summaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtinsert.c
blob: 719b1e1f0ed9ca868fa7e099329f6c9a967987e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
/*-------------------------------------------------------------------------
 *
 * nbtinsert.c
 *	  Item insertion in Lehman and Yao btrees for Postgres.
 *
 * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtinsert.c,v 1.108 2003/11/12 21:15:46 tgl Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/heapam.h"
#include "access/nbtree.h"
#include "miscadmin.h"


typedef struct
{
	/* context data for _bt_checksplitloc */
	Size		newitemsz;		/* size of new item to be inserted */
	bool		is_leaf;		/* T if splitting a leaf page */
	bool		is_rightmost;	/* T if splitting a rightmost page */

	bool		have_split;		/* found a valid split? */

	/* these fields valid only if have_split is true */
	bool		newitemonleft;	/* new item on left or right of best split */
	OffsetNumber firstright;	/* best split point */
	int			best_delta;		/* best size delta so far */
} FindSplitData;


static Buffer _bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf);

static TransactionId _bt_check_unique(Relation rel, BTItem btitem,
				 Relation heapRel, Buffer buf,
				 ScanKey itup_scankey);
static InsertIndexResult _bt_insertonpg(Relation rel, Buffer buf,
			   BTStack stack,
			   int keysz, ScanKey scankey,
			   BTItem btitem,
			   OffsetNumber afteritem,
			   bool split_only_page);
static Buffer _bt_split(Relation rel, Buffer buf, OffsetNumber firstright,
		  OffsetNumber newitemoff, Size newitemsz,
		  BTItem newitem, bool newitemonleft,
		  OffsetNumber *itup_off, BlockNumber *itup_blkno);
static OffsetNumber _bt_findsplitloc(Relation rel, Page page,
				 OffsetNumber newitemoff,
				 Size newitemsz,
				 bool *newitemonleft);
static void _bt_checksplitloc(FindSplitData *state, OffsetNumber firstright,
				  int leftfree, int rightfree,
				  bool newitemonleft, Size firstrightitemsz);
static void _bt_pgaddtup(Relation rel, Page page,
			 Size itemsize, BTItem btitem,
			 OffsetNumber itup_off, const char *where);
static bool _bt_isequal(TupleDesc itupdesc, Page page, OffsetNumber offnum,
			int keysz, ScanKey scankey);


/*
 *	_bt_doinsert() -- Handle insertion of a single btitem in the tree.
 *
 *		This routine is called by the public interface routines, btbuild
 *		and btinsert.  By here, btitem is filled in, including the TID.
 */
InsertIndexResult
_bt_doinsert(Relation rel, BTItem btitem,
			 bool index_is_unique, Relation heapRel)
{
	IndexTuple	itup = &(btitem->bti_itup);
	int			natts = rel->rd_rel->relnatts;
	ScanKey		itup_scankey;
	BTStack		stack;
	Buffer		buf;
	InsertIndexResult res;

	/* we need a scan key to do our search, so build one */
	itup_scankey = _bt_mkscankey(rel, itup);

top:
	/* find the page containing this key */
	stack = _bt_search(rel, natts, itup_scankey, &buf, BT_WRITE);

	/* trade in our read lock for a write lock */
	LockBuffer(buf, BUFFER_LOCK_UNLOCK);
	LockBuffer(buf, BT_WRITE);

	/*
	 * If the page was split between the time that we surrendered our read
	 * lock and acquired our write lock, then this page may no longer be
	 * the right place for the key we want to insert.  In this case, we
	 * need to move right in the tree.	See Lehman and Yao for an
	 * excruciatingly precise description.
	 */
	buf = _bt_moveright(rel, buf, natts, itup_scankey, BT_WRITE);

	/*
	 * If we're not allowing duplicates, make sure the key isn't already
	 * in the index.
	 *
	 * NOTE: obviously, _bt_check_unique can only detect keys that are
	 * already in the index; so it cannot defend against concurrent
	 * insertions of the same key.	We protect against that by means of
	 * holding a write lock on the target page.  Any other would-be
	 * inserter of the same key must acquire a write lock on the same
	 * target page, so only one would-be inserter can be making the check
	 * at one time.  Furthermore, once we are past the check we hold write
	 * locks continuously until we have performed our insertion, so no
	 * later inserter can fail to see our insertion.  (This requires some
	 * care in _bt_insertonpg.)
	 *
	 * If we must wait for another xact, we release the lock while waiting,
	 * and then must start over completely.
	 */
	if (index_is_unique)
	{
		TransactionId xwait;

		xwait = _bt_check_unique(rel, btitem, heapRel, buf, itup_scankey);

		if (TransactionIdIsValid(xwait))
		{
			/* Have to wait for the other guy ... */
			_bt_relbuf(rel, buf);
			XactLockTableWait(xwait);
			/* start over... */
			_bt_freestack(stack);
			goto top;
		}
	}

	/* do the insertion */
	res = _bt_insertonpg(rel, buf, stack, natts, itup_scankey, btitem,
						 0, false);

	/* be tidy */
	_bt_freestack(stack);
	_bt_freeskey(itup_scankey);

	return res;
}

/*
 *	_bt_check_unique() -- Check for violation of unique index constraint
 *
 * Returns InvalidTransactionId if there is no conflict, else an xact ID
 * we must wait for to see if it commits a conflicting tuple.	If an actual
 * conflict is detected, no return --- just ereport().
 */
static TransactionId
_bt_check_unique(Relation rel, BTItem btitem, Relation heapRel,
				 Buffer buf, ScanKey itup_scankey)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	int			natts = rel->rd_rel->relnatts;
	OffsetNumber offset,
				maxoff;
	Page		page;
	BTPageOpaque opaque;
	Buffer		nbuf = InvalidBuffer;

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);

	/*
	 * Find first item >= proposed new item.  Note we could also get a
	 * pointer to end-of-page here.
	 */
	offset = _bt_binsrch(rel, buf, natts, itup_scankey);

	/*
	 * Scan over all equal tuples, looking for live conflicts.
	 */
	for (;;)
	{
		HeapTupleData htup;
		Buffer		hbuffer;
		ItemId		curitemid;
		BTItem		cbti;
		BlockNumber nblkno;

		/*
		 * make sure the offset points to an actual item before trying to
		 * examine it...
		 */
		if (offset <= maxoff)
		{
			curitemid = PageGetItemId(page, offset);

