summaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtdedup.c
blob: 1cd1b59ec35b21ab95d134771cfe59e0766f9604 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
/*-------------------------------------------------------------------------
 *
 * nbtdedup.c
 *	  Deduplicate or bottom-up delete items in Postgres btrees.
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/access/nbtree/nbtdedup.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/nbtree.h"
#include "access/nbtxlog.h"
#include "miscadmin.h"
#include "utils/rel.h"

static void _bt_bottomupdel_finish_pending(Page page, BTDedupState state,
										   TM_IndexDeleteOp *delstate);
static bool _bt_do_singleval(Relation rel, Page page, BTDedupState state,
							 OffsetNumber minoff, IndexTuple newitem);
static void _bt_singleval_fillfactor(Page page, BTDedupState state,
									 Size newitemsz);
#ifdef USE_ASSERT_CHECKING
static bool _bt_posting_valid(IndexTuple posting);
#endif

/*
 * Perform a deduplication pass.
 *
 * The general approach taken here is to perform as much deduplication as
 * possible to free as much space as possible.  Note, however, that "single
 * value" strategy is used for !bottomupdedup callers when the page is full of
 * tuples of a single value.  Deduplication passes that apply the strategy
 * will leave behind a few untouched tuples at the end of the page, preparing
 * the page for an anticipated page split that uses nbtsplitloc.c's own single
 * value strategy.  Our high level goal is to delay merging the untouched
 * tuples until after the page splits.
 *
 * When a call to _bt_bottomupdel_pass() just took place (and failed), our
 * high level goal is to prevent a page split entirely by buying more time.
 * We still hope that a page split can be avoided altogether.  That's why
 * single value strategy is not even considered for bottomupdedup callers.
 *
 * The page will have to be split if we cannot successfully free at least
 * newitemsz (we also need space for newitem's line pointer, which isn't
 * included in caller's newitemsz).
 *
 * Note: Caller should have already deleted all existing items with their
 * LP_DEAD bits set.
 */
void
_bt_dedup_pass(Relation rel, Buffer buf, Relation heapRel, IndexTuple newitem,
			   Size newitemsz, bool bottomupdedup)
{
	OffsetNumber offnum,
				minoff,
				maxoff;
	Page		page = BufferGetPage(buf);
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Page		newpage;
	BTDedupState state;
	Size		pagesaving PG_USED_FOR_ASSERTS_ONLY = 0;
	bool		singlevalstrat = false;
	int			nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);

	/* Passed-in newitemsz is MAXALIGNED but does not include line pointer */
	newitemsz += sizeof(ItemIdData);

	/*
	 * Initialize deduplication state.
	 *
	 * It would be possible for maxpostingsize (limit on posting list tuple
	 * size) to be set to one third of the page.  However, it seems like a
	 * good idea to limit the size of posting lists to one sixth of a page.
	 * That ought to leave us with a good split point when pages full of
	 * duplicates can be split several times.
	 */
	state = (BTDedupState) palloc(sizeof(BTDedupStateData));
	state->deduplicate = true;
	state->nmaxitems = 0;
	state->maxpostingsize = Min(BTMaxItemSize(page) / 2, INDEX_SIZE_MASK);
	/* Metadata about base tuple of current pending posting list */
	state->base = NULL;
	state->baseoff = InvalidOffsetNumber;
	state->basetupsize = 0;
	/* Metadata about current pending posting list TIDs */
	state->htids = palloc(state->maxpostingsize);
	state->nhtids = 0;
	state->nitems = 0;
	/* Size of all physical tuples to be replaced by pending posting list */
	state->phystupsize = 0;
	/* nintervals should be initialized to zero */
	state->nintervals = 0;

	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);

	/*
	 * Consider applying "single value" strategy, though only if the page
	 * seems likely to be split in the near future
	 */
	if (!bottomupdedup)
		singlevalstrat = _bt_do_singleval(rel, page, state, minoff, newitem);

	/*
	 * Deduplicate items from page, and write them to newpage.
	 *
	 * Copy the original page's LSN into newpage copy.  This will become the
	 * updated version of the page.  We need this because XLogInsert will
	 * examine the LSN and possibly dump it in a page image.
	 */
	newpage = PageGetTempPageCopySpecial(page);
	PageSetLSN(newpage, PageGetLSN(page));

	/* Copy high key, if any */
	if (!P_RIGHTMOST(opaque))
	{
		ItemId		hitemid = PageGetItemId(page, P_HIKEY);
		Size		hitemsz = ItemIdGetLength(hitemid);
		IndexTuple	hitem = (IndexTuple) PageGetItem(page, hitemid);

		if (PageAddItem(newpage, (Item) hitem, hitemsz, P_HIKEY,
						false, false) == InvalidOffsetNumber)
			elog(ERROR, "deduplication failed to add highkey");
	}

	for (offnum = minoff;
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		ItemId		itemid = PageGetItemId(page, offnum);
		IndexTuple	itup = (IndexTuple) PageGetItem(page, itemid);

