summaryrefslogtreecommitdiff
path: root/src/backend/access/hash/hashpage.c
blob: 807dbed8a8c72783fc7acfeedb3f79e8ca024dc5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
/*-------------------------------------------------------------------------
 *
 * hashpage.c
 *	  Hash table page management code for the Postgres hash access method
 *
 * Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/access/hash/hashpage.c,v 1.70 2007/09/20 17:56:30 tgl Exp $
 *
 * NOTES
 *	  Postgres hash pages look like ordinary relation pages.  The opaque
 *	  data at high addresses includes information about the page including
 *	  whether a page is an overflow page or a true bucket, the bucket
 *	  number, and the block numbers of the preceding and following pages
 *	  in the same bucket.
 *
 *	  The first page in a hash relation, page zero, is special -- it stores
 *	  information describing the hash table; it is referred to as the
 *	  "meta page." Pages one and higher store the actual data.
 *
 *	  There are also bitmap pages, which are not manipulated here;
 *	  see hashovfl.c.
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/hash.h"
#include "miscadmin.h"
#include "storage/lmgr.h"
#include "storage/smgr.h"
#include "utils/lsyscache.h"


static bool _hash_alloc_buckets(Relation rel, BlockNumber firstblock,
								uint32 nblocks);
static void _hash_splitbucket(Relation rel, Buffer metabuf,
				  Bucket obucket, Bucket nbucket,
				  BlockNumber start_oblkno,
				  BlockNumber start_nblkno,
				  uint32 maxbucket,
				  uint32 highmask, uint32 lowmask);


/*
 * We use high-concurrency locking on hash indexes (see README for an overview
 * of the locking rules).  However, we can skip taking lmgr locks when the
 * index is local to the current backend (ie, either temp or new in the
 * current transaction).  No one else can see it, so there's no reason to
 * take locks.	We still take buffer-level locks, but not lmgr locks.
 */
#define USELOCKING(rel)		(!RELATION_IS_LOCAL(rel))


/*
 * _hash_getlock() -- Acquire an lmgr lock.
 *
 * 'whichlock' should be zero to acquire the split-control lock, or the
 * block number of a bucket's primary bucket page to acquire the per-bucket
 * lock.  (See README for details of the use of these locks.)
 *
 * 'access' must be HASH_SHARE or HASH_EXCLUSIVE.
 */
void
_hash_getlock(Relation rel, BlockNumber whichlock, int access)
{
	if (USELOCKING(rel))
		LockPage(rel, whichlock, access);
}

/*
 * _hash_try_getlock() -- Acquire an lmgr lock, but only if it's free.
 *
 * Same as above except we return FALSE without blocking if lock isn't free.
 */
bool
_hash_try_getlock(Relation rel, BlockNumber whichlock, int access)
{
	if (USELOCKING(rel))
		return ConditionalLockPage(rel, whichlock, access);
	else
		return true;
}

/*
 * _hash_droplock() -- Release an lmgr lock.
 */
void
_hash_droplock(Relation rel, BlockNumber whichlock, int access)
{
	if (USELOCKING(rel))
		UnlockPage(rel, whichlock, access);
}

/*
 *	_hash_getbuf() -- Get a buffer by block number for read or write.
 *
 *		'access' must be HASH_READ, HASH_WRITE, or HASH_NOLOCK.
 *		'flags' is a bitwise OR of the allowed page types.
 *
 *		This must be used only to fetch pages that are expected to be valid
 *		already.  _hash_checkpage() is applied using the given flags.
 *
 *		When this routine returns, the appropriate lock is set on the
 *		requested buffer and its reference count has been incremented
 *		(ie, the buffer is "locked and pinned").
 *
 *		P_NEW is disallowed because this routine can only be used
 *		to access pages that are known to be before the filesystem EOF.
 *		Extending the index should be done with _hash_getnewbuf.
 */
Buffer
_hash_getbuf(Relation rel, BlockNumber blkno, int access, int flags)
{
	Buffer		buf;

	if (blkno == P_NEW)
		elog(ERROR, "hash AM does not use P_NEW");

	buf = ReadBuffer(rel, blkno);

	if (access != HASH_NOLOCK)
		LockBuffer(buf, access);

