summaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtree.c
blob: 0fcde95ccde586551e05297779051d3c744aba6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
/*-------------------------------------------------------------------------
 *
 * nbtree.c
 *	  Implementation of Lehman and Yao's btree management algorithm for
 *	  Postgres.
 *
 * NOTES
 *	  This file contains only the public interface routines.
 *
 *
 * Portions Copyright (c) 1996-2010, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/access/nbtree/nbtree.c,v 1.177 2010/03/28 09:27:01 sriggs Exp $
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/nbtree.h"
#include "access/relscan.h"
#include "catalog/index.h"
#include "catalog/storage.h"
#include "commands/vacuum.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/indexfsm.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
#include "utils/memutils.h"


/* Working state for btbuild and its callback */
typedef struct
{
	bool		isUnique;
	bool		haveDead;
	Relation	heapRel;
	BTSpool    *spool;

	/*
	 * spool2 is needed only when the index is an unique index. Dead tuples
	 * are put into spool2 instead of spool in order to avoid uniqueness
	 * check.
	 */
	BTSpool    *spool2;
	double		indtuples;
} BTBuildState;

/* Working state needed by btvacuumpage */
typedef struct
{
	IndexVacuumInfo *info;
	IndexBulkDeleteResult *stats;
	IndexBulkDeleteCallback callback;
	void	   *callback_state;
	BTCycleId	cycleid;
	BlockNumber lastBlockVacuumed;		/* last blkno reached by Vacuum scan */
	BlockNumber lastUsedPage;	/* blkno of last non-recyclable page */
	BlockNumber totFreePages;	/* true total # of free pages */
	MemoryContext pagedelcontext;
} BTVacState;


static void btbuildCallback(Relation index,
				HeapTuple htup,
				Datum *values,
				bool *isnull,
				bool tupleIsAlive,
				void *state);
static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid);
static void btvacuumpage(BTVacState *vstate, BlockNumber blkno,
			 BlockNumber orig_blkno);


/*
 *	btbuild() -- build a new btree index.
 */
Datum
btbuild(PG_FUNCTION_ARGS)
{
	Relation	heap = (Relation) PG_GETARG_POINTER(0);
	Relation	index = (Relation) PG_GETARG_POINTER(1);
	IndexInfo  *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
	IndexBuildResult *result;
	double		reltuples;
	BTBuildState buildstate;

	buildstate.isUnique = indexInfo->ii_Unique;
	buildstate.haveDead = false;
	buildstate.heapRel = heap;
	buildstate.spool = NULL;
	buildstate.spool2 = NULL;
	buildstate.indtuples = 0;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
		ResetUsage();
#endif   /* BTREE_BUILD_STATS */

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	buildstate.spool = _bt_spoolinit(index, indexInfo->ii_Unique, false);

	/*
	 * If building a unique index, put dead tuples in a second spool to keep
	 * them out of the uniqueness check.
	 */
	if (indexInfo->ii_Unique)
		buildstate.spool2 = _bt_spoolinit(index, false, true);

	/* do the heap scan */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
								   btbuildCallback, (void *) &buildstate);

	/* okay, all heap tuples are indexed */
	if (buildstate.spool2 && !buildstate.haveDead)
	{
		/* spool2 turns out to be unnecessary */
		_bt_spooldestroy(buildstate.spool2);
		buildstate.spool2 = NULL;
	}

	/*
	 * Finish the build by (1) completing the sort of the spool file, (2)
	 * inserting the sorted tuples into btree pages and (3) building the upper
	 * levels.
	 */
	_bt_leafbuild(buildstate.spool, buildstate.spool2);
	_bt_spooldestroy(buildstate.spool);
	if (buildstate.spool2)
		_bt_spooldestroy(buildstate.spool2);

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD STATS");
		ResetUsage();
	}
#endif   /* BTREE_BUILD_STATS */

	/*
	 * If we are reindexing a pre-existing index, it is critical to send out a
	 * relcache invalidation SI message to ensure all backends re-read the
	 * index metapage.	We expect that the caller will ensure that happens
	 * (typically as a side effect of updating index stats, but it must happen
	 * even if the stats don't change!)
	 */

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	PG_RETURN_POINTER(result);
}