		Assert(!ItemIdIsDead(itemid));

		if (offnum == minoff)
		{
			/*
			 * No previous/base tuple for the data item -- use the data item
			 * as base tuple of pending posting list
			 */
			_bt_dedup_start_pending(state, itup, offnum);
		}
		else if (state->deduplicate &&
				 _bt_keep_natts_fast(rel, state->base, itup) > nkeyatts &&
				 _bt_dedup_save_htid(state, itup))
		{
			/*
			 * Tuple is equal to base tuple of pending posting list.  Heap
			 * TID(s) for itup have been saved in state.
			 */
		}
		else
		{
			/*
			 * Tuple is not equal to pending posting list tuple, or
			 * _bt_dedup_save_htid() opted to not merge current item into
			 * pending posting list for some other reason (e.g., adding more
			 * TIDs would have caused posting list to exceed current
			 * maxpostingsize).
			 *
			 * If state contains pending posting list with more than one item,
			 * form new posting tuple, and actually update the page.  Else
			 * reset the state and move on without modifying the page.
			 */
			pagesaving += _bt_dedup_finish_pending(newpage, state);

			if (singlevalstrat)
			{
				/*
				 * Single value strategy's extra steps.
				 *
				 * Lower maxpostingsize for sixth and final large posting list
				 * tuple at the point where 5 maxpostingsize-capped tuples
				 * have either been formed or observed.
				 *
				 * When a sixth maxpostingsize-capped item is formed/observed,
				 * stop merging together tuples altogether.  The few tuples
				 * that remain at the end of the page won't be merged together
				 * at all (at least not until after a future page split takes
				 * place).
				 */
				if (state->nmaxitems == 5)
					_bt_singleval_fillfactor(page, state, newitemsz);
				else if (state->nmaxitems == 6)
				{
					state->deduplicate = false;
					singlevalstrat = false; /* won't be back here */
				}
			}

			/* itup starts new pending posting list */
			_bt_dedup_start_pending(state, itup, offnum);
		}
	}

	/* Handle the last item */
	pagesaving += _bt_dedup_finish_pending(newpage, state);

	/*
	 * If no items suitable for deduplication were found, newpage must be
	 * exactly the same as the original page, so just return from function.
	 *
	 * We could determine whether or not to proceed on the basis the space
	 * savings being sufficient to avoid an immediate page split instead.  We
	 * don't do that because there is some small value in nbtsplitloc.c always
	 * operating against a page that is fully deduplicated (apart from
	 * newitem).  Besides, most of the cost has already been paid.
	 */
	if (state->nintervals == 0)
	{
		/* cannot leak memory here */
		pfree(newpage);
		pfree(state->htids);
		pfree(state);
		return;
	}

	/*
	 * By here, it's clear that deduplication will definitely go ahead.
	 *
	 * Clear the BTP_HAS_GARBAGE page flag.  The index must be a heapkeyspace
	 * index, and as such we'll never pay attention to BTP_HAS_GARBAGE anyway.
	 * But keep things tidy.
	 */
	if (P_HAS_GARBAGE(opaque))
	{
		BTPageOpaque nopaque = (BTPageOpaque) PageGetSpecialPointer(newpage);

		nopaque->btpo_flags &= ~BTP_HAS_GARBAGE;
	}

	START_CRIT_SECTION();

	PageRestoreTempPage(newpage, page);
	MarkBufferDirty(buf);

	/* XLOG stuff */
	if (RelationNeedsWAL(rel))
	{
		XLogRecPtr	recptr;
		xl_btree_dedup xlrec_dedup;

		xlrec_dedup.nintervals = state->nintervals;

		XLogBeginInsert();
		XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
		XLogRegisterData((char *) &xlrec_dedup, SizeOfBtreeDedup);

		/*
		 * The intervals array is not in the buffer, but pretend that it is.
		 * When XLogInsert stores the whole buffer, the array need not be
		 * stored too.
		 */
		XLogRegisterBufData(0, (char *) state->intervals,
							state->nintervals * sizeof(BTDedupInterval));

		recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DEDUP);

		PageSetLSN(page, recptr);
	}

	END_CRIT_SECTION();

	/* Local space accounting should agree with page accounting */
	Assert(pagesaving < newitemsz || PageGetExactFreeSpace(page) >= newitemsz);

