndexTuple tuple, TupleDesc tupdesc,
					 ScanDirection dir, bool *continuescan);


/*
 * _bt_mkscankey
 *		Build an insertion scan key that contains comparison data from itup
 *		as well as comparator routines appropriate to the key datatypes.
 *
 *		The result is intended for use with _bt_compare().
 */
ScanKey
_bt_mkscankey(Relation rel, IndexTuple itup)
{
	ScanKey		skey;
	TupleDesc	itupdesc;
	int			natts;
	int16	   *indoption;
	int			i;

	itupdesc = RelationGetDescr(rel);
	natts = RelationGetNumberOfAttributes(rel);
	indoption = rel->rd_indoption;

	skey = (ScanKey) palloc(natts * sizeof(ScanKeyData));

	for (i = 0; i < natts; i++)
	{
		FmgrInfo   *procinfo;
		Datum		arg;
		bool		null;
		int			flags;

		/*
		 * We can use the cached (default) support procs since no cross-type
		 * comparison can be needed.
		 */
		procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
		arg = index_getattr(itup, i + 1, itupdesc, &null);
		flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT);
		ScanKeyEntryInitializeWithInfo(&skey[i],
									   flags,
									   (AttrNumber) (i + 1),
									   InvalidStrategy,
									   InvalidOid,
									   procinfo,
									   arg);
	}

	return skey;
}

/*
 * _bt_mkscankey_nodata
 *		Build an insertion scan key that contains 3-way comparator routines
 *		appropriate to the key datatypes, but no comparison data.  The
 *		comparison data ultimately used must match the key datatypes.
 *
 *		The result cannot be used with _bt_compare(), unless comparison
 *		data is first stored into the key entries.	Currently this
 *		routine is only called by nbtsort.c and tuplesort.c, which have
 *		their own comparison routines.
 */
ScanKey
_bt_mkscankey_nodata(Relation rel)
{
	ScanKey		skey;
	int			natts;
	int16	   *indoption;
	int			i;

	natts = RelationGetNumberOfAttributes(rel);
	indoption = rel->rd_indoption;

	skey = (ScanKey) palloc(natts * sizeof(ScanKeyData));

	for (i = 0; i < natts; i++)
	{
		FmgrInfo   *procinfo;
		int			flags;

		/*
		 * We can use the cached (default) support procs since no cross-type
		 * comparison can be needed.
		 */
		procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
		flags = SK_ISNULL | (indoption[i] << SK_BT_INDOPTION_SHIFT);
		ScanKeyEntryInitializeWithInfo(&skey[i],
									   flags,
									   (AttrNumber) (i + 1),
									   InvalidStrategy,
									   InvalidOid,
									   procinfo,
									   (Datum) 0);
	}

	return skey;
}

/*
 * free a scan key made by either _bt_mkscankey or _bt_mkscankey_nodata.
 */
void
_bt_freeskey(ScanKey skey)
{
	pfree(skey);
}

/*
 * free a retracement stack made by _bt_search.
 */
void
_bt_freestack(BTStack stack)
{
	BTStack		ostack;

	while (stack != NULL)
	{
		ostack = stack;
		stack = stack->bts_parent;
		pfree(ostack);
	}
}


/*
 *	_bt_preprocess_keys() -- Preprocess scan keys
 *
 * The caller-supplied search-type keys (in scan->keyData[]) are copied to
 * so->keyData[] with possible transformation.	scan->numberOfKeys is
 * the number of input keys, so->numberOfKeys gets the number of output
 * keys (possibly less, never greater).
 *
 * The output keys are marked with additional sk_flag bits beyond the
 * system-standard bits supplied by the caller.  The DESC and NULLS_FIRST
 * indoption bits for the relevant index attribute are copied into the flags.
 * Also, for a DESC column, we commute (flip) all the sk_strategy numbers
 * so that the index sorts in the desired direction.
 *
 * One key purpose of this routine is to discover how many scan keys
 * must be satisfied to continue the scan.	It also attempts to eliminate
 * redundant keys and detect contradictory keys.  (If the index opfamily
 * provides incomplete sets of cross-type operators, we may fail to detect
 * redundant or contradictory keys, but we can survive that.)
 *
 * The output keys must be sorted by index attribute.  Presently we expect
 * (but verify) that the input keys are already so sorted --- this is done
 * by group_clauses_by_indexkey() in indxpath.c.  Some reordering of the keys
 * within each attribute may be done as a byproduct of the processing here,
 * but no other code depends on that.
 *
 * The output keys are marked with flags SK_BT_REQFWD and/or SK_BT_REQBKWD
 * if they must be satisfied in order to continue the scan forward or backward
 * respectively.  _bt_checkkeys uses these flags.  For example, if the quals
 * are "x = 1 AND y < 4 AND z < 5", then _bt_checkkeys will reject a tuple
 * (1,2,7), but we must continue the scan in case there are tuples (1,3,z).
 * But once we reach tuples like (1,4,z) we can stop scanning because no
 * later tuples could match.  This is reflected by marking the x and y keys,
 * but not the z key, with SK_BT_REQFWD.  In general, the keys for leading
 * attributes with "=" keys are marked both SK_BT_REQFWD and SK_BT_REQBKWD.
 * For the first attribute without an "=" key, any "<" and "<=" keys are
 * marked SK_BT_REQFWD while any ">" and ">=" keys are marked SK_BT_REQBKWD.
 * This can be seen to be correct by considering the above example.  Note
 * in particular that if there are no keys for a given attribute, the keys for
 * subsequent attributes can never be required; for instance "WHERE y = 4"
 * requires a full-index scan.
 *
 * If possible, redundant keys are eliminated: we keep only the tightest
 * >/>= bound and the tightest </<= bound, and if there's an = key then
 * that's the only one returned.  (So, we return either a single = key,
 * or one or two boundary-condition keys for each attr.)  However, if we
 * cannot compare two keys for lack of a suitable cross-type operator,
 * we cannot eliminate either.	If there are two such keys of the same
 * operator strategy, the second one is just pushed into the output array
 * without further processing here.  We may also emit both >/>= or both
 * </<= keys if we can't compare them.  The logic about required keys still
 * works if we don't eliminate redundant keys.
 *
 * As a byproduct of this work, we can detect contradictory quals such
 * as "x = 1 AND x > 2".  If we see that, we return so->qual_ok = FALSE,
 * indicating the scan need not be run at all since no tuples can match.
 * (In this case we do not bother completing the output key array!)
 * Again, missing cross-type operators might cause us to fail to prove the
 * quals contradictory when they really are, but the scan will work correctly.
 *
 * Row comparison keys are currently also treated without any smarts:
 * we just transfer them into the preprocessed array without any
 * editorialization.  We can treat them the same as an ordinary inequality
 * comparison on the row's first index column, for the purposes of the logic
 * about required keys.
 *
 * Note: the reason we have to copy the preprocessed scan keys into private
 * storage is that we are modifying the array based on comparisons of the
 * key argument values, which could change on a rescan.  Therefore we can't
 * overwrite the caller's data structure.
 */
void
_bt_preprocess_keys(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int			numberOfKeys = scan->numberOfKeys;
	int16	   *indoption = scan->indexRelation->rd_indoption;
	int			new_numberOfKeys;
	int			numberOfEqualCols;
	ScanKey		inkeys;
	ScanKey		outkeys;
	ScanKey		cur;
	ScanKey		xform[BTMaxStrategyNumber];
	bool		test_result;
	int			i,
				j;
	AttrNumber	attno;