	/* ref count and lock type are correct */

	_hash_checkpage(rel, buf, flags);

	return buf;
}

/*
 *	_hash_getinitbuf() -- Get and initialize a buffer by block number.
 *
 *		This must be used only to fetch pages that are known to be before
 *		the index's filesystem EOF, but are to be filled from scratch.
 *		_hash_pageinit() is applied automatically.  Otherwise it has
 *		effects similar to _hash_getbuf() with access = HASH_WRITE.
 *
 *		When this routine returns, a write lock is set on the
 *		requested buffer and its reference count has been incremented
 *		(ie, the buffer is "locked and pinned").
 *
 *		P_NEW is disallowed because this routine can only be used
 *		to access pages that are known to be before the filesystem EOF.
 *		Extending the index should be done with _hash_getnewbuf.
 */
Buffer
_hash_getinitbuf(Relation rel, BlockNumber blkno)
{
	Buffer		buf;

	if (blkno == P_NEW)
		elog(ERROR, "hash AM does not use P_NEW");

	buf = ReadOrZeroBuffer(rel, blkno);

	LockBuffer(buf, HASH_WRITE);

	/* ref count and lock type are correct */

	/* initialize the page */
	_hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf));

	return buf;
}

/*
 *	_hash_getnewbuf() -- Get a new page at the end of the index.
 *
 *		This has the same API as _hash_getinitbuf, except that we are adding
 *		a page to the index, and hence expect the page to be past the
 *		logical EOF.  (However, we have to support the case where it isn't,
 *		since a prior try might have crashed after extending the filesystem
 *		EOF but before updating the metapage to reflect the added page.)
 *
 *		It is caller's responsibility to ensure that only one process can
 *		extend the index at a time.
 */
Buffer
_hash_getnewbuf(Relation rel, BlockNumber blkno)
{
	BlockNumber	nblocks = RelationGetNumberOfBlocks(rel);
	Buffer		buf;

	if (blkno == P_NEW)
		elog(ERROR, "hash AM does not use P_NEW");
	if (blkno > nblocks)
		elog(ERROR, "access to noncontiguous page in hash index \"%s\"",
			 RelationGetRelationName(rel));

	/* smgr insists we use P_NEW to extend the relation */
	if (blkno == nblocks)
	{
		buf = ReadBuffer(rel, P_NEW);
		if (BufferGetBlockNumber(buf) != blkno)
			elog(ERROR, "unexpected hash relation size: %u, should be %u",
				 BufferGetBlockNumber(buf), blkno);
	}
	else
		buf = ReadOrZeroBuffer(rel, blkno);

	LockBuffer(buf, HASH_WRITE);

	/* ref count and lock type are correct */

	/* initialize the page */
	_hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf));

	return buf;
}

/*
 *	_hash_getbuf_with_strategy() -- Get a buffer with nondefault strategy.
 *
 *		This is identical to _hash_getbuf() but also allows a buffer access
 *		strategy to be specified.  We use this for VACUUM operations.
 */
Buffer
_hash_getbuf_with_strategy(Relation rel, BlockNumber blkno,
						   int access, int flags,
						   BufferAccessStrategy bstrategy)
{
	Buffer		buf;

	if (blkno == P_NEW)
		elog(ERROR, "hash AM does not use P_NEW");

	buf = ReadBufferWithStrategy(rel, blkno, bstrategy);

	if (access != HASH_NOLOCK)
		LockBuffer(buf, access);

	/* ref count and lock type are correct */

	_hash_checkpage(rel, buf, flags);

	return buf;
}

/*
 *	_hash_relbuf() -- release a locked buffer.
 *
 * Lock and pin (refcount) are both dropped.
 */
void
_hash_relbuf(Relation rel, Buffer buf)
{
	UnlockReleaseBuffer(buf);
}