/*
 * Per-tuple callback from IndexBuildHeapScan
 */
static void
btbuildCallback(Relation index,
				HeapTuple htup,
				Datum *values,
				bool *isnull,
				bool tupleIsAlive,
				void *state)
{
	BTBuildState *buildstate = (BTBuildState *) state;
	IndexTuple	itup;

	/* form an index tuple and point it at the heap tuple */
	itup = index_form_tuple(RelationGetDescr(index), values, isnull);
	itup->t_tid = htup->t_self;

	/*
	 * insert the index tuple into the appropriate spool file for subsequent
	 * processing
	 */
	if (tupleIsAlive || buildstate->spool2 == NULL)
		_bt_spool(itup, buildstate->spool);
	else
	{
		/* dead tuples are put into spool2 */
		buildstate->haveDead = true;
		_bt_spool(itup, buildstate->spool2);
	}

	buildstate->indtuples += 1;

	pfree(itup);
}

/*
 *	btinsert() -- insert an index tuple into a btree.
 *
 *		Descend the tree recursively, find the appropriate location for our
 *		new tuple, and put it there.
 */
Datum
btinsert(PG_FUNCTION_ARGS)
{
	Relation	rel = (Relation) PG_GETARG_POINTER(0);
	Datum	   *values = (Datum *) PG_GETARG_POINTER(1);
	bool	   *isnull = (bool *) PG_GETARG_POINTER(2);
	ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
	Relation	heapRel = (Relation) PG_GETARG_POINTER(4);
	IndexUniqueCheck checkUnique = (IndexUniqueCheck) PG_GETARG_INT32(5);
	bool		result;
	IndexTuple	itup;

	/* generate an index tuple */
	itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
	itup->t_tid = *ht_ctid;

	result = _bt_doinsert(rel, itup, checkUnique, heapRel);

	pfree(itup);

	PG_RETURN_BOOL(result);
}

/*
 *	btgettuple() -- Get the next tuple in the scan.
 */
Datum
btgettuple(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	bool		res;

	/* btree indexes are never lossy */
	scan->xs_recheck = false;

	/*
	 * If we've already initialized this scan, we can just advance it in the
	 * appropriate direction.  If we haven't done so yet, we call a routine to
	 * get the first item in the scan.
	 */
	if (BTScanPosIsValid(so->currPos))
	{
		/*
		 * Check to see if we should kill the previously-fetched tuple.
		 */
		if (scan->kill_prior_tuple)
		{
			/*
			 * Yes, remember it for later.	(We'll deal with all such tuples
			 * at once right before leaving the index page.)  The test for
			 * numKilled overrun is not just paranoia: if the caller reverses
			 * direction in the indexscan then the same item might get entered
			 * multiple times.	It's not worth trying to optimize that, so we
			 * don't detect it, but instead just forget any excess entries.
			 */
			if (so->killedItems == NULL)
				so->killedItems = (int *)
					palloc(MaxIndexTuplesPerPage * sizeof(int));
			if (so->numKilled < MaxIndexTuplesPerPage)
				so->killedItems[so->numKilled++] = so->currPos.itemIndex;
		}

		/*
		 * Now continue the scan.
		 */
		res = _bt_next(scan, dir);
	}
	else
		res = _bt_first(scan, dir);

	PG_RETURN_BOOL(res);
}

/*
 * btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
 */
Datum
btgetbitmap(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	TIDBitmap  *tbm = (TIDBitmap *) PG_GETARG_POINTER(1);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int64		ntids = 0;
	ItemPointer heapTid;

	/* Fetch the first page & tuple. */
	if (!_bt_first(scan, ForwardScanDirection))
	{
		/* empty scan */
		PG_RETURN_INT64(0);
	}
	/* Save tuple ID, and continue scanning */
	heapTid = &scan->xs_ctup.t_self;
	tbm_add_tuples(tbm, heapTid, 1, false);
	ntids++;

	for (;;)
	{
		/*
		 * Advance to next tuple within page.  This is the same as the easy
		 * case in _bt_next().
		 */
		if (++so->currPos.itemIndex > so->currPos.lastItem)
		{
			/* let _bt_next do the heavy lifting */
			if (!_bt_next(scan, ForwardScanDirection))
				break;
		}