	/* initialize result variables */
	so->qual_ok = true;
	so->numberOfKeys = 0;

	if (numberOfKeys < 1)
		return;					/* done if qual-less scan */

	inkeys = scan->keyData;
	outkeys = so->keyData;
	cur = &inkeys[0];
	/* we check that input keys are correctly ordered */
	if (cur->sk_attno < 1)
		elog(ERROR, "btree index keys must be ordered by attribute");

	/* We can short-circuit most of the work if there's just one key */
	if (numberOfKeys == 1)
	{
		/*
		 * We treat all btree operators as strict (even if they're not so
		 * marked in pg_proc).	This means that it is impossible for an
		 * operator condition with a NULL comparison constant to succeed, and
		 * we can reject it right away.
		 *
		 * However, we now also support "x IS NULL" clauses as search
		 * conditions, so in that case keep going.	The planner has not filled
		 * in any particular strategy in this case, so set it to
		 * BTEqualStrategyNumber --- we can treat IS NULL as an equality
		 * operator for purposes of search strategy.
		 */
		if (cur->sk_flags & SK_ISNULL)
		{
			if (cur->sk_flags & SK_SEARCHNULL)
			{
				cur->sk_strategy = BTEqualStrategyNumber;
				cur->sk_subtype = InvalidOid;
			}
			else
				so->qual_ok = false;
		}
		_bt_mark_scankey_with_indoption(cur, indoption);
		memcpy(outkeys, cur, sizeof(ScanKeyData));
		so->numberOfKeys = 1;
		/* We can mark the qual as required if it's for first index col */
		if (cur->sk_attno == 1)
			_bt_mark_scankey_required(outkeys);
		return;
	}

	/*
	 * Otherwise, do the full set of pushups.
	 */
	new_numberOfKeys = 0;
	numberOfEqualCols = 0;

	/*
	 * Initialize for processing of keys for attr 1.
	 *
	 * xform[i] points to the currently best scan key of strategy type i+1; it
	 * is NULL if we haven't yet found such a key for this attr.
	 */
	attno = 1;
	memset(xform, 0, sizeof(xform));

	/*
	 * Loop iterates from 0 to numberOfKeys inclusive; we use the last pass to
	 * handle after-last-key processing.  Actual exit from the loop is at the
	 * "break" statement below.
	 */
	for (i = 0;; cur++, i++)
	{
		if (i < numberOfKeys)
		{
			/* See comments above about NULLs and IS NULL handling. */
			/* Note: we assume SK_ISNULL is never set in a row header key */
			if (cur->sk_flags & SK_ISNULL)
			{
				if (cur->sk_flags & SK_SEARCHNULL)
				{
					cur->sk_strategy = BTEqualStrategyNumber;
					cur->sk_subtype = InvalidOid;
				}
				else
				{
					so->qual_ok = false;
					return;
				}
			}
		}

		/*
		 * If we are at the end of the keys for a particular attr, finish up
		 * processing and emit the cleaned-up keys.
		 */
		if (i == numberOfKeys || cur->sk_attno != attno)
		{
			int			priorNumberOfEqualCols = numberOfEqualCols;

			/* check input keys are correctly ordered */
			if (i < numberOfKeys && cur->sk_attno < attno)
				elog(ERROR, "btree index keys must be ordered by attribute");