			/*
			 * We can skip items that are marked killed.
			 *
			 * Formerly, we applied _bt_isequal() before checking the kill
			 * flag, so as to fall out of the item loop as soon as possible.
			 * However, in the presence of heavy update activity an index
			 * may contain many killed items with the same key; running
			 * _bt_isequal() on each killed item gets expensive.  Furthermore
			 * it is likely that the non-killed version of each key appears
			 * first, so that we didn't actually get to exit any sooner anyway.
			 * So now we just advance over killed items as quickly as we can.
			 * We only apply _bt_isequal() when we get to a non-killed item or
			 * the end of the page.
			 */
			if (!ItemIdDeleted(curitemid))
			{
				/*
				 * _bt_compare returns 0 for (1,NULL) and (1,NULL) - this's
				 * how we handling NULLs - and so we must not use _bt_compare
				 * in real comparison, but only for ordering/finding items on
				 * pages. - vadim 03/24/97
				 */
				if (!_bt_isequal(itupdesc, page, offset, natts, itup_scankey))
					break;			/* we're past all the equal tuples */

				/* okay, we gotta fetch the heap tuple ... */
				cbti = (BTItem) PageGetItem(page, curitemid);
				htup.t_self = cbti->bti_itup.t_tid;
				if (heap_fetch(heapRel, SnapshotDirty, &htup, &hbuffer,
							   true, NULL))
				{
					/* it is a duplicate */
					TransactionId xwait =
					(TransactionIdIsValid(SnapshotDirty->xmin)) ?
					SnapshotDirty->xmin : SnapshotDirty->xmax;

					ReleaseBuffer(hbuffer);

					/*
					 * If this tuple is being updated by other transaction
					 * then we have to wait for its commit/abort.
					 */
					if (TransactionIdIsValid(xwait))
					{
						if (nbuf != InvalidBuffer)
							_bt_relbuf(rel, nbuf);
						/* Tell _bt_doinsert to wait... */
						return xwait;
					}

					/*
					 * Otherwise we have a definite conflict.
					 */
					ereport(ERROR,
							(errcode(ERRCODE_UNIQUE_VIOLATION),
							 errmsg("duplicate key violates unique constraint \"%s\"",
									RelationGetRelationName(rel))));
				}
				else if (htup.t_data != NULL)
				{
					/*
					 * Hmm, if we can't see the tuple, maybe it can be
					 * marked killed.  This logic should match
					 * index_getnext and btgettuple.
					 */
					uint16		sv_infomask;

					LockBuffer(hbuffer, BUFFER_LOCK_SHARE);
					sv_infomask = htup.t_data->t_infomask;
					if (HeapTupleSatisfiesVacuum(htup.t_data,
												 RecentGlobalXmin) ==
						HEAPTUPLE_DEAD)
					{
						curitemid->lp_flags |= LP_DELETE;
						SetBufferCommitInfoNeedsSave(buf);
					}
					if (sv_infomask != htup.t_data->t_infomask)
						SetBufferCommitInfoNeedsSave(hbuffer);
					LockBuffer(hbuffer, BUFFER_LOCK_UNLOCK);
					ReleaseBuffer(hbuffer);
				}
			}
		}

		/*
		 * Advance to next tuple to continue checking.
		 */
		if (offset < maxoff)
			offset = OffsetNumberNext(offset);
		else
		{
			/* If scankey == hikey we gotta check the next page too */
			if (P_RIGHTMOST(opaque))
				break;
			if (!_bt_isequal(itupdesc, page, P_HIKEY,
							 natts, itup_scankey))
				break;
			/* Advance to next non-dead page --- there must be one */
			for (;;)
			{
				nblkno = opaque->btpo_next;
				if (nbuf != InvalidBuffer)
					_bt_relbuf(rel, nbuf);
				nbuf = _bt_getbuf(rel, nblkno, BT_READ);
				page = BufferGetPage(nbuf);
				opaque = (BTPageOpaque) PageGetSpecialPointer(page);
				if (!P_IGNORE(opaque))
					break;
				if (P_RIGHTMOST(opaque))
					elog(ERROR, "fell off the end of \"%s\"",
						 RelationGetRelationName(rel));
			}
			maxoff = PageGetMaxOffsetNumber(page);
			offset = P_FIRSTDATAKEY(opaque);
		}
	}

	if (nbuf != InvalidBuffer)
		_bt_relbuf(rel, nbuf);

	return InvalidTransactionId;
}

/*----------
 *	_bt_insertonpg() -- Insert a tuple on a particular page in the index.
 *
 *		This recursive procedure does the following things:
 *
 *			+  finds the right place to insert the tuple.
 *			+  if necessary, splits the target page (making sure that the
 *			   split is equitable as far as post-insert free space goes).
 *			+  inserts the tuple.
 *			+  if the page was split, pops the parent stack, and finds the
 *			   right place to insert the new child pointer (by walking
 *			   right using information stored in the parent stack).
 *			+  invokes itself with the appropriate tuple for the right
 *			   child page on the parent.
 *			+  updates the metapage if a true root or fast root is split.
 *
 *		On entry, we must have the right buffer on which to do the
 *		insertion, and the buffer must be pinned and locked.  On return,
 *		we will have dropped both the pin and the write lock on the buffer.
 *
 *		If 'afteritem' is >0 then the new tuple must be inserted after the
 *		existing item of that number, noplace else.  If 'afteritem' is 0
 *		then the procedure finds the exact spot to insert it by searching.
 *		(keysz and scankey parameters are used ONLY if afteritem == 0.)
 *
 *		NOTE: if the new key is equal to one or more existing keys, we can
 *		legitimately place it anywhere in the series of equal keys --- in fact,
 *		if the new key is equal to the page's "high key" we can place it on
 *		the next page.	If it is equal to the high key, and there's not room
 *		to insert the new tuple on the current page without splitting, then
 *		we can move right hoping to find more free space and avoid a split.
 *		(We should not move right indefinitely, however, since that leads to
 *		O(N^2) insertion behavior in the presence of many equal keys.)
 *		Once we have chosen the page to put the key on, we'll insert it before
 *		any existing equal keys because of the way _bt_binsrch() works.
 *
 *		The locking interactions in this code are critical.  You should
 *		grok Lehman and Yao's paper before making any changes.  In addition,
 *		you need to understand how we disambiguate duplicate keys in this
 *		implementation, in order to be able to find our location using
 *		L&Y "move right" operations.  Since we may insert duplicate user
 *		keys, and since these dups may propagate up the tree, we use the
 *		'afteritem' parameter to position ourselves correctly for the
 *		insertion on internal pages.
 *----------
 */
static InsertIndexResult
_bt_insertonpg(Relation rel,
			   Buffer buf,
			   BTStack stack,
			   int keysz,
			   ScanKey scankey,
			   BTItem btitem,
			   OffsetNumber afteritem,
			   bool split_only_page)
{
	InsertIndexResult res;
	Page		page;
	BTPageOpaque lpageop;
	OffsetNumber itup_off;
	BlockNumber itup_blkno;
	OffsetNumber newitemoff;
	OffsetNumber firstright = InvalidOffsetNumber;
	Size		itemsz;

	page = BufferGetPage(buf);
	lpageop = (BTPageOpaque) PageGetSpecialPointer(page);

	itemsz = IndexTupleDSize(btitem->bti_itup)
		+ (sizeof(BTItemData) - sizeof(IndexTupleData));

	itemsz = MAXALIGN(itemsz);	/* be safe, PageAddItem will do this but
								 * we need to be consistent */