/*
 *	_hash_dropbuf() -- release an unlocked buffer.
 *
 * This is used to unpin a buffer on which we hold no lock.
 */
void
_hash_dropbuf(Relation rel, Buffer buf)
{
	ReleaseBuffer(buf);
}

/*
 *	_hash_wrtbuf() -- write a hash page to disk.
 *
 *		This routine releases the lock held on the buffer and our refcount
 *		for it.  It is an error to call _hash_wrtbuf() without a write lock
 *		and a pin on the buffer.
 *
 * NOTE: this routine should go away when/if hash indexes are WAL-ified.
 * The correct sequence of operations is to mark the buffer dirty, then
 * write the WAL record, then release the lock and pin; so marking dirty
 * can't be combined with releasing.
 */
void
_hash_wrtbuf(Relation rel, Buffer buf)
{
	MarkBufferDirty(buf);
	UnlockReleaseBuffer(buf);
}

/*
 * _hash_chgbufaccess() -- Change the lock type on a buffer, without
 *			dropping our pin on it.
 *
 * from_access and to_access may be HASH_READ, HASH_WRITE, or HASH_NOLOCK,
 * the last indicating that no buffer-level lock is held or wanted.
 *
 * When from_access == HASH_WRITE, we assume the buffer is dirty and tell
 * bufmgr it must be written out.  If the caller wants to release a write
 * lock on a page that's not been modified, it's okay to pass from_access
 * as HASH_READ (a bit ugly, but handy in some places).
 */
void
_hash_chgbufaccess(Relation rel,
				   Buffer buf,
				   int from_access,
				   int to_access)
{
	if (from_access == HASH_WRITE)
		MarkBufferDirty(buf);
	if (from_access != HASH_NOLOCK)
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
	if (to_access != HASH_NOLOCK)
		LockBuffer(buf, to_access);
}


/*
 *	_hash_metapinit() -- Initialize the metadata page of a hash index,
 *				the two buckets that we begin with and the initial
 *				bitmap page.
 *
 * We are fairly cavalier about locking here, since we know that no one else
 * could be accessing this index.  In particular the rule about not holding
 * multiple buffer locks is ignored.
 */
void
_hash_metapinit(Relation rel)
{
	HashMetaPage metap;
	HashPageOpaque pageopaque;
	Buffer		metabuf;
	Buffer		buf;
	Page		pg;
	int32		data_width;
	int32		item_width;
	int32		ffactor;
	uint16		i;

	/* safety check */
	if (RelationGetNumberOfBlocks(rel) != 0)
		elog(ERROR, "cannot initialize non-empty hash index \"%s\"",
			 RelationGetRelationName(rel));

	/*
	 * Determine the target fill factor (in tuples per bucket) for this index.
	 * The idea is to make the fill factor correspond to pages about as full
	 * as the user-settable fillfactor parameter says.	We can compute it
	 * exactly if the index datatype is fixed-width, but for var-width there's
	 * some guessing involved.
	 */
	data_width = get_typavgwidth(RelationGetDescr(rel)->attrs[0]->atttypid,
								 RelationGetDescr(rel)->attrs[0]->atttypmod);
	item_width = MAXALIGN(sizeof(IndexTupleData)) + MAXALIGN(data_width) +
		sizeof(ItemIdData);		/* include the line pointer */
	ffactor = RelationGetTargetPageUsage(rel, HASH_DEFAULT_FILLFACTOR) / item_width;
	/* keep to a sane range */
	if (ffactor < 10)
		ffactor = 10;