			/*
			 * If = has been specified, all other keys can be eliminated as
			 * redundant.  In case of key > 2 && key == 1 we can set qual_ok
			 * to false and abandon further processing.
			 */
			if (xform[BTEqualStrategyNumber - 1])
			{
				ScanKey		eq = xform[BTEqualStrategyNumber - 1];

				for (j = BTMaxStrategyNumber; --j >= 0;)
				{
					ScanKey		chk = xform[j];

					if (!chk || j == (BTEqualStrategyNumber - 1))
						continue;

					/* IS NULL together with any other predicate must fail */
					if (eq->sk_flags & SK_SEARCHNULL)
					{
						so->qual_ok = false;
						return;
					}

					if (_bt_compare_scankey_args(scan, chk, eq, chk,
												 &test_result))
					{
						if (!test_result)
						{
							/* keys proven mutually contradictory */
							so->qual_ok = false;
							return;
						}
						/* else discard the redundant non-equality key */
						xform[j] = NULL;
					}
					/* else, cannot determine redundancy, keep both keys */
				}
				/* track number of attrs for which we have "=" keys */
				numberOfEqualCols++;
			}

			/* try to keep only one of <, <= */
			if (xform[BTLessStrategyNumber - 1]
				&& xform[BTLessEqualStrategyNumber - 1])
			{
				ScanKey		lt = xform[BTLessStrategyNumber - 1];
				ScanKey		le = xform[BTLessEqualStrategyNumber - 1];

				if (_bt_compare_scankey_args(scan, le, lt, le,
											 &test_result))
				{
					if (test_result)
						xform[BTLessEqualStrategyNumber - 1] = NULL;
					else
						xform[BTLessStrategyNumber - 1] = NULL;
				}
			}

			/* try to keep only one of >, >= */
			if (xform[BTGreaterStrategyNumber - 1]
				&& xform[BTGreaterEqualStrategyNumber - 1])
			{
				ScanKey		gt = xform[BTGreaterStrategyNumber - 1];
				ScanKey		ge = xform[BTGreaterEqualStrategyNumber - 1];

				if (_bt_compare_scankey_args(scan, ge, gt, ge,
											 &test_result))
				{
					if (test_result)
						xform[BTGreaterEqualStrategyNumber - 1] = NULL;
					else
						xform[BTGreaterStrategyNumber - 1] = NULL;
				}
			}

			/*
			 * Emit the cleaned-up keys into the outkeys[] array, and then
			 * mark them if they are required.	They are required (possibly
			 * only in one direction) if all attrs before this one had "=".
			 */
			for (j = BTMaxStrategyNumber; --j >= 0;)
			{
				if (xform[j])
				{
					ScanKey		outkey = &outkeys[new_numberOfKeys++];

					memcpy(outkey, xform[j], sizeof(ScanKeyData));
					if (priorNumberOfEqualCols == attno - 1)
						_bt_mark_scankey_required(outkey);
				}
			}

			/*
			 * Exit loop here if done.
			 */
			if (i == numberOfKeys)
				break;

			/* Re-initialize for new attno */
			attno = cur->sk_attno;
			memset(xform, 0, sizeof(xform));
		}

		/* apply indoption to scankey (might change sk_strategy!) */
		_bt_mark_scankey_with_indoption(cur, indoption);

		/* check strategy this key's operator corresponds to */
		j = cur->sk_strategy - 1;

		/* if row comparison, push it directly to the output array */
		if (cur->sk_flags & SK_ROW_HEADER)
		{
			ScanKey		outkey = &outkeys[new_numberOfKeys++];

			memcpy(outkey, cur, sizeof(ScanKeyData));
			if (numberOfEqualCols == attno - 1)
				_bt_mark_scankey_required(outkey);

			/*
			 * We don't support RowCompare using equality; such a qual would
			 * mess up the numberOfEqualCols tracking.
			 */
			Assert(j != (BTEqualStrategyNumber - 1));
			continue;
		}

		/* have we seen one of these before? */
		if (xform[j] == NULL)
		{
			/* nope, so remember this scankey */
			xform[j] = cur;
		}
		else
		{
			/* yup, keep only the more restrictive key */

			/* if either arg is NULL, don't try to compare */
			if ((cur->sk_flags | xform[j]->sk_flags) & SK_ISNULL)
			{
				/* at least one of them must be an IS NULL clause */
				Assert(j == (BTEqualStrategyNumber - 1));
				Assert((cur->sk_flags | xform[j]->sk_flags) & SK_SEARCHNULL);
				/* if one is and one isn't, the search must fail */
				if ((cur->sk_flags ^ xform[j]->sk_flags) & SK_SEARCHNULL)
				{
					so->qual_ok = false;
					return;
				}
				/* we have duplicate IS NULL clauses, ignore the newer one */
				continue;
			}

			if (_bt_compare_scankey_args(scan, cur, cur, xform[j],
										 &test_result))
			{
				if (test_result)
					xform[j] = cur;
				else if (j == (BTEqualStrategyNumber - 1))
				{
					/* key == a && key == b, but a != b */
					so->qual_ok = false;
					return;
				}
				/* else old key is more restrictive, keep it */
			}
			else
			{
				/*
				 * We can't determine which key is more restrictive.  Keep the
				 * previous one in xform[j] and push this one directly to the
				 * output array.
				 */
				ScanKey		outkey = &outkeys[new_numberOfKeys++];