	/* cannot leak memory here */
	pfree(state->htids);
	pfree(state);
}

/*
 * Perform bottom-up index deletion pass.
 *
 * See if duplicate index tuples (plus certain nearby tuples) are eligible to
 * be deleted via bottom-up index deletion.  The high level goal here is to
 * entirely prevent "unnecessary" page splits caused by MVCC version churn
 * from UPDATEs (when the UPDATEs don't logically modify any of the columns
 * covered by the 'rel' index).  This is qualitative, not quantitative -- we
 * do not particularly care about once-off opportunities to delete many index
 * tuples together.
 *
 * See nbtree/README for details on the design of nbtree bottom-up deletion.
 * See access/tableam.h for a description of how we're expected to cooperate
 * with the tableam.
 *
 * Returns true on success, in which case caller can assume page split will be
 * avoided for a reasonable amount of time.  Returns false when caller should
 * deduplicate the page (if possible at all).
 *
 * Note: Occasionally we return true despite failing to delete enough items to
 * avoid a split.  This makes caller skip deduplication and go split the page
 * right away.  Our return value is always just advisory information.
 *
 * Note: Caller should have already deleted all existing items with their
 * LP_DEAD bits set.
 */
bool
_bt_bottomupdel_pass(Relation rel, Buffer buf, Relation heapRel,
					 Size newitemsz)
{
	OffsetNumber offnum,
				minoff,
				maxoff;
	Page		page = BufferGetPage(buf);
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	BTDedupState state;
	TM_IndexDeleteOp delstate;
	bool		neverdedup;
	int			nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);

	/* Passed-in newitemsz is MAXALIGNED but does not include line pointer */
	newitemsz += sizeof(ItemIdData);

	/* Initialize deduplication state */
	state = (BTDedupState) palloc(sizeof(BTDedupStateData));
	state->deduplicate = true;
	state->nmaxitems = 0;
	state->maxpostingsize = BLCKSZ; /* We're not really deduplicating */
	state->base = NULL;
	state->baseoff = InvalidOffsetNumber;
	state->basetupsize = 0;
	state->htids = palloc(state->maxpostingsize);
	state->nhtids = 0;
	state->nitems = 0;
	state->phystupsize = 0;
	state->nintervals = 0;

	/*
	 * Initialize tableam state that describes bottom-up index deletion
	 * operation.
	 *
	 * We'll go on to ask the tableam to search for TIDs whose index tuples we
	 * can safely delete.  The tableam will search until our leaf page space
	 * target is satisfied, or until the cost of continuing with the tableam
	 * operation seems too high.  It focuses its efforts on TIDs associated
	 * with duplicate index tuples that we mark "promising".
	 *
	 * This space target is a little arbitrary.  The tableam must be able to
	 * keep the costs and benefits in balance.  We provide the tableam with
	 * exhaustive information about what might work, without directly
	 * concerning ourselves with avoiding work during the tableam call.  Our
	 * role in costing the bottom-up deletion process is strictly advisory.
	 */
	delstate.bottomup = true;
	delstate.bottomupfreespace = Max(BLCKSZ / 16, newitemsz);
	delstate.ndeltids = 0;
	delstate.deltids = palloc(MaxTIDsPerBTreePage * sizeof(TM_IndexDelete));
	delstate.status = palloc(MaxTIDsPerBTreePage * sizeof(TM_IndexStatus));

	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);
	for (offnum = minoff;
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		ItemId		itemid = PageGetItemId(page, offnum);
		IndexTuple	itup = (IndexTuple) PageGetItem(page, itemid);

		Assert(!ItemIdIsDead(itemid));

		if (offnum == minoff)
		{
			/* itup starts first pending interval */
			_bt_dedup_start_pending(state, itup, offnum);
		}
		else if (_bt_keep_natts_fast(rel, state->base, itup) > nkeyatts &&
				 _bt_dedup_save_htid(state, itup))
		{
			/* Tuple is equal; just added its TIDs to pending interval */
		}
		else
		{
			/* Finalize interval -- move its TIDs to delete state */
			_bt_bottomupdel_finish_pending(page, state, &delstate);

			/* itup starts new pending interval */
			_bt_dedup_start_pending(state, itup, offnum);
		}
	}
	/* Finalize final interval -- move its TIDs to delete state */
	_bt_bottomupdel_finish_pending(page, state, &delstate);

	/*
	 * We don't give up now in the event of having few (or even zero)
	 * promising tuples for the tableam because it's not up to us as the index
	 * AM to manage costs (note that the tableam might have heuristics of its
	 * own that work out what to do).  We should at least avoid having our
	 * caller do a useless deduplication pass after we return in the event of
	 * zero promising tuples, though.
	 */
	neverdedup = false;
	if (state->nintervals == 0)
		neverdedup = true;

	pfree(state->htids);
	pfree(state);

	/* Ask tableam which TIDs are deletable, then physically delete them */
	_bt_delitems_delete_check(rel, buf, heapRel, &delstate);

	pfree(delstate.deltids);
	pfree(delstate.status);

	/* Report "success" to caller unconditionally to avoid deduplication */
	if (neverdedup)
		return true;

	/* Don't dedup when we won't end up back here any time soon anyway */
	return PageGetExactFreeSpace(page) >= Max(BLCKSZ / 24, newitemsz);
}

/*
 * Create a new pending posting list tuple based on caller's base tuple.
 *
 * Every tuple processed by deduplication either becomes the base tuple for a
 * posting list, or gets its heap TID(s) accepted into a pending posting list.
 * A tuple that starts out as the base tuple for a posting list will only
 * actually be rewritten within _bt_dedup_finish_pending() when it turns out
 * that there are duplicates that can be merged into the base tuple.
 */
void
_bt_dedup_start_pending(BTDedupState state, IndexTuple base,
						OffsetNumber baseoff)
{
	Assert(state->nhtids == 0);
	Assert(state->nitems == 0);
	Assert(!BTreeTupleIsPivot(base));