	/*
	 * Check whether the item can fit on a btree page at all. (Eventually,
	 * we ought to try to apply TOAST methods if not.) We actually need to
	 * be able to fit three items on every page, so restrict any one item
	 * to 1/3 the per-page available space. Note that at this point,
	 * itemsz doesn't include the ItemId.
	 */
	if (itemsz > BTMaxItemSize(page))
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("index row size %lu exceeds btree maximum, %lu",
						(unsigned long) itemsz,
						(unsigned long) BTMaxItemSize(page))));

	/*
	 * Determine exactly where new item will go.
	 */
	if (afteritem > 0)
		newitemoff = afteritem + 1;
	else
	{
		/*----------
		 * If we will need to split the page to put the item here,
		 * check whether we can put the tuple somewhere to the right,
		 * instead.  Keep scanning right until we
		 *		(a) find a page with enough free space,
		 *		(b) reach the last page where the tuple can legally go, or
		 *		(c) get tired of searching.
		 * (c) is not flippant; it is important because if there are many
		 * pages' worth of equal keys, it's better to split one of the early
		 * pages than to scan all the way to the end of the run of equal keys
		 * on every insert.  We implement "get tired" as a random choice,
		 * since stopping after scanning a fixed number of pages wouldn't work
		 * well (we'd never reach the right-hand side of previously split
		 * pages).	Currently the probability of moving right is set at 0.99,
		 * which may seem too high to change the behavior much, but it does an
		 * excellent job of preventing O(N^2) behavior with many equal keys.
		 *----------
		 */
		bool		movedright = false;

		while (PageGetFreeSpace(page) < itemsz &&
			   !P_RIGHTMOST(lpageop) &&
			   _bt_compare(rel, keysz, scankey, page, P_HIKEY) == 0 &&
			   random() > (MAX_RANDOM_VALUE / 100))
		{
			/*
			 * step right to next non-dead page
			 *
			 * must write-lock that page before releasing write lock on
			 * current page; else someone else's _bt_check_unique scan
			 * could fail to see our insertion.  write locks on
			 * intermediate dead pages won't do because we don't know when
			 * they will get de-linked from the tree.
			 */
			Buffer		rbuf = InvalidBuffer;

			for (;;)
			{
				BlockNumber rblkno = lpageop->btpo_next;

				if (rbuf != InvalidBuffer)
					_bt_relbuf(rel, rbuf);
				rbuf = _bt_getbuf(rel, rblkno, BT_WRITE);
				page = BufferGetPage(rbuf);
				lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
				if (!P_IGNORE(lpageop))
					break;
				if (P_RIGHTMOST(lpageop))
					elog(ERROR, "fell off the end of \"%s\"",
						 RelationGetRelationName(rel));
			}
			_bt_relbuf(rel, buf);
			buf = rbuf;
			movedright = true;
		}

		/*
		 * Now we are on the right page, so find the insert position. If
		 * we moved right at all, we know we should insert at the start of
		 * the page, else must find the position by searching.
		 */
		if (movedright)
			newitemoff = P_FIRSTDATAKEY(lpageop);
		else
			newitemoff = _bt_binsrch(rel, buf, keysz, scankey);
	}

	/*
	 * Do we need to split the page to fit the item on it?
	 *
	 * Note: PageGetFreeSpace() subtracts sizeof(ItemIdData) from its result,
	 * so this comparison is correct even though we appear to be
	 * accounting only for the item and not for its line pointer.
	 */
	if (PageGetFreeSpace(page) < itemsz)
	{
		bool		is_root = P_ISROOT(lpageop);
		bool		is_only = P_LEFTMOST(lpageop) && P_RIGHTMOST(lpageop);
		bool		newitemonleft;
		Buffer		rbuf;

		/* Choose the split point */
		firstright = _bt_findsplitloc(rel, page,
									  newitemoff, itemsz,
									  &newitemonleft);

		/* split the buffer into left and right halves */
		rbuf = _bt_split(rel, buf, firstright,
						 newitemoff, itemsz, btitem, newitemonleft,
						 &itup_off, &itup_blkno);

		/*----------
		 * By here,
		 *
		 *		+  our target page has been split;
		 *		+  the original tuple has been inserted;
		 *		+  we have write locks on both the old (left half)
		 *		   and new (right half) buffers, after the split; and
		 *		+  we know the key we want to insert into the parent
		 *		   (it's the "high key" on the left child page).
		 *
		 * We're ready to do the parent insertion.  We need to hold onto the
		 * locks for the child pages until we locate the parent, but we can
		 * release them before doing the actual insertion (see Lehman and Yao
		 * for the reasoning).
		 *----------
		 */
		_bt_insert_parent(rel, buf, rbuf, stack, is_root, is_only);
	}
	else
	{
		Buffer		metabuf = InvalidBuffer;
		Page		metapg = NULL;
		BTMetaPageData *metad = NULL;

		itup_off = newitemoff;
		itup_blkno = BufferGetBlockNumber(buf);

		/*
		 * If we are doing this insert because we split a page that was
		 * the only one on its tree level, but was not the root, it may
		 * have been the "fast root".  We need to ensure that the fast
		 * root link points at or above the current page.  We can safely
		 * acquire a lock on the metapage here --- see comments for
		 * _bt_newroot().
		 */
		if (split_only_page)
		{
			metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
			metapg = BufferGetPage(metabuf);
			metad = BTPageGetMeta(metapg);

			if (metad->btm_fastlevel >= lpageop->btpo.level)
			{
				/* no update wanted */
				_bt_relbuf(rel, metabuf);
				metabuf = InvalidBuffer;
			}
		}

		/* Do the update.  No ereport(ERROR) until changes are logged */
		START_CRIT_SECTION();

		_bt_pgaddtup(rel, page, itemsz, btitem, newitemoff, "page");

		if (BufferIsValid(metabuf))
		{
			metad->btm_fastroot = itup_blkno;
			metad->btm_fastlevel = lpageop->btpo.level;
		}