				memcpy(outkey, cur, sizeof(ScanKeyData));
				if (numberOfEqualCols == attno - 1)
					_bt_mark_scankey_required(outkey);
			}
		}
	}

	so->numberOfKeys = new_numberOfKeys;
}

/*
 * Compare two scankey values using a specified operator.  Both values
 * must be already known non-NULL.
 *
 * The test we want to perform is logically "leftarg op rightarg", where
 * leftarg and rightarg are the sk_argument values in those ScanKeys, and
 * the comparison operator is the one in the op ScanKey.  However, in
 * cross-data-type situations we may need to look up the correct operator in
 * the index's opfamily: it is the one having amopstrategy = op->sk_strategy
 * and amoplefttype/amoprighttype equal to the two argument datatypes.
 *
 * If the opfamily doesn't supply a complete set of cross-type operators we
 * may not be able to make the comparison.	If we can make the comparison
 * we store the operator result in *result and return TRUE.  We return FALSE
 * if the comparison could not be made.
 *
 * Note: op always points at the same ScanKey as either leftarg or rightarg.
 * Since we don't scribble on the scankeys, this aliasing should cause no
 * trouble.
 *
 * Note: this routine needs to be insensitive to any DESC option applied
 * to the index column.  For example, "x < 4" is a tighter constraint than
 * "x < 5" regardless of which way the index is sorted.  We don't worry about
 * NULLS FIRST/LAST either, since the given values are never nulls.
 */
static bool
_bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
						 ScanKey leftarg, ScanKey rightarg,
						 bool *result)
{
	Relation	rel = scan->indexRelation;
	Oid			lefttype,
				righttype,
				optype,
				opcintype,
				cmp_op;
	StrategyNumber strat;

	/*
	 * The opfamily we need to worry about is identified by the index column.
	 */
	Assert(leftarg->sk_attno == rightarg->sk_attno);

	opcintype = rel->rd_opcintype[leftarg->sk_attno - 1];

	/*
	 * Determine the actual datatypes of the ScanKey arguments.  We have to
	 * support the convention that sk_subtype == InvalidOid means the opclass
	 * input type; this is a hack to simplify life for ScanKeyInit().
	 */
	lefttype = leftarg->sk_subtype;
	if (lefttype == InvalidOid)
		lefttype = opcintype;
	righttype = rightarg->sk_subtype;
	if (righttype == InvalidOid)
		righttype = opcintype;
	optype = op->sk_subtype;
	if (optype == InvalidOid)
		optype = opcintype;

	/*
	 * If leftarg and rightarg match the types expected for the "op" scankey,
	 * we can use its already-looked-up comparison function.
	 */
	if (lefttype == opcintype && righttype == optype)
	{
		*result = DatumGetBool(FunctionCall2(&op->sk_func,
											 leftarg->sk_argument,
											 rightarg->sk_argument));
		return true;
	}

	/*
	 * Otherwise, we need to go to the syscache to find the appropriate
	 * operator.  (This cannot result in infinite recursion, since no
	 * indexscan initiated by syscache lookup will use cross-data-type
	 * operators.)
	 *
	 * If the sk_strategy was flipped by _bt_mark_scankey_with_indoption, we
	 * have to un-flip it to get the correct opfamily member.
	 */
	strat = op->sk_strategy;
	if (op->sk_flags & SK_BT_DESC)
		strat = BTCommuteStrategyNumber(strat);

	cmp_op = get_opfamily_member(rel->rd_opfamily[leftarg->sk_attno - 1],
								 lefttype,
								 righttype,
								 strat);
	if (OidIsValid(cmp_op))
	{
		RegProcedure cmp_proc = get_opcode(cmp_op);

		if (RegProcedureIsValid(cmp_proc))
		{
			*result = DatumGetBool(OidFunctionCall2(cmp_proc,
													leftarg->sk_argument,
													rightarg->sk_argument));
			return true;
		}
	}

	/* Can't make the comparison */
	*result = false;			/* suppress compiler warnings */
	return false;
}

/*
 * Mark a scankey with info from the index's indoption array.
 *
 * We copy the appropriate indoption value into the scankey sk_flags
 * (shifting to avoid clobbering system-defined flag bits).  Also, if
 * the DESC option is set, commute (flip) the operator strategy number.
 *
 * This function is applied to the *input* scankey structure; therefore
 * on a rescan we will be looking at already-processed scankeys.  Hence
 * we have to be careful not to re-commute the strategy if we already did it.
 * It's a bit ugly to modify the caller's copy of the scankey but in practice
 * there shouldn't be any problem, since the index's indoptions are certainly
 * not going to change while the scankey survives.
 */
static void
_bt_mark_scankey_with_indoption(ScanKey skey, int16 *indoption)
{
	int			addflags;

	addflags = indoption[skey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
	if ((addflags & SK_BT_DESC) && !(skey->sk_flags & SK_BT_DESC))
		skey->sk_strategy = BTCommuteStrategyNumber(skey->sk_strategy);
	skey->sk_flags |= addflags;

	if (skey->sk_flags & SK_ROW_HEADER)
	{
		ScanKey		subkey = (ScanKey) DatumGetPointer(skey->sk_argument);

		for (;;)
		{
			Assert(subkey->sk_flags & SK_ROW_MEMBER);
			addflags = indoption[subkey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
			if ((addflags & SK_BT_DESC) && !(subkey->sk_flags & SK_BT_DESC))
				subkey->sk_strategy = BTCommuteStrategyNumber(subkey->sk_strategy);
			subkey->sk_flags |= addflags;
			if (subkey->sk_flags & SK_ROW_END)
				break;
			subkey++;
		}
	}
}