	/*
	 * Copy heap TID(s) from new base tuple for new candidate posting list
	 * into working state's array
	 */
	if (!BTreeTupleIsPosting(base))
	{
		memcpy(state->htids, &base->t_tid, sizeof(ItemPointerData));
		state->nhtids = 1;
		state->basetupsize = IndexTupleSize(base);
	}
	else
	{
		int			nposting;

		nposting = BTreeTupleGetNPosting(base);
		memcpy(state->htids, BTreeTupleGetPosting(base),
			   sizeof(ItemPointerData) * nposting);
		state->nhtids = nposting;
		/* basetupsize should not include existing posting list */
		state->basetupsize = BTreeTupleGetPostingOffset(base);
	}

	/*
	 * Save new base tuple itself -- it'll be needed if we actually create a
	 * new posting list from new pending posting list.
	 *
	 * Must maintain physical size of all existing tuples (including line
	 * pointer overhead) so that we can calculate space savings on page.
	 */
	state->nitems = 1;
	state->base = base;
	state->baseoff = baseoff;
	state->phystupsize = MAXALIGN(IndexTupleSize(base)) + sizeof(ItemIdData);
	/* Also save baseoff in pending state for interval */
	state->intervals[state->nintervals].baseoff = state->baseoff;
}

/*
 * Save itup heap TID(s) into pending posting list where possible.
 *
 * Returns bool indicating if the pending posting list managed by state now
 * includes itup's heap TID(s).
 */
bool
_bt_dedup_save_htid(BTDedupState state, IndexTuple itup)
{
	int			nhtids;
	ItemPointer htids;
	Size		mergedtupsz;

	Assert(!BTreeTupleIsPivot(itup));

	if (!BTreeTupleIsPosting(itup))
	{
		nhtids = 1;
		htids = &itup->t_tid;
	}
	else
	{
		nhtids = BTreeTupleGetNPosting(itup);
		htids = BTreeTupleGetPosting(itup);
	}

	/*
	 * Don't append (have caller finish pending posting list as-is) if
	 * appending heap TID(s) from itup would put us over maxpostingsize limit.
	 *
	 * This calculation needs to match the code used within _bt_form_posting()
	 * for new posting list tuples.
	 */
	mergedtupsz = MAXALIGN(state->basetupsize +
						   (state->nhtids + nhtids) * sizeof(ItemPointerData));

	if (mergedtupsz > state->maxpostingsize)
	{
		/*
		 * Count this as an oversized item for single value strategy, though
		 * only when there are 50 TIDs in the final posting list tuple.  This
		 * limit (which is fairly arbitrary) avoids confusion about how many
		 * 1/6 of a page tuples have been encountered/created by the current
		 * deduplication pass.
		 *
		 * Note: We deliberately don't consider which deduplication pass
		 * merged together tuples to create this item (could be a previous
		 * deduplication pass, or current pass).  See _bt_do_singleval()
		 * comments.
		 */
		if (state->nhtids > 50)
			state->nmaxitems++;

		return false;
	}

	/*
	 * Save heap TIDs to pending posting list tuple -- itup can be merged into
	 * pending posting list
	 */
	state->nitems++;
	memcpy(state->htids + state->nhtids, htids,
		   sizeof(ItemPointerData) * nhtids);
	state->nhtids += nhtids;
	state->phystupsize += MAXALIGN(IndexTupleSize(itup)) + sizeof(ItemIdData);

	return true;
}

/*
 * Finalize pending posting list tuple, and add it to the page.  Final tuple
 * is based on saved base tuple, and saved list of heap TIDs.
 *
 * Returns space saving from deduplicating to make a new posting list tuple.
 * Note that this includes line pointer overhead.  This is zero in the case
 * where no deduplication was possible.
 */
Size
_bt_dedup_finish_pending(Page newpage, BTDedupState state)
{
	OffsetNumber tupoff;
	Size		tuplesz;
	Size		spacesaving;

	Assert(state->nitems > 0);
	Assert(state->nitems <= state->nhtids);
	Assert(state->intervals[state->nintervals].baseoff == state->baseoff);

	tupoff = OffsetNumberNext(PageGetMaxOffsetNumber(newpage));
	if (state->nitems == 1)
	{
		/* Use original, unchanged base tuple */
		tuplesz = IndexTupleSize(state->base);
		if (PageAddItem(newpage, (Item) state->base, tuplesz, tupoff,
						false, false) == InvalidOffsetNumber)
			elog(ERROR, "deduplication failed to add tuple to page");

		spacesaving = 0;
	}
	else
	{
		IndexTuple	final;

		/* Form a tuple with a posting list */
		final = _bt_form_posting(state->base, state->htids, state->nhtids);
		tuplesz = IndexTupleSize(final);
		Assert(tuplesz <= state->maxpostingsize);