		/* XLOG stuff */
		if (!rel->rd_istemp)
		{
			xl_btree_insert xlrec;
			xl_btree_metadata xlmeta;
			uint8		xlinfo;
			XLogRecPtr	recptr;
			XLogRecData rdata[3];
			XLogRecData *nextrdata;
			BTItemData	truncitem;

			xlrec.target.node = rel->rd_node;
			ItemPointerSet(&(xlrec.target.tid), itup_blkno, itup_off);

			rdata[0].buffer = InvalidBuffer;
			rdata[0].data = (char *) &xlrec;
			rdata[0].len = SizeOfBtreeInsert;
			rdata[0].next = nextrdata = &(rdata[1]);

			if (BufferIsValid(metabuf))
			{
				xlmeta.root = metad->btm_root;
				xlmeta.level = metad->btm_level;
				xlmeta.fastroot = metad->btm_fastroot;
				xlmeta.fastlevel = metad->btm_fastlevel;

				nextrdata->buffer = InvalidBuffer;
				nextrdata->data = (char *) &xlmeta;
				nextrdata->len = sizeof(xl_btree_metadata);
				nextrdata->next = nextrdata + 1;
				nextrdata++;
				xlinfo = XLOG_BTREE_INSERT_META;
			}
			else if (P_ISLEAF(lpageop))
				xlinfo = XLOG_BTREE_INSERT_LEAF;
			else
				xlinfo = XLOG_BTREE_INSERT_UPPER;

			/* Read comments in _bt_pgaddtup */
			if (!P_ISLEAF(lpageop) && newitemoff == P_FIRSTDATAKEY(lpageop))
			{
				truncitem = *btitem;
				truncitem.bti_itup.t_info = sizeof(BTItemData);
				nextrdata->data = (char *) &truncitem;
				nextrdata->len = sizeof(BTItemData);
			}
			else
			{
				nextrdata->data = (char *) btitem;
				nextrdata->len = IndexTupleDSize(btitem->bti_itup) +
					(sizeof(BTItemData) - sizeof(IndexTupleData));
			}
			nextrdata->buffer = buf;
			nextrdata->next = NULL;

			recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

			if (BufferIsValid(metabuf))
			{
				PageSetLSN(metapg, recptr);
				PageSetSUI(metapg, ThisStartUpID);
			}

			PageSetLSN(page, recptr);
			PageSetSUI(page, ThisStartUpID);
		}

		END_CRIT_SECTION();

		/* Write out the updated page and release pin/lock */
		if (BufferIsValid(metabuf))
			_bt_wrtbuf(rel, metabuf);

		_bt_wrtbuf(rel, buf);
	}

	/* by here, the new tuple is inserted at itup_blkno/itup_off */
	res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
	ItemPointerSet(&(res->pointerData), itup_blkno, itup_off);

	return res;
}

/*
 *	_bt_split() -- split a page in the btree.
 *
 *		On entry, buf is the page to split, and is write-locked and pinned.
 *		firstright is the item index of the first item to be moved to the
 *		new right page.  newitemoff etc. tell us about the new item that
 *		must be inserted along with the data from the old page.
 *
 *		Returns the new right sibling of buf, pinned and write-locked.
 *		The pin and lock on buf are maintained.  *itup_off and *itup_blkno
 *		are set to the exact location where newitem was inserted.
 */
static Buffer
_bt_split(Relation rel, Buffer buf, OffsetNumber firstright,
		  OffsetNumber newitemoff, Size newitemsz, BTItem newitem,
		  bool newitemonleft,
		  OffsetNumber *itup_off, BlockNumber *itup_blkno)
{
	Buffer		rbuf;
	Page		origpage;
	Page		leftpage,
				rightpage;
	BTPageOpaque ropaque,
				lopaque,
				oopaque;
	Buffer		sbuf = InvalidBuffer;
	Page		spage = NULL;
	BTPageOpaque sopaque = NULL;
	Size		itemsz;
	ItemId		itemid;
	BTItem		item;
	OffsetNumber leftoff,
				rightoff;
	OffsetNumber maxoff;
	OffsetNumber i;

	rbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
	origpage = BufferGetPage(buf);
	leftpage = PageGetTempPage(origpage, sizeof(BTPageOpaqueData));
	rightpage = BufferGetPage(rbuf);

	_bt_pageinit(leftpage, BufferGetPageSize(buf));
	_bt_pageinit(rightpage, BufferGetPageSize(rbuf));

	/* init btree private data */
	oopaque = (BTPageOpaque) PageGetSpecialPointer(origpage);
	lopaque = (BTPageOpaque) PageGetSpecialPointer(leftpage);
	ropaque = (BTPageOpaque) PageGetSpecialPointer(rightpage);

	/* if we're splitting this page, it won't be the root when we're done */
	lopaque->btpo_flags = oopaque->btpo_flags;
	lopaque->btpo_flags &= ~BTP_ROOT;
	ropaque->btpo_flags = lopaque->btpo_flags;
	lopaque->btpo_prev = oopaque->btpo_prev;
	lopaque->btpo_next = BufferGetBlockNumber(rbuf);
	ropaque->btpo_prev = BufferGetBlockNumber(buf);
	ropaque->btpo_next = oopaque->btpo_next;
	lopaque->btpo.level = ropaque->btpo.level = oopaque->btpo.level;

	/*
	 * If the page we're splitting is not the rightmost page at its level
	 * in the tree, then the first entry on the page is the high key for
	 * the page.  We need to copy that to the right half.  Otherwise
	 * (meaning the rightmost page case), all the items on the right half
	 * will be user data.
	 */
	rightoff = P_HIKEY;

	if (!P_RIGHTMOST(oopaque))
	{
		itemid = PageGetItemId(origpage, P_HIKEY);
		itemsz = ItemIdGetLength(itemid);
		item = (BTItem) PageGetItem(origpage, itemid);
		if (PageAddItem(rightpage, (Item) item, itemsz, rightoff,
						LP_USED) == InvalidOffsetNumber)
			elog(PANIC, "failed to add hikey to the right sibling");
		rightoff = OffsetNumberNext(rightoff);
	}

	/*
	 * The "high key" for the new left page will be the first key that's
	 * going to go into the new right page.  This might be either the
	 * existing data item at position firstright, or the incoming tuple.
	 */
	leftoff = P_HIKEY;
	if (!newitemonleft && newitemoff == firstright)
	{
		/* incoming tuple will become first on right page */
		itemsz = newitemsz;
		item = newitem;
	}
	else
	{
		/* existing item at firstright will become first on right page */
		itemid = PageGetItemId(origpage, firstright);
		itemsz = ItemIdGetLength(itemid);
		item = (BTItem) PageGetItem(origpage, itemid);
	}
	if (PageAddItem(leftpage, (Item) item, itemsz, leftoff,
					LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add hikey to the left sibling");
	leftoff = OffsetNumberNext(leftoff);

	/*
	 * Now transfer all the data items to the appropriate page
	 */
	maxoff = PageGetMaxOffsetNumber(origpage);

	for (i = P_FIRSTDATAKEY(oopaque); i <= maxoff; i = OffsetNumberNext(i))
	{
		itemid = PageGetItemId(origpage, i);
		itemsz = ItemIdGetLength(itemid);
		item = (BTItem) PageGetItem(origpage, itemid);