/*
 * Mark a scankey as "required to continue the scan".
 *
 * Depending on the operator type, the key may be required for both scan
 * directions or just one.	Also, if the key is a row comparison header,
 * we have to mark the appropriate subsidiary ScanKeys as required.  In
 * such cases, the first subsidiary key is required, but subsequent ones
 * are required only as long as they correspond to successive index columns
 * and match the leading column as to sort direction.
 * Otherwise the row comparison ordering is different from the index ordering
 * and so we can't stop the scan on the basis of those lower-order columns.
 *
 * Note: when we set required-key flag bits in a subsidiary scankey, we are
 * scribbling on a data structure belonging to the index AM's caller, not on
 * our private copy.  This should be OK because the marking will not change
 * from scan to scan within a query, and so we'd just re-mark the same way
 * anyway on a rescan.	Something to keep an eye on though.
 */
static void
_bt_mark_scankey_required(ScanKey skey)
{
	int			addflags;

	switch (skey->sk_strategy)
	{
		case BTLessStrategyNumber:
		case BTLessEqualStrategyNumber:
			addflags = SK_BT_REQFWD;
			break;
		case BTEqualStrategyNumber:
			addflags = SK_BT_REQFWD | SK_BT_REQBKWD;
			break;
		case BTGreaterEqualStrategyNumber:
		case BTGreaterStrategyNumber:
			addflags = SK_BT_REQBKWD;
			break;
		default:
			elog(ERROR, "unrecognized StrategyNumber: %d",
				 (int) skey->sk_strategy);
			addflags = 0;		/* keep compiler quiet */
			break;
	}

	skey->sk_flags |= addflags;

	if (skey->sk_flags & SK_ROW_HEADER)
	{
		ScanKey		subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
		AttrNumber	attno = skey->sk_attno;

		/* First subkey should be same as the header says */
		Assert(subkey->sk_attno == attno);

		for (;;)
		{
			Assert(subkey->sk_flags & SK_ROW_MEMBER);
			if (subkey->sk_attno != attno)
				break;			/* non-adjacent key, so not required */
			if (subkey->sk_strategy != skey->sk_strategy)
				break;			/* wrong direction, so not required */
			subkey->sk_flags |= addflags;
			if (subkey->sk_flags & SK_ROW_END)
				break;
			subkey++;
			attno++;
		}
	}
}

/*
 * Test whether an indextuple satisfies all the scankey conditions.
 *
 * If so, copy its TID into scan->xs_ctup.t_self, and return TRUE.
 * If not, return FALSE (xs_ctup is not changed).
 *
 * If the tuple fails to pass the qual, we also determine whether there's
 * any need to continue the scan beyond this tuple, and set *continuescan
 * accordingly.  See comments for _bt_preprocess_keys(), above, about how
 * this is done.
 *
 * scan: index scan descriptor (containing a search-type scankey)
 * page: buffer page containing index tuple
 * offnum: offset number of index tuple (must be a valid item!)
 * dir: direction we are scanning in
 * continuescan: output parameter (will be set correctly in all cases)
 */
bool
_bt_checkkeys(IndexScanDesc scan,
			  Page page, OffsetNumber offnum,
			  ScanDirection dir, bool *continuescan)
{
	ItemId		iid = PageGetItemId(page, offnum);
	bool		tuple_valid;
	IndexTuple	tuple;
	TupleDesc	tupdesc;
	BTScanOpaque so;
	int			keysz;
	int			ikey;
	ScanKey		key;

	*continuescan = true;		/* default assumption */

	/*
	 * If the scan specifies not to return killed tuples, then we treat a
	 * killed tuple as not passing the qual.  Most of the time, it's a win to
	 * not bother examining the tuple's index keys, but just return
	 * immediately with continuescan = true to proceed to the next tuple.
	 * However, if this is the last tuple on the page, we should check the
	 * index keys to prevent uselessly advancing to the next page.
	 */
	if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
	{
		/* return immediately if there are more tuples on the page */
		if (ScanDirectionIsForward(dir))
		{
			if (offnum < PageGetMaxOffsetNumber(page))
				return false;
		}
		else
		{
			BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);

			if (offnum > P_FIRSTDATAKEY(opaque))
				return false;
		}

		/*
		 * OK, we want to check the keys, but we'll return FALSE even if the
		 * tuple passes the key tests.
		 */
		tuple_valid = false;
	}
	else
		tuple_valid = true;

	tuple = (IndexTuple) PageGetItem(page, iid);

	IncrIndexProcessed();

	tupdesc = RelationGetDescr(scan->indexRelation);
	so = (BTScanOpaque) scan->opaque;
	keysz = so->numberOfKeys;

	for (key = so->keyData, ikey = 0; ikey < keysz; key++, ikey++)
	{
		Datum		datum;
		bool		isNull;
		Datum		test;