		/* Save final number of items for posting list */
		state->intervals[state->nintervals].nitems = state->nitems;

		Assert(tuplesz == MAXALIGN(IndexTupleSize(final)));
		if (PageAddItem(newpage, (Item) final, tuplesz, tupoff, false,
						false) == InvalidOffsetNumber)
			elog(ERROR, "deduplication failed to add tuple to page");

		pfree(final);
		spacesaving = state->phystupsize - (tuplesz + sizeof(ItemIdData));
		/* Increment nintervals, since we wrote a new posting list tuple */
		state->nintervals++;
		Assert(spacesaving > 0 && spacesaving < BLCKSZ);
	}

	/* Reset state for next pending posting list */
	state->nhtids = 0;
	state->nitems = 0;
	state->phystupsize = 0;

	return spacesaving;
}

/*
 * Finalize interval during bottom-up index deletion.
 *
 * During a bottom-up pass we expect that TIDs will be recorded in dedup state
 * first, and then get moved over to delstate (in variable-sized batches) by
 * calling here.  Call here happens when the number of TIDs in a dedup
 * interval is known, and interval gets finalized (i.e. when caller sees next
 * tuple on the page is not a duplicate, or when caller runs out of tuples to
 * process from leaf page).
 *
 * This is where bottom-up deletion determines and remembers which entries are
 * duplicates.  This will be important information to the tableam delete
 * infrastructure later on.  Plain index tuple duplicates are marked
 * "promising" here, per tableam contract.
 *
 * Our approach to marking entries whose TIDs come from posting lists is more
 * complicated.  Posting lists can only be formed by a deduplication pass (or
 * during an index build), so recent version churn affecting the pointed-to
 * logical rows is not particularly likely.  We may still give a weak signal
 * about posting list tuples' entries (by marking just one of its TIDs/entries
 * promising), though this is only a possibility in the event of further
 * duplicate index tuples in final interval that covers posting list tuple (as
 * in the plain tuple case).  A weak signal/hint will be useful to the tableam
 * when it has no stronger signal to go with for the deletion operation as a
 * whole.
 *
 * The heuristics we use work well in practice because we only need to give
 * the tableam the right _general_ idea about where to look.  Garbage tends to
 * naturally get concentrated in relatively few table blocks with workloads
 * that bottom-up deletion targets.  The tableam cannot possibly rank all
 * available table blocks sensibly based on the hints we provide, but that's
 * okay -- only the extremes matter.  The tableam just needs to be able to
 * predict which few table blocks will have the most tuples that are safe to
 * delete for each deletion operation, with low variance across related
 * deletion operations.
 */
static void
_bt_bottomupdel_finish_pending(Page page, BTDedupState state,
							   TM_IndexDeleteOp *delstate)
{
	bool		dupinterval = (state->nitems > 1);

	Assert(state->nitems > 0);
	Assert(state->nitems <= state->nhtids);
	Assert(state->intervals[state->nintervals].baseoff == state->baseoff);

	for (int i = 0; i < state->nitems; i++)
	{
		OffsetNumber offnum = state->baseoff + i;
		ItemId		itemid = PageGetItemId(page, offnum);
		IndexTuple	itup = (IndexTuple) PageGetItem(page, itemid);
		TM_IndexDelete *ideltid = &delstate->deltids[delstate->ndeltids];
		TM_IndexStatus *istatus = &delstate->status[delstate->ndeltids];

		if (!BTreeTupleIsPosting(itup))
		{
			/* Simple case: A plain non-pivot tuple */
			ideltid->tid = itup->t_tid;
			ideltid->id = delstate->ndeltids;
			istatus->idxoffnum = offnum;
			istatus->knowndeletable = false;	/* for now */
			istatus->promising = dupinterval;	/* simple rule */
			istatus->freespace = ItemIdGetLength(itemid) + sizeof(ItemIdData);

			delstate->ndeltids++;
		}
		else
		{
			/*
			 * Complicated case: A posting list tuple.
			 *
			 * We make the conservative assumption that there can only be at
			 * most one affected logical row per posting list tuple.  There
			 * will be at most one promising entry in deltids to represent
			 * this presumed lone logical row.  Note that this isn't even
			 * considered unless the posting list tuple is also in an interval
			 * of duplicates -- this complicated rule is just a variant of the
			 * simple rule used to decide if plain index tuples are promising.
			 */
			int			nitem = BTreeTupleGetNPosting(itup);
			bool		firstpromising = false;
			bool		lastpromising = false;

			Assert(_bt_posting_valid(itup));

			if (dupinterval)
			{
				/*
				 * Complicated rule: either the first or last TID in the
				 * posting list gets marked promising (if any at all)
				 */
				BlockNumber minblocklist,
							midblocklist,
							maxblocklist;
				ItemPointer mintid,
							midtid,
							maxtid;

				mintid = BTreeTupleGetHeapTID(itup);
				midtid = BTreeTupleGetPostingN(itup, nitem / 2);
				maxtid = BTreeTupleGetMaxHeapTID(itup);
				minblocklist = ItemPointerGetBlockNumber(mintid);
				midblocklist = ItemPointerGetBlockNumber(midtid);
				maxblocklist = ItemPointerGetBlockNumber(maxtid);