		/* does new item belong before this one? */
		if (i == newitemoff)
		{
			if (newitemonleft)
			{
				_bt_pgaddtup(rel, leftpage, newitemsz, newitem, leftoff,
							 "left sibling");
				*itup_off = leftoff;
				*itup_blkno = BufferGetBlockNumber(buf);
				leftoff = OffsetNumberNext(leftoff);
			}
			else
			{
				_bt_pgaddtup(rel, rightpage, newitemsz, newitem, rightoff,
							 "right sibling");
				*itup_off = rightoff;
				*itup_blkno = BufferGetBlockNumber(rbuf);
				rightoff = OffsetNumberNext(rightoff);
			}
		}

		/* decide which page to put it on */
		if (i < firstright)
		{
			_bt_pgaddtup(rel, leftpage, itemsz, item, leftoff,
						 "left sibling");
			leftoff = OffsetNumberNext(leftoff);
		}
		else
		{
			_bt_pgaddtup(rel, rightpage, itemsz, item, rightoff,
						 "right sibling");
			rightoff = OffsetNumberNext(rightoff);
		}
	}

	/* cope with possibility that newitem goes at the end */
	if (i <= newitemoff)
	{
		if (newitemonleft)
		{
			_bt_pgaddtup(rel, leftpage, newitemsz, newitem, leftoff,
						 "left sibling");
			*itup_off = leftoff;
			*itup_blkno = BufferGetBlockNumber(buf);
			leftoff = OffsetNumberNext(leftoff);
		}
		else
		{
			_bt_pgaddtup(rel, rightpage, newitemsz, newitem, rightoff,
						 "right sibling");
			*itup_off = rightoff;
			*itup_blkno = BufferGetBlockNumber(rbuf);
			rightoff = OffsetNumberNext(rightoff);
		}
	}

	/*
	 * We have to grab the right sibling (if any) and fix the prev pointer
	 * there. We are guaranteed that this is deadlock-free since no other
	 * writer will be holding a lock on that page and trying to move left,
	 * and all readers release locks on a page before trying to fetch its
	 * neighbors.
	 */

	if (!P_RIGHTMOST(ropaque))
	{
		sbuf = _bt_getbuf(rel, ropaque->btpo_next, BT_WRITE);
		spage = BufferGetPage(sbuf);
		sopaque = (BTPageOpaque) PageGetSpecialPointer(spage);
		if (sopaque->btpo_prev != ropaque->btpo_prev)
			elog(PANIC, "right sibling's left-link doesn't match");
	}

	/*
	 * Right sibling is locked, new siblings are prepared, but original
	 * page is not updated yet. Log changes before continuing.
	 *
	 * NO EREPORT(ERROR) till right sibling is updated.
	 */
	START_CRIT_SECTION();

	if (!P_RIGHTMOST(ropaque))
		sopaque->btpo_prev = BufferGetBlockNumber(rbuf);

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_split xlrec;
		uint8		xlinfo;
		XLogRecPtr	recptr;
		XLogRecData rdata[4];

		xlrec.target.node = rel->rd_node;
		ItemPointerSet(&(xlrec.target.tid), *itup_blkno, *itup_off);
		if (newitemonleft)
			xlrec.otherblk = BufferGetBlockNumber(rbuf);
		else
			xlrec.otherblk = BufferGetBlockNumber(buf);
		xlrec.leftblk = lopaque->btpo_prev;
		xlrec.rightblk = ropaque->btpo_next;
		xlrec.level = lopaque->btpo.level;

		/*
		 * Direct access to page is not good but faster - we should
		 * implement some new func in page API.  Note we only store the
		 * tuples themselves, knowing that the item pointers are in the
		 * same order and can be reconstructed by scanning the tuples.
		 */
		xlrec.leftlen = ((PageHeader) leftpage)->pd_special -
			((PageHeader) leftpage)->pd_upper;

		rdata[0].buffer = InvalidBuffer;
		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeSplit;
		rdata[0].next = &(rdata[1]);

		rdata[1].buffer = InvalidBuffer;
		rdata[1].data = (char *) leftpage + ((PageHeader) leftpage)->pd_upper;
		rdata[1].len = xlrec.leftlen;
		rdata[1].next = &(rdata[2]);

		rdata[2].buffer = InvalidBuffer;
		rdata[2].data = (char *) rightpage + ((PageHeader) rightpage)->pd_upper;
		rdata[2].len = ((PageHeader) rightpage)->pd_special -
			((PageHeader) rightpage)->pd_upper;
		rdata[2].next = NULL;

		if (!P_RIGHTMOST(ropaque))
		{
			rdata[2].next = &(rdata[3]);
			rdata[3].buffer = sbuf;
			rdata[3].data = NULL;
			rdata[3].len = 0;
			rdata[3].next = NULL;
		}

		if (P_ISROOT(oopaque))
			xlinfo = newitemonleft ? XLOG_BTREE_SPLIT_L_ROOT : XLOG_BTREE_SPLIT_R_ROOT;
		else
			xlinfo = newitemonleft ? XLOG_BTREE_SPLIT_L : XLOG_BTREE_SPLIT_R;

		recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

		PageSetLSN(leftpage, recptr);
		PageSetSUI(leftpage, ThisStartUpID);
		PageSetLSN(rightpage, recptr);
		PageSetSUI(rightpage, ThisStartUpID);
		if (!P_RIGHTMOST(ropaque))
		{
			PageSetLSN(spage, recptr);
			PageSetSUI(spage, ThisStartUpID);
		}
	}

	/*
	 * By here, the original data page has been split into two new halves,
	 * and these are correct.  The algorithm requires that the left page
	 * never move during a split, so we copy the new left page back on top
	 * of the original.  Note that this is not a waste of time, since we
	 * also require (in the page management code) that the center of a
	 * page always be clean, and the most efficient way to guarantee this
	 * is just to compact the data by reinserting it into a new left page.
	 */

	PageRestoreTempPage(leftpage, origpage);

	END_CRIT_SECTION();

	/* write and release the old right sibling */
	if (!P_RIGHTMOST(ropaque))
		_bt_wrtbuf(rel, sbuf);