		/* row-comparison keys need special processing */
		if (key->sk_flags & SK_ROW_HEADER)
		{
			if (_bt_check_rowcompare(key, tuple, tupdesc, dir, continuescan))
				continue;
			return false;
		}

		datum = index_getattr(tuple,
							  key->sk_attno,
							  tupdesc,
							  &isNull);

		if (key->sk_flags & SK_ISNULL)
		{
			/* Handle IS NULL tests */
			Assert(key->sk_flags & SK_SEARCHNULL);

			if (isNull)
				continue;		/* tuple satisfies this qual */

			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 */
			if ((key->sk_flags & SK_BT_REQFWD) &&
				ScanDirectionIsForward(dir))
				*continuescan = false;
			else if ((key->sk_flags & SK_BT_REQBKWD) &&
					 ScanDirectionIsBackward(dir))
				*continuescan = false;

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		if (isNull)
		{
			if (key->sk_flags & SK_BT_NULLS_FIRST)
			{
				/*
				 * Since NULLs are sorted before non-NULLs, we know we have
				 * reached the lower limit of the range of values for this
				 * index attr.	On a backward scan, we can stop if this qual
				 * is one of the "must match" subset.  On a forward scan,
				 * however, we should keep going.
				 */
				if ((key->sk_flags & SK_BT_REQBKWD) &&
					ScanDirectionIsBackward(dir))
					*continuescan = false;
			}
			else
			{
				/*
				 * Since NULLs are sorted after non-NULLs, we know we have
				 * reached the upper limit of the range of values for this
				 * index attr.	On a forward scan, we can stop if this qual is
				 * one of the "must match" subset.	On a backward scan,
				 * however, we should keep going.
				 */
				if ((key->sk_flags & SK_BT_REQFWD) &&
					ScanDirectionIsForward(dir))
					*continuescan = false;
			}

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		test = FunctionCall2(&key->sk_func, datum, key->sk_argument);

		if (!DatumGetBool(test))
		{
			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 *
			 * Note: because we stop the scan as soon as any required equality
			 * qual fails, it is critical that equality quals be used for the
			 * initial positioning in _bt_first() when they are available. See
			 * comments in _bt_first().
			 */
			if ((key->sk_flags & SK_BT_REQFWD) &&
				ScanDirectionIsForward(dir))
				*continuescan = false;
			else if ((key->sk_flags & SK_BT_REQBKWD) &&
					 ScanDirectionIsBackward(dir))
				*continuescan = false;

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}
	}

	/* If we get here, the tuple passes all index quals. */
	if (tuple_valid)
		scan->xs_ctup.t_self = tuple->t_tid;

	return tuple_valid;
}

/*
 * Test whether an indextuple satisfies a row-comparison scan condition.
 *
 * Return true if so, false if not.  If not, also clear *continuescan if
 * it's not possible for any future tuples in the current scan direction
 * to pass the qual.
 *
 * This is a subroutine for _bt_checkkeys, which see for more info.
 */
static bool
_bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
					 ScanDirection dir, bool *continuescan)
{
	ScanKey		subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
	int32		cmpresult = 0;
	bool		result;

	/* First subkey should be same as the header says */
	Assert(subkey->sk_attno == skey->sk_attno);

	/* Loop over columns of the row condition */
	for (;;)
	{
		Datum		datum;
		bool		isNull;

		Assert(subkey->sk_flags & SK_ROW_MEMBER);

		datum = index_getattr(tuple,
							  subkey->sk_attno,
							  tupdesc,
							  &isNull);

		if (isNull)
		{
			if (subkey->sk_flags & SK_BT_NULLS_FIRST)
			{
				/*
				 * Since NULLs are sorted before non-NULLs, we know we have
				 * reached the lower limit of the range of values for this
				 * index attr. On a backward scan, we can stop if this qual is
				 * one of the "must match" subset.	On a forward scan,
				 * however, we should keep going.
				 */
				if ((subkey->sk_flags & SK_BT_REQBKWD) &&
					ScanDirectionIsBackward(dir))
					*continuescan = false;
			}
			else
			{
				/*
				 * Since NULLs are sorted after non-NULLs, we know we have
				 * reached the upper limit of the range of values for this
				 * index attr. On a forward scan, we can stop if this qual is
				 * one of the "must match" subset.	On a backward scan,
				 * however, we should keep going.
				 */
				if ((subkey->sk_flags & SK_BT_REQFWD) &&
					ScanDirectionIsForward(dir))
					*continuescan = false;
			}

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		if (subkey->sk_flags & SK_ISNULL)
		{
			/*
			 * Unlike the simple-scankey case, this isn't a disallowed case.
			 * But it can never match.	If all the earlier row comparison
			 * columns are required for the scan direction, we can stop the
			 * scan, because there can't be another tuple that will succeed.
			 */
			if (subkey != (ScanKey) DatumGetPointer(skey->sk_argument))
				subkey--;
			if ((subkey->sk_flags & SK_BT_REQFWD) &&
				ScanDirectionIsForward(dir))
				*continuescan = false;
			else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
					 ScanDirectionIsBackward(dir))
				*continuescan = false;
			return false;
		}

		/* Perform the test --- three-way comparison not bool operator */
		cmpresult = DatumGetInt32(FunctionCall2(&subkey->sk_func,
												datum,
												subkey->sk_argument));

		if (subkey->sk_flags & SK_BT_DESC)
			cmpresult = -cmpresult;