	/*
	 * We initialize the metapage, the first two bucket pages, and the
	 * first bitmap page in sequence, using _hash_getnewbuf to cause
	 * smgrextend() calls to occur.  This ensures that the smgr level
	 * has the right idea of the physical index length.
	 */
	metabuf = _hash_getnewbuf(rel, HASH_METAPAGE);
	pg = BufferGetPage(metabuf);

	pageopaque = (HashPageOpaque) PageGetSpecialPointer(pg);
	pageopaque->hasho_prevblkno = InvalidBlockNumber;
	pageopaque->hasho_nextblkno = InvalidBlockNumber;
	pageopaque->hasho_bucket = -1;
	pageopaque->hasho_flag = LH_META_PAGE;
	pageopaque->hasho_page_id = HASHO_PAGE_ID;

	metap = (HashMetaPage) pg;

	metap->hashm_magic = HASH_MAGIC;
	metap->hashm_version = HASH_VERSION;
	metap->hashm_ntuples = 0;
	metap->hashm_nmaps = 0;
	metap->hashm_ffactor = ffactor;
	metap->hashm_bsize = BufferGetPageSize(metabuf);
	/* find largest bitmap array size that will fit in page size */
	for (i = _hash_log2(metap->hashm_bsize); i > 0; --i)
	{
		if ((1 << i) <= (metap->hashm_bsize -
						 (MAXALIGN(sizeof(PageHeaderData)) +
						  MAXALIGN(sizeof(HashPageOpaqueData)))))
			break;
	}
	Assert(i > 0);
	metap->hashm_bmsize = 1 << i;
	metap->hashm_bmshift = i + BYTE_TO_BIT;
	Assert((1 << BMPG_SHIFT(metap)) == (BMPG_MASK(metap) + 1));

	/*
	 * Label the index with its primary hash support function's OID.  This is
	 * pretty useless for normal operation (in fact, hashm_procid is not used
	 * anywhere), but it might be handy for forensic purposes so we keep it.
	 */
	metap->hashm_procid = index_getprocid(rel, 1, HASHPROC);

	/*
	 * We initialize the index with two buckets, 0 and 1, occupying physical
	 * blocks 1 and 2.	The first freespace bitmap page is in block 3.
	 */
	metap->hashm_maxbucket = metap->hashm_lowmask = 1;	/* nbuckets - 1 */
	metap->hashm_highmask = 3;	/* (nbuckets << 1) - 1 */

	MemSet(metap->hashm_spares, 0, sizeof(metap->hashm_spares));
	MemSet(metap->hashm_mapp, 0, sizeof(metap->hashm_mapp));

	metap->hashm_spares[1] = 1; /* the first bitmap page is only spare */
	metap->hashm_ovflpoint = 1;
	metap->hashm_firstfree = 0;

	/*
	 * Initialize the first two buckets
	 */
	for (i = 0; i <= 1; i++)
	{
		buf = _hash_getnewbuf(rel, BUCKET_TO_BLKNO(metap, i));
		pg = BufferGetPage(buf);
		pageopaque = (HashPageOpaque) PageGetSpecialPointer(pg);
		pageopaque->hasho_prevblkno = InvalidBlockNumber;
		pageopaque->hasho_nextblkno = InvalidBlockNumber;
		pageopaque->hasho_bucket = i;
		pageopaque->hasho_flag = LH_BUCKET_PAGE;
		pageopaque->hasho_page_id = HASHO_PAGE_ID;
		_hash_wrtbuf(rel, buf);
	}

	/*
	 * Initialize first bitmap page
	 */
	_hash_initbitmap(rel, metap, 3);

	/* all done */
	_hash_wrtbuf(rel, metabuf);
}

/*
 *	_hash_pageinit() -- Initialize a new hash index page.
 */
void
_hash_pageinit(Page page, Size size)
{
	Assert(PageIsNew(page));
	PageInit(page, size, sizeof(HashPageOpaqueData));
}