	/* split's done */
	return rbuf;
}

/*
 *	_bt_findsplitloc() -- find an appropriate place to split a page.
 *
 * The idea here is to equalize the free space that will be on each split
 * page, *after accounting for the inserted tuple*.  (If we fail to account
 * for it, we might find ourselves with too little room on the page that
 * it needs to go into!)
 *
 * If the page is the rightmost page on its level, we instead try to arrange
 * for twice as much free space on the right as on the left.  In this way,
 * when we are inserting successively increasing keys (consider sequences,
 * timestamps, etc) we will end up with a tree whose pages are about 67% full,
 * instead of the 50% full result that we'd get without this special case.
 * (We could bias it even further to make the initially-loaded tree more full.
 * But since the steady-state load for a btree is about 70%, we'd likely just
 * be making more page-splitting work for ourselves later on, when we start
 * seeing updates to existing tuples.)
 *
 * We are passed the intended insert position of the new tuple, expressed as
 * the offsetnumber of the tuple it must go in front of.  (This could be
 * maxoff+1 if the tuple is to go at the end.)
 *
 * We return the index of the first existing tuple that should go on the
 * righthand page, plus a boolean indicating whether the new tuple goes on
 * the left or right page.	The bool is necessary to disambiguate the case
 * where firstright == newitemoff.
 */
static OffsetNumber
_bt_findsplitloc(Relation rel,
				 Page page,
				 OffsetNumber newitemoff,
				 Size newitemsz,
				 bool *newitemonleft)
{
	BTPageOpaque opaque;
	OffsetNumber offnum;
	OffsetNumber maxoff;
	ItemId		itemid;
	FindSplitData state;
	int			leftspace,
				rightspace,
				goodenough,
				dataitemtotal,
				dataitemstoleft;

	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/* Passed-in newitemsz is MAXALIGNED but does not include line pointer */
	newitemsz += sizeof(ItemIdData);
	state.newitemsz = newitemsz;
	state.is_leaf = P_ISLEAF(opaque);
	state.is_rightmost = P_RIGHTMOST(opaque);
	state.have_split = false;

	/* Total free space available on a btree page, after fixed overhead */
	leftspace = rightspace =
		PageGetPageSize(page) - SizeOfPageHeaderData -
		MAXALIGN(sizeof(BTPageOpaqueData));

	/*
	 * Finding the best possible split would require checking all the
	 * possible split points, because of the high-key and left-key special
	 * cases. That's probably more work than it's worth; instead, stop as
	 * soon as we find a "good-enough" split, where good-enough is defined
	 * as an imbalance in free space of no more than pagesize/16
	 * (arbitrary...) This should let us stop near the middle on most
	 * pages, instead of plowing to the end.
	 */
	goodenough = leftspace / 16;

	/* The right page will have the same high key as the old page */
	if (!P_RIGHTMOST(opaque))
	{
		itemid = PageGetItemId(page, P_HIKEY);
		rightspace -= (int) (MAXALIGN(ItemIdGetLength(itemid)) +
							 sizeof(ItemIdData));
	}

	/* Count up total space in data items without actually scanning 'em */
	dataitemtotal = rightspace - (int) PageGetFreeSpace(page);

	/*
	 * Scan through the data items and calculate space usage for a split
	 * at each possible position.
	 */
	dataitemstoleft = 0;
	maxoff = PageGetMaxOffsetNumber(page);

	for (offnum = P_FIRSTDATAKEY(opaque);
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		Size		itemsz;
		int			leftfree,
					rightfree;

		itemid = PageGetItemId(page, offnum);
		itemsz = MAXALIGN(ItemIdGetLength(itemid)) + sizeof(ItemIdData);

		/*
		 * We have to allow for the current item becoming the high key of
		 * the left page; therefore it counts against left space as well
		 * as right space.
		 */
		leftfree = leftspace - dataitemstoleft - (int) itemsz;
		rightfree = rightspace - (dataitemtotal - dataitemstoleft);

		/*
		 * Will the new item go to left or right of split?
		 */
		if (offnum > newitemoff)
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  true, itemsz);
		else if (offnum < newitemoff)
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  false, itemsz);
		else
		{
			/* need to try it both ways! */
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  true, itemsz);
			/* here we are contemplating newitem as first on right */
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  false, newitemsz);
		}

		/* Abort scan once we find a good-enough choice */
		if (state.have_split && state.best_delta <= goodenough)
			break;

		dataitemstoleft += itemsz;
	}

	/*
	 * I believe it is not possible to fail to find a feasible split, but
	 * just in case ...
	 */
	if (!state.have_split)
		elog(ERROR, "could not find a feasible split point for \"%s\"",
			 RelationGetRelationName(rel));

	*newitemonleft = state.newitemonleft;
	return state.firstright;
}

/*
 * Subroutine to analyze a particular possible split choice (ie, firstright
 * and newitemonleft settings), and record the best split so far in *state.
 */
static void
_bt_checksplitloc(FindSplitData *state, OffsetNumber firstright,
				  int leftfree, int rightfree,
				  bool newitemonleft, Size firstrightitemsz)
{
	/*
	 * Account for the new item on whichever side it is to be put.
	 */
	if (newitemonleft)
		leftfree -= (int) state->newitemsz;
	else
		rightfree -= (int) state->newitemsz;

	/*
	 * If we are not on the leaf level, we will be able to discard the key
	 * data from the first item that winds up on the right page.
	 */
	if (!state->is_leaf)
		rightfree += (int) firstrightitemsz -
			(int) (MAXALIGN(sizeof(BTItemData)) + sizeof(ItemIdData));

	/*
	 * If feasible split point, remember best delta.
	 */
	if (leftfree >= 0 && rightfree >= 0)
	{
		int			delta;

		if (state->is_rightmost)
		{
			/*
			 * On a rightmost page, try to equalize right free space with
			 * twice the left free space.  See comments for
			 * _bt_findsplitloc.
			 */
			delta = (2 * leftfree) - rightfree;
		}
		else
		{
			/* Otherwise, aim for equal free space on both sides */
			delta = leftfree - rightfree;
		}

		if (delta < 0)
			delta = -delta;
		if (!state->have_split || delta < state->best_delta)
		{
			state->have_split = true;
			state->newitemonleft = newitemonleft;
			state->firstright = firstright;
			state->best_delta = delta;
		}
	}
}

/*
 * _bt_insert_parent() -- Insert downlink into parent after a page split.
 *
 * On entry, buf and rbuf are the left and right split pages, which we
 * still hold write locks on per the L&Y algorithm.  We release the
 * write locks once we have write lock on the parent page.	(Any sooner,
 * and it'd be possible for some other process to try to split or delete
 * one of these pages, and get confused because it cannot find the downlink.)
 *
 * stack - stack showing how we got here.  May be NULL in cases that don't
 *			have to be efficient (concurrent ROOT split, WAL recovery)
 * is_root - we split the true root
 * is_only - we split a page alone on its level (might have been fast root)
 *
 * This is exported so it can be called by nbtxlog.c.
 */
void
_bt_insert_parent(Relation rel,
				  Buffer buf,
				  Buffer rbuf,
				  BTStack stack,
				  bool is_root,
				  bool is_only)
{
	/*
	 * Here we have to do something Lehman and Yao don't talk about: deal
	 * with a root split and construction of a new root.  If our stack is
	 * empty then we have just split a node on what had been the root
	 * level when we descended the tree.  If it was still the root then we
	 * perform a new-root construction.  If it *wasn't* the root anymore,
	 * search to find the next higher level that someone constructed
	 * meanwhile, and find the right place to insert as for the normal
	 * case.
	 *
	 * If we have to search for the parent level, we do so by re-descending
	 * from the root.  This is not super-efficient, but it's rare enough
	 * not to matter.  (This path is also taken when called from WAL
	 * recovery --- we have no stack in that case.)
	 */
	if (is_root)
	{
		Buffer		rootbuf;