		/* Save tuple ID, and continue scanning */
		heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
		tbm_add_tuples(tbm, heapTid, 1, false);
		ntids++;
	}

	PG_RETURN_INT64(ntids);
}

/*
 *	btbeginscan() -- start a scan on a btree index
 */
Datum
btbeginscan(PG_FUNCTION_ARGS)
{
	Relation	rel = (Relation) PG_GETARG_POINTER(0);
	int			keysz = PG_GETARG_INT32(1);
	ScanKey		scankey = (ScanKey) PG_GETARG_POINTER(2);
	IndexScanDesc scan;

	/* get the scan */
	scan = RelationGetIndexScan(rel, keysz, scankey);

	PG_RETURN_POINTER(scan);
}

/*
 *	btrescan() -- rescan an index relation
 */
Datum
btrescan(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	ScanKey		scankey = (ScanKey) PG_GETARG_POINTER(1);
	BTScanOpaque so;

	so = (BTScanOpaque) scan->opaque;

	if (so == NULL)				/* if called from btbeginscan */
	{
		so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
		so->currPos.buf = so->markPos.buf = InvalidBuffer;
		if (scan->numberOfKeys > 0)
			so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
		else
			so->keyData = NULL;
		so->killedItems = NULL; /* until needed */
		so->numKilled = 0;
		scan->opaque = so;
	}

	/* we aren't holding any read locks, but gotta drop the pins */
	if (BTScanPosIsValid(so->currPos))
	{
		/* Before leaving current page, deal with any killed items */
		if (so->numKilled > 0)
			_bt_killitems(scan, false);
		ReleaseBuffer(so->currPos.buf);
		so->currPos.buf = InvalidBuffer;
	}

	if (BTScanPosIsValid(so->markPos))
	{
		ReleaseBuffer(so->markPos.buf);
		so->markPos.buf = InvalidBuffer;
	}
	so->markItemIndex = -1;

	/*
	 * Reset the scan keys. Note that keys ordering stuff moved to _bt_first.
	 * - vadim 05/05/97
	 */
	if (scankey && scan->numberOfKeys > 0)
		memmove(scan->keyData,
				scankey,
				scan->numberOfKeys * sizeof(ScanKeyData));
	so->numberOfKeys = 0;		/* until _bt_preprocess_keys sets it */

	PG_RETURN_VOID();
}

/*
 *	btendscan() -- close down a scan
 */
Datum
btendscan(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/* we aren't holding any read locks, but gotta drop the pins */
	if (BTScanPosIsValid(so->currPos))
	{
		/* Before leaving current page, deal with any killed items */
		if (so->numKilled > 0)
			_bt_killitems(scan, false);
		ReleaseBuffer(so->currPos.buf);
		so->currPos.buf = InvalidBuffer;
	}

	if (BTScanPosIsValid(so->markPos))
	{
		ReleaseBuffer(so->markPos.buf);
		so->markPos.buf = InvalidBuffer;
	}
	so->markItemIndex = -1;

	if (so->killedItems != NULL)
		pfree(so->killedItems);
	if (so->keyData != NULL)
		pfree(so->keyData);
	pfree(so);

	PG_RETURN_VOID();
}

/*
 *	btmarkpos() -- save current scan position
 */
Datum
btmarkpos(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/* we aren't holding any read locks, but gotta drop the pin */
	if (BTScanPosIsValid(so->markPos))
	{
		ReleaseBuffer(so->markPos.buf);
		so->markPos.buf = InvalidBuffer;
	}

	/*
	 * Just record the current itemIndex.  If we later step to next page
	 * before releasing the marked position, _bt_steppage makes a full copy of
	 * the currPos struct in markPos.  If (as often happens) the mark is moved
	 * before we leave the page, we don't have to do that work.
	 */
	if (BTScanPosIsValid(so->currPos))
		so->markItemIndex = so->currPos.itemIndex;
	else
		so->markItemIndex = -1;