				/* Only entry with predominant table block can be promising */
				firstpromising = (minblocklist == midblocklist);
				lastpromising = (!firstpromising &&
								 midblocklist == maxblocklist);
			}

			for (int p = 0; p < nitem; p++)
			{
				ItemPointer htid = BTreeTupleGetPostingN(itup, p);

				ideltid->tid = *htid;
				ideltid->id = delstate->ndeltids;
				istatus->idxoffnum = offnum;
				istatus->knowndeletable = false;	/* for now */
				istatus->promising = false;
				if ((firstpromising && p == 0) ||
					(lastpromising && p == nitem - 1))
					istatus->promising = true;
				istatus->freespace = sizeof(ItemPointerData);	/* at worst */

				ideltid++;
				istatus++;
				delstate->ndeltids++;
			}
		}
	}

	if (dupinterval)
	{
		state->intervals[state->nintervals].nitems = state->nitems;
		state->nintervals++;
	}

	/* Reset state for next interval */
	state->nhtids = 0;
	state->nitems = 0;
	state->phystupsize = 0;
}

/*
 * Determine if page non-pivot tuples (data items) are all duplicates of the
 * same value -- if they are, deduplication's "single value" strategy should
 * be applied.  The general goal of this strategy is to ensure that
 * nbtsplitloc.c (which uses its own single value strategy) will find a useful
 * split point as further duplicates are inserted, and successive rightmost
 * page splits occur among pages that store the same duplicate value.  When
 * the page finally splits, it should end up BTREE_SINGLEVAL_FILLFACTOR% full,
 * just like it would if deduplication were disabled.
 *
 * We expect that affected workloads will require _several_ single value
 * strategy deduplication passes (over a page that only stores duplicates)
 * before the page is finally split.  The first deduplication pass should only
 * find regular non-pivot tuples.  Later deduplication passes will find
 * existing maxpostingsize-capped posting list tuples, which must be skipped
 * over.  The penultimate pass is generally the first pass that actually
 * reaches _bt_singleval_fillfactor(), and so will deliberately leave behind a
 * few untouched non-pivot tuples.  The final deduplication pass won't free
 * any space -- it will skip over everything without merging anything (it
 * retraces the steps of the penultimate pass).
 *
 * Fortunately, having several passes isn't too expensive.  Each pass (after
 * the first pass) won't spend many cycles on the large posting list tuples
 * left by previous passes.  Each pass will find a large contiguous group of
 * smaller duplicate tuples to merge together at the end of the page.
 */
static bool
_bt_do_singleval(Relation rel, Page page, BTDedupState state,
				 OffsetNumber minoff, IndexTuple newitem)
{
	int			nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
	ItemId		itemid;
	IndexTuple	itup;

	itemid = PageGetItemId(page, minoff);
	itup = (IndexTuple) PageGetItem(page, itemid);

	if (_bt_keep_natts_fast(rel, newitem, itup) > nkeyatts)
	{
		itemid = PageGetItemId(page, PageGetMaxOffsetNumber(page));
		itup = (IndexTuple) PageGetItem(page, itemid);

		if (_bt_keep_natts_fast(rel, newitem, itup) > nkeyatts)
			return true;
	}

	return false;
}

/*
 * Lower maxpostingsize when using "single value" strategy, to avoid a sixth
 * and final maxpostingsize-capped tuple.  The sixth and final posting list
 * tuple will end up somewhat smaller than the first five.  (Note: The first
 * five tuples could actually just be very large duplicate tuples that
 * couldn't be merged together at all.  Deduplication will simply not modify
 * the page when that happens.)
 *
 * When there are six posting lists on the page (after current deduplication
 * pass goes on to create/observe a sixth very large tuple), caller should end
 * its deduplication pass.  It isn't useful to try to deduplicate items that
 * are supposed to end up on the new right sibling page following the
 * anticipated page split.  A future deduplication pass of future right
 * sibling page might take care of it.  (This is why the first single value
 * strategy deduplication pass for a given leaf page will generally find only
 * plain non-pivot tuples -- see _bt_do_singleval() comments.)
 */
static void
_bt_singleval_fillfactor(Page page, BTDedupState state, Size newitemsz)
{
	Size		leftfree;
	int			reduction;

	/* This calculation needs to match nbtsplitloc.c */
	leftfree = PageGetPageSize(page) - SizeOfPageHeaderData -
		MAXALIGN(sizeof(BTPageOpaqueData));
	/* Subtract size of new high key (includes pivot heap TID space) */
	leftfree -= newitemsz + MAXALIGN(sizeof(ItemPointerData));

	/*
	 * Reduce maxpostingsize by an amount equal to target free space on left
	 * half of page
	 */
	reduction = leftfree * ((100 - BTREE_SINGLEVAL_FILLFACTOR) / 100.0);
	if (state->maxpostingsize > reduction)
		state->maxpostingsize -= reduction;
	else
		state->maxpostingsize = 0;
}