		Assert(stack == (BTStack) NULL);
		Assert(is_only);
		/* create a new root node and update the metapage */
		rootbuf = _bt_newroot(rel, buf, rbuf);
		/* release the split buffers */
		_bt_wrtbuf(rel, rootbuf);
		_bt_wrtbuf(rel, rbuf);
		_bt_wrtbuf(rel, buf);
	}
	else
	{
		BlockNumber bknum = BufferGetBlockNumber(buf);
		BlockNumber rbknum = BufferGetBlockNumber(rbuf);
		Page		page = BufferGetPage(buf);
		InsertIndexResult newres;
		BTItem		new_item;
		BTStackData fakestack;
		BTItem		ritem;
		Buffer		pbuf;

		if (stack == (BTStack) NULL)
		{
			BTPageOpaque lpageop;

			if (!InRecovery)
				elog(DEBUG2, "concurrent ROOT page split");
			lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
			/* Find the leftmost page at the next level up */
			pbuf = _bt_get_endpoint(rel, lpageop->btpo.level + 1, false);
			/* Set up a phony stack entry pointing there */
			stack = &fakestack;
			stack->bts_blkno = BufferGetBlockNumber(pbuf);
			stack->bts_offset = InvalidOffsetNumber;
			/* bts_btitem will be initialized below */
			stack->bts_parent = NULL;
			_bt_relbuf(rel, pbuf);
		}

		/* get high key from left page == lowest key on new right page */
		ritem = (BTItem) PageGetItem(page,
									 PageGetItemId(page, P_HIKEY));

		/* form an index tuple that points at the new right page */
		new_item = _bt_formitem(&(ritem->bti_itup));
		ItemPointerSet(&(new_item->bti_itup.t_tid), rbknum, P_HIKEY);

		/*
		 * Find the parent buffer and get the parent page.
		 *
		 * Oops - if we were moved right then we need to change stack item!
		 * We want to find parent pointing to where we are, right ?    -
		 * vadim 05/27/97
		 */
		ItemPointerSet(&(stack->bts_btitem.bti_itup.t_tid),
					   bknum, P_HIKEY);

		pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);

		/* Now we can write and unlock the children */
		_bt_wrtbuf(rel, rbuf);
		_bt_wrtbuf(rel, buf);

		/* Check for error only after writing children */
		if (pbuf == InvalidBuffer)
			elog(ERROR, "failed to re-find parent key in \"%s\"",
				 RelationGetRelationName(rel));

		/* Recursively update the parent */
		newres = _bt_insertonpg(rel, pbuf, stack->bts_parent,
								0, NULL, new_item, stack->bts_offset,
								is_only);

		/* be tidy */
		pfree(newres);
		pfree(new_item);
	}
}

/*
 *	_bt_getstackbuf() -- Walk back up the tree one step, and find the item
 *						 we last looked at in the parent.
 *
 *		This is possible because we save the downlink from the parent item,
 *		which is enough to uniquely identify it.  Insertions into the parent
 *		level could cause the item to move right; deletions could cause it
 *		to move left, but not left of the page we previously found it in.
 *
 *		Adjusts bts_blkno & bts_offset if changed.
 *
 *		Returns InvalidBuffer if item not found (should not happen).
 */
Buffer
_bt_getstackbuf(Relation rel, BTStack stack, int access)
{
	BlockNumber blkno;
	OffsetNumber start;

	blkno = stack->bts_blkno;
	start = stack->bts_offset;

	for (;;)
	{
		Buffer		buf;
		Page		page;
		BTPageOpaque opaque;

		buf = _bt_getbuf(rel, blkno, access);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);

		if (!P_IGNORE(opaque))
		{
			OffsetNumber offnum,
						minoff,
						maxoff;
			ItemId		itemid;
			BTItem		item;

			minoff = P_FIRSTDATAKEY(opaque);
			maxoff = PageGetMaxOffsetNumber(page);

			/*
			 * start = InvalidOffsetNumber means "search the whole page".
			 * We need this test anyway due to possibility that page has a
			 * high key now when it didn't before.
			 */
			if (start < minoff)
				start = minoff;

			/*
			 * These loops will check every item on the page --- but in an
			 * order that's attuned to the probability of where it
			 * actually is.  Scan to the right first, then to the left.
			 */
			for (offnum = start;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				itemid = PageGetItemId(page, offnum);
				item = (BTItem) PageGetItem(page, itemid);
				if (BTItemSame(item, &stack->bts_btitem))
				{
					/* Return accurate pointer to where link is now */
					stack->bts_blkno = blkno;
					stack->bts_offset = offnum;
					return buf;
				}
			}

			for (offnum = OffsetNumberPrev(start);
				 offnum >= minoff;
				 offnum = OffsetNumberPrev(offnum))
			{
				itemid = PageGetItemId(page, offnum);
				item = (BTItem) PageGetItem(page, itemid);
				if (BTItemSame(item, &stack->bts_btitem))
				{
					/* Return accurate pointer to where link is now */
					stack->bts_blkno = blkno;
					stack->bts_offset = offnum;
					return buf;
				}
			}
		}

		/*
		 * The item we're looking for moved right at least one page.
		 */
		if (P_RIGHTMOST(opaque))
		{
			_bt_relbuf(rel, buf);
			return (InvalidBuffer);
		}
		blkno = opaque->btpo_next;
		start = InvalidOffsetNumber;
		_bt_relbuf(rel, buf);
	}
}

/*
 *	_bt_newroot() -- Create a new root page for the index.
 *
 *		We've just split the old root page and need to create a new one.
 *		In order to do this, we add a new root page to the file, then lock
 *		the metadata page and update it.  This is guaranteed to be deadlock-
 *		free, because all readers release their locks on the metadata page
 *		before trying to lock the root, and all writers lock the root before
 *		trying to lock the metadata page.  We have a write lock on the old
 *		root page, so we have not introduced any cycles into the waits-for
 *		graph.
 *
 *		On entry, lbuf (the old root) and rbuf (its new peer) are write-
 *		locked. On exit, a new root page exists with entries for the
 *		two new children, metapage is updated and unlocked/unpinned.
 *		The new root buffer is returned to caller which has to unlock/unpin
 *		lbuf, rbuf & rootbuf.
 */
static Buffer
_bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf)
{
	Buffer		rootbuf;
	Page		lpage,
				rpage,
				rootpage;
	BlockNumber lbkno,
				rbkno;
	BlockNumber rootblknum;
	BTPageOpaque rootopaque;
	ItemId		itemid;
	BTItem		item;
	Size		itemsz;
	BTItem		new_item;
	Buffer		metabuf;
	Page		metapg;
	BTMetaPageData *metad;

	lbkno = BufferGetBlockNumber(lbuf);
	rbkno = BufferGetBlockNumber(rbuf);
	lpage = BufferGetPage(lbuf);
	rpage = BufferGetPage(rbuf);