	PG_RETURN_VOID();
}

/*
 *	btrestrpos() -- restore scan to last saved position
 */
Datum
btrestrpos(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	if (so->markItemIndex >= 0)
	{
		/*
		 * The mark position is on the same page we are currently on. Just
		 * restore the itemIndex.
		 */
		so->currPos.itemIndex = so->markItemIndex;
	}
	else
	{
		/* we aren't holding any read locks, but gotta drop the pin */
		if (BTScanPosIsValid(so->currPos))
		{
			/* Before leaving current page, deal with any killed items */
			if (so->numKilled > 0 &&
				so->currPos.buf != so->markPos.buf)
				_bt_killitems(scan, false);
			ReleaseBuffer(so->currPos.buf);
			so->currPos.buf = InvalidBuffer;
		}

		if (BTScanPosIsValid(so->markPos))
		{
			/* bump pin on mark buffer for assignment to current buffer */
			IncrBufferRefCount(so->markPos.buf);
			memcpy(&so->currPos, &so->markPos,
				   offsetof(BTScanPosData, items[1]) +
				   so->markPos.lastItem * sizeof(BTScanPosItem));
		}
	}

	PG_RETURN_VOID();
}

/*
 * Bulk deletion of all index entries pointing to a set of heap tuples.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
Datum
btbulkdelete(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *volatile stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
	void	   *callback_state = (void *) PG_GETARG_POINTER(3);
	Relation	rel = info->index;
	BTCycleId	cycleid;

	/* allocate stats if first time through, else re-use existing struct */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));

	/* Establish the vacuum cycle ID to use for this scan */
	/* The ENSURE stuff ensures we clean up shared memory on failure */
	PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
	{
		cycleid = _bt_start_vacuum(rel);

		btvacuumscan(info, stats, callback, callback_state, cycleid);
	}
	PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
	_bt_end_vacuum(rel);

	PG_RETURN_POINTER(stats);
}

/*
 * Post-VACUUM cleanup.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
Datum
btvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		PG_RETURN_POINTER(stats);

	/*
	 * If btbulkdelete was called, we need not do anything, just return the
	 * stats from the latest btbulkdelete call.  If it wasn't called, we must
	 * still do a pass over the index, to recycle any newly-recyclable pages
	 * and to obtain index statistics.
	 *
	 * Since we aren't going to actually delete any leaf items, there's no
	 * need to go through all the vacuum-cycle-ID pushups.
	 */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		btvacuumscan(info, stats, NULL, NULL, 0);
	}

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	/*
	 * It's quite possible for us to be fooled by concurrent page splits into
	 * double-counting some index tuples, so disbelieve any total that exceeds
	 * the underlying heap's count ... if we know that accurately.  Otherwise
	 * this might just make matters worse.
	 */
	if (!info->estimated_count)
	{
		if (stats->num_index_tuples > info->num_heap_tuples)
			stats->num_index_tuples = info->num_heap_tuples;
	}

	PG_RETURN_POINTER(stats);
}

/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber blkno;
	bool		needLock;

	/*
	 * Reset counts that will be incremented during the scan; needed in case
	 * of multiple scans during a single VACUUM command
	 */
	stats->estimated_count = false;
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;
	vstate.lastBlockVacuumed = BTREE_METAPAGE;	/* Initialise at first block */
	vstate.lastUsedPage = BTREE_METAPAGE;
	vstate.totFreePages = 0;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_MINSIZE,
												  ALLOCSET_DEFAULT_INITSIZE,
												  ALLOCSET_DEFAULT_MAXSIZE);

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  (See also vacuumlazy.c, which has the same
	 * issue.)	Also, we need not worry if a page is added immediately after
	 * we look; the page splitting code already has write-lock on the left
	 * page before it adds a right page, so we must already have processed any
	 * tuples due to be moved into such a page.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	blkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Quit if we've scanned the whole relation */
		if (blkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; blkno < num_pages; blkno++)
		{
			btvacuumpage(&vstate, blkno, blkno);
		}
	}

	/*
	 * InHotStandby we need to scan right up to the end of the index for
	 * correct locking, so we may need to write a WAL record for the final
	 * block in the index if it was not vacuumed. It's possible that VACUUMing
	 * has actually removed zeroed pages at the end of the index so we need to
	 * take care to issue the record for last actual block and not for the
	 * last block that was scanned. Ignore empty indexes.
	 */
	if (XLogStandbyInfoActive() &&
		num_pages > 1 && vstate.lastBlockVacuumed < (num_pages - 1))
	{
		Buffer		buf;