/*
 * Build a posting list tuple based on caller's "base" index tuple and list of
 * heap TIDs.  When nhtids == 1, builds a standard non-pivot tuple without a
 * posting list. (Posting list tuples can never have a single heap TID, partly
 * because that ensures that deduplication always reduces final MAXALIGN()'d
 * size of entire tuple.)
 *
 * Convention is that posting list starts at a MAXALIGN()'d offset (rather
 * than a SHORTALIGN()'d offset), in line with the approach taken when
 * appending a heap TID to new pivot tuple/high key during suffix truncation.
 * This sometimes wastes a little space that was only needed as alignment
 * padding in the original tuple.  Following this convention simplifies the
 * space accounting used when deduplicating a page (the same convention
 * simplifies the accounting for choosing a point to split a page at).
 *
 * Note: Caller's "htids" array must be unique and already in ascending TID
 * order.  Any existing heap TIDs from "base" won't automatically appear in
 * returned posting list tuple (they must be included in htids array.)
 */
IndexTuple
_bt_form_posting(IndexTuple base, ItemPointer htids, int nhtids)
{
	uint32		keysize,
				newsize;
	IndexTuple	itup;

	if (BTreeTupleIsPosting(base))
		keysize = BTreeTupleGetPostingOffset(base);
	else
		keysize = IndexTupleSize(base);

	Assert(!BTreeTupleIsPivot(base));
	Assert(nhtids > 0 && nhtids <= PG_UINT16_MAX);
	Assert(keysize == MAXALIGN(keysize));

	/* Determine final size of new tuple */
	if (nhtids > 1)
		newsize = MAXALIGN(keysize +
						   nhtids * sizeof(ItemPointerData));
	else
		newsize = keysize;

	Assert(newsize <= INDEX_SIZE_MASK);
	Assert(newsize == MAXALIGN(newsize));

	/* Allocate memory using palloc0() (matches index_form_tuple()) */
	itup = palloc0(newsize);
	memcpy(itup, base, keysize);
	itup->t_info &= ~INDEX_SIZE_MASK;
	itup->t_info |= newsize;
	if (nhtids > 1)
	{
		/* Form posting list tuple */
		BTreeTupleSetPosting(itup, nhtids, keysize);
		memcpy(BTreeTupleGetPosting(itup), htids,
			   sizeof(ItemPointerData) * nhtids);
		Assert(_bt_posting_valid(itup));
	}
	else
	{
		/* Form standard non-pivot tuple */
		itup->t_info &= ~INDEX_ALT_TID_MASK;
		ItemPointerCopy(htids, &itup->t_tid);
		Assert(ItemPointerIsValid(&itup->t_tid));
	}

	return itup;
}

/*
 * Generate a replacement tuple by "updating" a posting list tuple so that it
 * no longer has TIDs that need to be deleted.
 *
 * Used by both VACUUM and index deletion.  Caller's vacposting argument
 * points to the existing posting list tuple to be updated.
 *
 * On return, caller's vacposting argument will point to final "updated"
 * tuple, which will be palloc()'d in caller's memory context.
 */
void
_bt_update_posting(BTVacuumPosting vacposting)
{
	IndexTuple	origtuple = vacposting->itup;
	uint32		keysize,
				newsize;
	IndexTuple	itup;
	int			nhtids;
	int			ui,
				d;
	ItemPointer htids;

	nhtids = BTreeTupleGetNPosting(origtuple) - vacposting->ndeletedtids;

	Assert(_bt_posting_valid(origtuple));
	Assert(nhtids > 0 && nhtids < BTreeTupleGetNPosting(origtuple));

	/*
	 * Determine final size of new tuple.
	 *
	 * This calculation needs to match the code used within _bt_form_posting()
	 * for new posting list tuples.  We avoid calling _bt_form_posting() here
	 * to save ourselves a second memory allocation for a htids workspace.
	 */
	keysize = BTreeTupleGetPostingOffset(origtuple);
	if (nhtids > 1)
		newsize = MAXALIGN(keysize +
						   nhtids * sizeof(ItemPointerData));
	else
		newsize = keysize;

	Assert(newsize <= INDEX_SIZE_MASK);
	Assert(newsize == MAXALIGN(newsize));

	/* Allocate memory using palloc0() (matches index_form_tuple()) */
	itup = palloc0(newsize);
	memcpy(itup, origtuple, keysize);
	itup->t_info &= ~INDEX_SIZE_MASK;
	itup->t_info |= newsize;

	if (nhtids > 1)
	{
		/* Form posting list tuple */
		BTreeTupleSetPosting(itup, nhtids, keysize);
		htids = BTreeTupleGetPosting(itup);
	}
	else
	{
		/* Form standard non-pivot tuple */
		itup->t_info &= ~INDEX_ALT_TID_MASK;
		htids = &itup->t_tid;
	}

	ui = 0;
	d = 0;
	for (int i = 0; i < BTreeTupleGetNPosting(origtuple); i++)
	{
		if (d < vacposting->ndeletedtids && vacposting->deletetids[d] == i)
		{
			d++;
			continue;
		}
		htids[ui++] = *BTreeTupleGetPostingN(origtuple, i);
	}
	Assert(ui == nhtids);
	Assert(d == vacposting->ndeletedtids);
	Assert(nhtids == 1 || _bt_posting_valid(itup));
	Assert(nhtids > 1 || ItemPointerIsValid(&itup->t_tid));