		/* Done comparing if unequal, else advance to next column */
		if (cmpresult != 0)
			break;

		if (subkey->sk_flags & SK_ROW_END)
			break;
		subkey++;
	}

	/*
	 * At this point cmpresult indicates the overall result of the row
	 * comparison, and subkey points to the deciding column (or the last
	 * column if the result is "=").
	 */
	switch (subkey->sk_strategy)
	{
			/* EQ and NE cases aren't allowed here */
		case BTLessStrategyNumber:
			result = (cmpresult < 0);
			break;
		case BTLessEqualStrategyNumber:
			result = (cmpresult <= 0);
			break;
		case BTGreaterEqualStrategyNumber:
			result = (cmpresult >= 0);
			break;
		case BTGreaterStrategyNumber:
			result = (cmpresult > 0);
			break;
		default:
			elog(ERROR, "unrecognized RowCompareType: %d",
				 (int) subkey->sk_strategy);
			result = 0;			/* keep compiler quiet */
			break;
	}

	if (!result)
	{
		/*
		 * Tuple fails this qual.  If it's a required qual for the current
		 * scan direction, then we can conclude no further tuples will pass,
		 * either.	Note we have to look at the deciding column, not
		 * necessarily the first or last column of the row condition.
		 */
		if ((subkey->sk_flags & SK_BT_REQFWD) &&
			ScanDirectionIsForward(dir))
			*continuescan = false;
		else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
				 ScanDirectionIsBackward(dir))
			*continuescan = false;
	}

	return result;
}

/*
 * _bt_killitems - set LP_DEAD state for items an indexscan caller has
 * told us were killed
 *
 * scan->so contains information about the current page and killed tuples
 * thereon (generally, this should only be called if so->numKilled > 0).
 *
 * The caller must have pin on so->currPos.buf, but may or may not have
 * read-lock, as indicated by haveLock.  Note that we assume read-lock
 * is sufficient for setting LP_DEAD status (which is only a hint).
 *
 * We match items by heap TID before assuming they are the right ones to
 * delete.	We cope with cases where items have moved right due to insertions.
 * If an item has moved off the current page due to a split, we'll fail to
 * find it and do nothing (this is not an error case --- we assume the item
 * will eventually get marked in a future indexscan).  Note that because we
 * hold pin on the target page continuously from initially reading the items
 * until applying this function, VACUUM cannot have deleted any items from
 * the page, and so there is no need to search left from the recorded offset.
 * (This observation also guarantees that the item is still the right one
 * to delete, which might otherwise be questionable since heap TIDs can get
 * recycled.)
 */
void
_bt_killitems(IndexScanDesc scan, bool haveLock)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber minoff;
	OffsetNumber maxoff;
	int			i;
	bool		killedsomething = false;

	Assert(BufferIsValid(so->currPos.buf));

	if (!haveLock)
		LockBuffer(so->currPos.buf, BT_READ);

	page = BufferGetPage(so->currPos.buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);

	for (i = 0; i < so->numKilled; i++)
	{
		int			itemIndex = so->killedItems[i];
		BTScanPosItem *kitem = &so->currPos.items[itemIndex];
		OffsetNumber offnum = kitem->indexOffset;

		Assert(itemIndex >= so->currPos.firstItem &&
			   itemIndex <= so->currPos.lastItem);
		if (offnum < minoff)
			continue;			/* pure paranoia */
		while (offnum <= maxoff)
		{
			ItemId		iid = PageGetItemId(page, offnum);
			IndexTuple	ituple = (IndexTuple) PageGetItem(page, iid);

			if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
			{
				/* found the item */
				ItemIdMarkDead(iid);
				killedsomething = true;
				break;			/* out of inner search loop */
			}
			offnum = OffsetNumberNext(offnum);
		}
	}

	/*
	 * Since this can be redone later if needed, it's treated the same as a
	 * commit-hint-bit status update for heap tuples: we mark the buffer dirty
	 * but don't make a WAL log entry.
	 *
	 * Whenever we mark anything LP_DEAD, we also set the page's
	 * BTP_HAS_GARBAGE flag, which is likewise just a hint.
	 */
	if (killedsomething)
	{
		opaque->btpo_flags |= BTP_HAS_GARBAGE;
		SetBufferCommitInfoNeedsSave(so->currPos.buf);
	}

	if (!haveLock)
		LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);

	/*
	 * Always reset the scan state, so we don't look for same items on other
	 * pages.
	 */
	so->numKilled = 0;
}


/*
 * The following routines manage a shared-memory area in which we track
 * assignment of "vacuum cycle IDs" to currently-active btree vacuuming
 * operations.	There is a single counter which increments each time we
 * start a vacuum to assign it a cycle ID.	Since multiple vacuums could
 * be active concurrently, we have to track the cycle ID for each active
 * vacuum; this requires at most MaxBackends entries (usually far fewer).
 * We assume at most one vacuum can be active for a given index.
 *
 * Access to the shared memory area is controlled by BtreeVacuumLock.
 * In principle we could use a separate lmgr locktag for each index,
 * but a single LWLock is much cheaper, and given the short time that
 * the lock is ever held, the concurrency hit should be minimal.
 */

typedef struct BTOneVacInfo
{
	LockRelId	relid;			/* global identifier of an index */
	BTCycleId	cycleid;		/* cycle ID for its active VACUUM */
} BTOneVacInfo;

typedef struct BTVacInfo
{
	BTCycleId	cycle_ctr;		/* cycle ID most recently assigned */
	int			num_vacuums;	/* number of currently active VACUUMs */
	int			max_vacuums;	/* allocated length of vacuums[] array */
	BTOneVacInfo vacuums[1];	/* VARIABLE LENGTH ARRAY */
} BTVacInfo;

static BTVacInfo *btvacinfo;