		/*
		 * We can't use _bt_getbuf() here because it always applies
		 * _bt_checkpage(), which will barf on an all-zero page. We want to
		 * recycle all-zero pages, not fail.  Also, we want to use a
		 * nondefault buffer access strategy.
		 */
		buf = ReadBufferExtended(rel, MAIN_FORKNUM, num_pages - 1, RBM_NORMAL,
								 info->strategy);
		LockBufferForCleanup(buf);
		_bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed);
		_bt_relbuf(rel, buf);
	}

	MemoryContextDelete(vstate.pagedelcontext);

	/* update statistics */
	stats->num_pages = num_pages;
	stats->pages_free = vstate.totFreePages;
}

/*
 * btvacuumpage --- VACUUM one page
 *
 * This processes a single page for btvacuumscan().  In some cases we
 * must go back and re-examine previously-scanned pages; this routine
 * recurses when necessary to handle that case.
 *
 * blkno is the page to process.  orig_blkno is the highest block number
 * reached by the outer btvacuumscan loop (the same as blkno, unless we
 * are recursing to re-examine a previous page).
 */
static void
btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno)
{
	IndexVacuumInfo *info = vstate->info;
	IndexBulkDeleteResult *stats = vstate->stats;
	IndexBulkDeleteCallback callback = vstate->callback;
	void	   *callback_state = vstate->callback_state;
	Relation	rel = info->index;
	bool		delete_now;
	BlockNumber recurse_to;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;

restart:
	delete_now = false;
	recurse_to = P_NONE;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	/*
	 * We can't use _bt_getbuf() here because it always applies
	 * _bt_checkpage(), which will barf on an all-zero page. We want to
	 * recycle all-zero pages, not fail.  Also, we want to use a nondefault
	 * buffer access strategy.
	 */
	buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
							 info->strategy);
	LockBuffer(buf, BT_READ);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (!PageIsNew(page))
		_bt_checkpage(rel, buf);

	/*
	 * If we are recursing, the only case we want to do anything with is a
	 * live leaf page having the current vacuum cycle ID.  Any other state
	 * implies we already saw the page (eg, deleted it as being empty).
	 */
	if (blkno != orig_blkno)
	{
		if (_bt_page_recyclable(page) ||
			P_IGNORE(opaque) ||
			!P_ISLEAF(opaque) ||
			opaque->btpo_cycleid != vstate->cycleid)
		{
			_bt_relbuf(rel, buf);
			return;
		}
	}

	/* If the page is in use, update lastUsedPage */
	if (!_bt_page_recyclable(page) && vstate->lastUsedPage < blkno)
		vstate->lastUsedPage = blkno;

	/* Page is valid, see what to do with it */
	if (_bt_page_recyclable(page))
	{
		/* Okay to recycle this page */
		RecordFreeIndexPage(rel, blkno);
		vstate->totFreePages++;
		stats->pages_deleted++;
	}
	else if (P_ISDELETED(opaque))
	{
		/* Already deleted, but can't recycle yet */
		stats->pages_deleted++;
	}
	else if (P_ISHALFDEAD(opaque))
	{
		/* Half-dead, try to delete */
		delete_now = true;
	}
	else if (P_ISLEAF(opaque))
	{
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable;
		OffsetNumber offnum,
					minoff,
					maxoff;

		/*
		 * Trade in the initial read lock for a super-exclusive write lock on
		 * this page.  We must get such a lock on every leaf page over the
		 * course of the vacuum scan, whether or not it actually contains any
		 * deletable tuples --- see nbtree/README.
		 */
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		LockBufferForCleanup(buf);

		/*
		 * Check whether we need to recurse back to earlier pages.	What we
		 * are concerned about is a page split that happened since we started
		 * the vacuum scan.  If the split moved some tuples to a lower page
		 * then we might have missed 'em.  If so, set up for tail recursion.
		 * (Must do this before possibly clearing btpo_cycleid below!)
		 */
		if (vstate->cycleid != 0 &&
			opaque->btpo_cycleid == vstate->cycleid &&
			!(opaque->btpo_flags & BTP_SPLIT_END) &&
			!P_RIGHTMOST(opaque) &&
			opaque->btpo_next < orig_blkno)
			recurse_to = opaque->btpo_next;