	/* vacposting arg's itup will now point to updated version */
	vacposting->itup = itup;
}

/*
 * Prepare for a posting list split by swapping heap TID in newitem with heap
 * TID from original posting list (the 'oposting' heap TID located at offset
 * 'postingoff').  Modifies newitem, so caller should pass their own private
 * copy that can safely be modified.
 *
 * Returns new posting list tuple, which is palloc()'d in caller's context.
 * This is guaranteed to be the same size as 'oposting'.  Modified newitem is
 * what caller actually inserts. (This happens inside the same critical
 * section that performs an in-place update of old posting list using new
 * posting list returned here.)
 *
 * While the keys from newitem and oposting must be opclass equal, and must
 * generate identical output when run through the underlying type's output
 * function, it doesn't follow that their representations match exactly.
 * Caller must avoid assuming that there can't be representational differences
 * that make datums from oposting bigger or smaller than the corresponding
 * datums from newitem.  For example, differences in TOAST input state might
 * break a faulty assumption about tuple size (the executor is entitled to
 * apply TOAST compression based on its own criteria).  It also seems possible
 * that further representational variation will be introduced in the future,
 * in order to support nbtree features like page-level prefix compression.
 *
 * See nbtree/README for details on the design of posting list splits.
 */
IndexTuple
_bt_swap_posting(IndexTuple newitem, IndexTuple oposting, int postingoff)
{
	int			nhtids;
	char	   *replacepos;
	char	   *replaceposright;
	Size		nmovebytes;
	IndexTuple	nposting;

	nhtids = BTreeTupleGetNPosting(oposting);
	Assert(_bt_posting_valid(oposting));

	/*
	 * The postingoff argument originated as a _bt_binsrch_posting() return
	 * value.  It will be 0 in the event of corruption that makes a leaf page
	 * contain a non-pivot tuple that's somehow identical to newitem (no two
	 * non-pivot tuples should ever have the same TID).  This has been known
	 * to happen in the field from time to time.
	 *
	 * Perform a basic sanity check to catch this case now.
	 */
	if (!(postingoff > 0 && postingoff < nhtids))
		elog(ERROR, "posting list tuple with %d items cannot be split at offset %d",
			 nhtids, postingoff);

	/*
	 * Move item pointers in posting list to make a gap for the new item's
	 * heap TID.  We shift TIDs one place to the right, losing original
	 * rightmost TID. (nmovebytes must not include TIDs to the left of
	 * postingoff, nor the existing rightmost/max TID that gets overwritten.)
	 */
	nposting = CopyIndexTuple(oposting);
	replacepos = (char *) BTreeTupleGetPostingN(nposting, postingoff);
	replaceposright = (char *) BTreeTupleGetPostingN(nposting, postingoff + 1);
	nmovebytes = (nhtids - postingoff - 1) * sizeof(ItemPointerData);
	memmove(replaceposright, replacepos, nmovebytes);

	/* Fill the gap at postingoff with TID of new item (original new TID) */
	Assert(!BTreeTupleIsPivot(newitem) && !BTreeTupleIsPosting(newitem));
	ItemPointerCopy(&newitem->t_tid, (ItemPointer) replacepos);

	/* Now copy oposting's rightmost/max TID into new item (final new TID) */
	ItemPointerCopy(BTreeTupleGetMaxHeapTID(oposting), &newitem->t_tid);

	Assert(ItemPointerCompare(BTreeTupleGetMaxHeapTID(nposting),
							  BTreeTupleGetHeapTID(newitem)) < 0);
	Assert(_bt_posting_valid(nposting));

	return nposting;
}

/*
 * Verify posting list invariants for "posting", which must be a posting list
 * tuple.  Used within assertions.
 */
#ifdef USE_ASSERT_CHECKING
static bool
_bt_posting_valid(IndexTuple posting)
{
	ItemPointerData last;
	ItemPointer htid;

	if (!BTreeTupleIsPosting(posting) || BTreeTupleGetNPosting(posting) < 2)
		return false;

	/* Remember first heap TID for loop */
	ItemPointerCopy(BTreeTupleGetHeapTID(posting), &last);
	if (!ItemPointerIsValid(&last))
		return false;

	/* Iterate, starting from second TID */
	for (int i = 1; i < BTreeTupleGetNPosting(posting); i++)
	{
		htid = BTreeTupleGetPostingN(posting, i);

		if (!ItemPointerIsValid(htid))
			return false;
		if (ItemPointerCompare(htid, &last) <= 0)
			return false;
		ItemPointerCopy(htid, &last);
	}

	return true;
}
#endif