	/* get a new root page */
	rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
	rootpage = BufferGetPage(rootbuf);
	rootblknum = BufferGetBlockNumber(rootbuf);

	/* acquire lock on the metapage */
	metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
	metapg = BufferGetPage(metabuf);
	metad = BTPageGetMeta(metapg);

	/* NO EREPORT(ERROR) from here till newroot op is logged */
	START_CRIT_SECTION();

	/* set btree special data */
	rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
	rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE;
	rootopaque->btpo_flags = BTP_ROOT;
	rootopaque->btpo.level =
		((BTPageOpaque) PageGetSpecialPointer(lpage))->btpo.level + 1;

	/* update metapage data */
	metad->btm_root = rootblknum;
	metad->btm_level = rootopaque->btpo.level;
	metad->btm_fastroot = rootblknum;
	metad->btm_fastlevel = rootopaque->btpo.level;

	/*
	 * Create downlink item for left page (old root).  Since this will be
	 * the first item in a non-leaf page, it implicitly has minus-infinity
	 * key value, so we need not store any actual key in it.
	 */
	itemsz = sizeof(BTItemData);
	new_item = (BTItem) palloc(itemsz);
	new_item->bti_itup.t_info = itemsz;
	ItemPointerSet(&(new_item->bti_itup.t_tid), lbkno, P_HIKEY);

	/*
	 * Insert the left page pointer into the new root page.  The root page
	 * is the rightmost page on its level so there is no "high key" in it;
	 * the two items will go into positions P_HIKEY and P_FIRSTKEY.
	 */
	if (PageAddItem(rootpage, (Item) new_item, itemsz, P_HIKEY, LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add leftkey to new root page");
	pfree(new_item);

	/*
	 * Create downlink item for right page.  The key for it is obtained
	 * from the "high key" position in the left page.
	 */
	itemid = PageGetItemId(lpage, P_HIKEY);
	itemsz = ItemIdGetLength(itemid);
	item = (BTItem) PageGetItem(lpage, itemid);
	new_item = _bt_formitem(&(item->bti_itup));
	ItemPointerSet(&(new_item->bti_itup.t_tid), rbkno, P_HIKEY);

	/*
	 * insert the right page pointer into the new root page.
	 */
	if (PageAddItem(rootpage, (Item) new_item, itemsz, P_FIRSTKEY, LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add rightkey to new root page");
	pfree(new_item);

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_newroot xlrec;
		XLogRecPtr	recptr;
		XLogRecData rdata[2];

		xlrec.node = rel->rd_node;
		xlrec.rootblk = rootblknum;
		xlrec.level = metad->btm_level;

		rdata[0].buffer = InvalidBuffer;
		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeNewroot;
		rdata[0].next = &(rdata[1]);

		/*
		 * Direct access to page is not good but faster - we should
		 * implement some new func in page API.
		 */
		rdata[1].buffer = InvalidBuffer;
		rdata[1].data = (char *) rootpage + ((PageHeader) rootpage)->pd_upper;
		rdata[1].len = ((PageHeader) rootpage)->pd_special -
			((PageHeader) rootpage)->pd_upper;
		rdata[1].next = NULL;

		recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT, rdata);

		PageSetLSN(rootpage, recptr);
		PageSetSUI(rootpage, ThisStartUpID);
		PageSetLSN(metapg, recptr);
		PageSetSUI(metapg, ThisStartUpID);
		PageSetLSN(lpage, recptr);
		PageSetSUI(lpage, ThisStartUpID);
		PageSetLSN(rpage, recptr);
		PageSetSUI(rpage, ThisStartUpID);
	}

	END_CRIT_SECTION();

	/* write and let go of metapage buffer */
	_bt_wrtbuf(rel, metabuf);

	return (rootbuf);
}

/*
 *	_bt_pgaddtup() -- add a tuple to a particular page in the index.
 *
 *		This routine adds the tuple to the page as requested.  It does
 *		not affect pin/lock status, but you'd better have a write lock
 *		and pin on the target buffer!  Don't forget to write and release
 *		the buffer afterwards, either.
 *
 *		The main difference between this routine and a bare PageAddItem call
 *		is that this code knows that the leftmost data item on a non-leaf
 *		btree page doesn't need to have a key.  Therefore, it strips such
 *		items down to just the item header.  CAUTION: this works ONLY if
 *		we insert the items in order, so that the given itup_off does
 *		represent the final position of the item!
 */
static void
_bt_pgaddtup(Relation rel,
			 Page page,
			 Size itemsize,
			 BTItem btitem,
			 OffsetNumber itup_off,
			 const char *where)
{
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	BTItemData	truncitem;

	if (!P_ISLEAF(opaque) && itup_off == P_FIRSTDATAKEY(opaque))
	{
		memcpy(&truncitem, btitem, sizeof(BTItemData));
		truncitem.bti_itup.t_info = sizeof(BTItemData);
		btitem = &truncitem;
		itemsize = sizeof(BTItemData);
	}

	if (PageAddItem(page, (Item) btitem, itemsize, itup_off,
					LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add item to the %s for \"%s\"",
			 where, RelationGetRelationName(rel));
}

/*
 * _bt_isequal - used in _bt_doinsert in check for duplicates.
 *
 * This is very similar to _bt_compare, except for NULL handling.
 * Rule is simple: NOT_NULL not equal NULL, NULL not equal NULL too.
 */
static bool
_bt_isequal(TupleDesc itupdesc, Page page, OffsetNumber offnum,
			int keysz, ScanKey scankey)
{
	BTItem		btitem;
	IndexTuple	itup;
	int			i;

	/* Better be comparing to a leaf item */
	Assert(P_ISLEAF((BTPageOpaque) PageGetSpecialPointer(page)));

	btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
	itup = &(btitem->bti_itup);

	for (i = 1; i <= keysz; i++)
	{
		AttrNumber	attno;
		Datum		datum;
		bool		isNull;
		int32		result;

		attno = scankey->sk_attno;
		Assert(attno == i);
		datum = index_getattr(itup, attno, itupdesc, &isNull);

		/* NULLs are never equal to anything */
		if (isNull || (scankey->sk_flags & SK_ISNULL))
			return false;

		result = DatumGetInt32(FunctionCall2(&scankey->sk_func,
											 datum,
											 scankey->sk_argument));

		if (result != 0)
			return false;

		scankey++;
	}

	/* if we get here, the keys are equal */
	return true;
}