		/*
		 * Scan over all items to see which ones need deleted according to the
		 * callback function.
		 */
		ndeletable = 0;
		minoff = P_FIRSTDATAKEY(opaque);
		maxoff = PageGetMaxOffsetNumber(page);
		if (callback)
		{
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				htup = &(itup->t_tid);

				/*
				 * During Hot Standby we currently assume that
				 * XLOG_BTREE_VACUUM records do not produce conflicts. That is
				 * only true as long as the callback function depends only
				 * upon whether the index tuple refers to heap tuples removed
				 * in the initial heap scan. When vacuum starts it derives a
				 * value of OldestXmin. Backends taking later snapshots could
				 * have a RecentGlobalXmin with a later xid than the vacuum's
				 * OldestXmin, so it is possible that row versions deleted
				 * after OldestXmin could be marked as killed by other
				 * backends. The callback function *could* look at the index
				 * tuple state in isolation and decide to delete the index
				 * tuple, though currently it does not. If it ever did, we
				 * would need to reconsider whether XLOG_BTREE_VACUUM records
				 * should cause conflicts. If they did cause conflicts they
				 * would be fairly harsh conflicts, since we haven't yet
				 * worked out a way to pass a useful value for
				 * latestRemovedXid on the XLOG_BTREE_VACUUM records. This
				 * applies to *any* type of index that marks index tuples as
				 * killed.
				 */
				if (callback(htup, callback_state))
					deletable[ndeletable++] = offnum;
			}
		}

		/*
		 * Apply any needed deletes.  We issue just one _bt_delitems() call
		 * per page, so as to minimize WAL traffic.
		 */
		if (ndeletable > 0)
		{
			BlockNumber lastBlockVacuumed = BufferGetBlockNumber(buf);

			_bt_delitems_vacuum(rel, buf, deletable, ndeletable, vstate->lastBlockVacuumed);

			/*
			 * Keep track of the block number of the lastBlockVacuumed, so we
			 * can scan those blocks as well during WAL replay. This then
			 * provides concurrency protection and allows btrees to be used
			 * while in recovery.
			 */
			if (lastBlockVacuumed > vstate->lastBlockVacuumed)
				vstate->lastBlockVacuumed = lastBlockVacuumed;

			stats->tuples_removed += ndeletable;
			/* must recompute maxoff */
			maxoff = PageGetMaxOffsetNumber(page);
		}
		else
		{
			/*
			 * If the page has been split during this vacuum cycle, it seems
			 * worth expending a write to clear btpo_cycleid even if we don't
			 * have any deletions to do.  (If we do, _bt_delitems takes care
			 * of this.)  This ensures we won't process the page again.
			 *
			 * We treat this like a hint-bit update because there's no need to
			 * WAL-log it.
			 */
			if (vstate->cycleid != 0 &&
				opaque->btpo_cycleid == vstate->cycleid)
			{
				opaque->btpo_cycleid = 0;
				SetBufferCommitInfoNeedsSave(buf);
			}
		}

		/*
		 * If it's now empty, try to delete; else count the live tuples. We
		 * don't delete when recursing, though, to avoid putting entries into
		 * freePages out-of-order (doesn't seem worth any extra code to handle
		 * the case).
		 */
		if (minoff > maxoff)
			delete_now = (blkno == orig_blkno);
		else
			stats->num_index_tuples += maxoff - minoff + 1;
	}

	if (delete_now)
	{
		MemoryContext oldcontext;
		int			ndel;

		/* Run pagedel in a temp context to avoid memory leakage */
		MemoryContextReset(vstate->pagedelcontext);
		oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);

		ndel = _bt_pagedel(rel, buf, NULL);

		/* count only this page, else may double-count parent */
		if (ndel)
			stats->pages_deleted++;

		MemoryContextSwitchTo(oldcontext);
		/* pagedel released buffer, so we shouldn't */
	}
	else
		_bt_relbuf(rel, buf);

	/*
	 * This is really tail recursion, but if the compiler is too stupid to
	 * optimize it as such, we'd eat an uncomfortably large amount of stack
	 * space per recursion level (due to the deletable[] array). A failure is
	 * improbable since the number of levels isn't likely to be large ... but
	 * just in case, let's hand-optimize into a loop.
	 */
	if (recurse_to != P_NONE)
	{
		blkno = recurse_to;
		goto restart;
	}
}