/*
 * _bt_vacuum_cycleid --- get the active vacuum cycle ID for an index,
 *		or zero if there is no active VACUUM
 *
 * Note: for correct interlocking, the caller must already hold pin and
 * exclusive lock on each buffer it will store the cycle ID into.  This
 * ensures that even if a VACUUM starts immediately afterwards, it cannot
 * process those pages until the page split is complete.
 */
BTCycleId
_bt_vacuum_cycleid(Relation rel)
{
	BTCycleId	result = 0;
	int			i;

	/* Share lock is enough since this is a read-only operation */
	LWLockAcquire(BtreeVacuumLock, LW_SHARED);

	for (i = 0; i < btvacinfo->num_vacuums; i++)
	{
		BTOneVacInfo *vac = &btvacinfo->vacuums[i];

		if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
			vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
		{
			result = vac->cycleid;
			break;
		}
	}

	LWLockRelease(BtreeVacuumLock);
	return result;
}

/*
 * _bt_start_vacuum --- assign a cycle ID to a just-starting VACUUM operation
 *
 * Note: the caller must guarantee that it will eventually call
 * _bt_end_vacuum, else we'll permanently leak an array slot.  To ensure
 * that this happens even in elog(FATAL) scenarios, the appropriate coding
 * is not just a PG_TRY, but
 *		PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel))
 */
BTCycleId
_bt_start_vacuum(Relation rel)
{
	BTCycleId	result;
	int			i;
	BTOneVacInfo *vac;

	LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);

	/*
	 * Assign the next cycle ID, being careful to avoid zero as well as the
	 * reserved high values.
	 */
	result = ++(btvacinfo->cycle_ctr);
	if (result == 0 || result > MAX_BT_CYCLE_ID)
		result = btvacinfo->cycle_ctr = 1;

	/* Let's just make sure there's no entry already for this index */
	for (i = 0; i < btvacinfo->num_vacuums; i++)
	{
		vac = &btvacinfo->vacuums[i];
		if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
			vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
		{
			/*
			 * Unlike most places in the backend, we have to explicitly
			 * release our LWLock before throwing an error.  This is because
			 * we expect _bt_end_vacuum() to be called before transaction
			 * abort cleanup can run to release LWLocks.
			 */
			LWLockRelease(BtreeVacuumLock);
			elog(ERROR, "multiple active vacuums for index \"%s\"",
				 RelationGetRelationName(rel));
		}
	}

	/* OK, add an entry */
	if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums)
	{
		LWLockRelease(BtreeVacuumLock);
		elog(ERROR, "out of btvacinfo slots");
	}
	vac = &btvacinfo->vacuums[btvacinfo->num_vacuums];
	vac->relid = rel->rd_lockInfo.lockRelId;
	vac->cycleid = result;
	btvacinfo->num_vacuums++;

	LWLockRelease(BtreeVacuumLock);
	return result;
}

/*
 * _bt_end_vacuum --- mark a btree VACUUM operation as done
 *
 * Note: this is deliberately coded not to complain if no entry is found;
 * this allows the caller to put PG_TRY around the start_vacuum operation.
 */
void
_bt_end_vacuum(Relation rel)
{
	int			i;

	LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);

	/* Find the array entry */
	for (i = 0; i < btvacinfo->num_vacuums; i++)
	{
		BTOneVacInfo *vac = &btvacinfo->vacuums[i];

		if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
			vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
		{
			/* Remove it by shifting down the last entry */
			*vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1];
			btvacinfo->num_vacuums--;
			break;
		}
	}

	LWLockRelease(BtreeVacuumLock);
}

/*
 * _bt_end_vacuum wrapped as an on_shmem_exit callback function
 */
void
_bt_end_vacuum_callback(int code, Datum arg)
{
	_bt_end_vacuum((Relation) DatumGetPointer(arg));
}

/*
 * BTreeShmemSize --- report amount of shared memory space needed
 */
Size
BTreeShmemSize(void)
{
	Size		size;

	size = offsetof(BTVacInfo, vacuums[0]);
	size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo)));
	return size;
}

/*
 * BTreeShmemInit --- initialize this module's shared memory
 */
void
BTreeShmemInit(void)
{
	bool		found;

	btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State",
											  BTreeShmemSize(),
											  &found);

	if (!IsUnderPostmaster)
	{
		/* Initialize shared memory area */
		Assert(!found);

		/*
		 * It doesn't really matter what the cycle counter starts at, but
		 * having it always start the same doesn't seem good.  Seed with
		 * low-order bits of time() instead.
		 */
		btvacinfo->cycle_ctr = (BTCycleId) time(NULL);

		btvacinfo->num_vacuums = 0;
		btvacinfo->max_vacuums = MaxBackends;
	}
	else
		Assert(found);
}

Datum
btoptions(PG_FUNCTION_ARGS)
{
	Datum		reloptions = PG_GETARG_DATUM(0);
	bool		validate = PG_GETARG_BOOL(1);
	bytea	   *result;

	result = default_reloptions(reloptions, validate, RELOPT_KIND_BTREE);
	if (result)
		PG_RETURN_BYTEA_P(result);
	PG_RETURN_NULL();
}