/*
 * Attempt to expand the hash table by creating one new bucket.
 *
 * This will silently do nothing if it cannot get the needed locks.
 *
 * The caller should hold no locks on the hash index.
 *
 * The caller must hold a pin, but no lock, on the metapage buffer.
 * The buffer is returned in the same state.
 */
void
_hash_expandtable(Relation rel, Buffer metabuf)
{
	HashMetaPage metap;
	Bucket		old_bucket;
	Bucket		new_bucket;
	uint32		spare_ndx;
	BlockNumber start_oblkno;
	BlockNumber start_nblkno;
	uint32		maxbucket;
	uint32		highmask;
	uint32		lowmask;

	/*
	 * Obtain the page-zero lock to assert the right to begin a split (see
	 * README).
	 *
	 * Note: deadlock should be impossible here. Our own backend could only be
	 * holding bucket sharelocks due to stopped indexscans; those will not
	 * block other holders of the page-zero lock, who are only interested in
	 * acquiring bucket sharelocks themselves.	Exclusive bucket locks are
	 * only taken here and in hashbulkdelete, and neither of these operations
	 * needs any additional locks to complete.	(If, due to some flaw in this
	 * reasoning, we manage to deadlock anyway, it's okay to error out; the
	 * index will be left in a consistent state.)
	 */
	_hash_getlock(rel, 0, HASH_EXCLUSIVE);

	/* Write-lock the meta page */
	_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);

	_hash_checkpage(rel, metabuf, LH_META_PAGE);
	metap = (HashMetaPage) BufferGetPage(metabuf);

	/*
	 * Check to see if split is still needed; someone else might have already
	 * done one while we waited for the lock.
	 *
	 * Make sure this stays in sync with _hash_doinsert()
	 */
	if (metap->hashm_ntuples <=
		(double) metap->hashm_ffactor * (metap->hashm_maxbucket + 1))
		goto fail;

	/*
	 * Can't split anymore if maxbucket has reached its maximum possible value.
	 *
	 * Ideally we'd allow bucket numbers up to UINT_MAX-1 (no higher because
	 * the calculation maxbucket+1 mustn't overflow).  Currently we restrict
	 * to half that because of overflow looping in _hash_log2() and
	 * insufficient space in hashm_spares[].  It's moot anyway because an
	 * index with 2^32 buckets would certainly overflow BlockNumber and
	 * hence _hash_alloc_buckets() would fail, but if we supported buckets
	 * smaller than a disk block then this would be an independent constraint.
	 */
	if (metap->hashm_maxbucket >= (uint32) 0x7FFFFFFE)
		goto fail;

	/*
	 * Determine which bucket is to be split, and attempt to lock the old
	 * bucket.	If we can't get the lock, give up.
	 *
	 * The lock protects us against other backends, but not against our own
	 * backend.  Must check for active scans separately.
	 */
	new_bucket = metap->hashm_maxbucket + 1;

	old_bucket = (new_bucket & metap->hashm_lowmask);

	start_oblkno = BUCKET_TO_BLKNO(metap, old_bucket);

	if (_hash_has_active_scan(rel, old_bucket))
		goto fail;

	if (!_hash_try_getlock(rel, start_oblkno, HASH_EXCLUSIVE))
		goto fail;

	/*
	 * Likewise lock the new bucket (should never fail).
	 *
	 * Note: it is safe to compute the new bucket's blkno here, even though
	 * we may still need to update the BUCKET_TO_BLKNO mapping.  This is
	 * because the current value of hashm_spares[hashm_ovflpoint] correctly
	 * shows where we are going to put a new splitpoint's worth of buckets.
	 */
	start_nblkno = BUCKET_TO_BLKNO(metap, new_bucket);

	if (_hash_has_active_scan(rel, new_bucket))
		elog(ERROR, "scan in progress on supposedly new bucket");

	if (!_hash_try_getlock(rel, start_nblkno, HASH_EXCLUSIVE))
		elog(ERROR, "could not get lock on supposedly new bucket");

	/*
	 * If the split point is increasing (hashm_maxbucket's log base 2
	 * increases), we need to allocate a new batch of bucket pages.
	 */
	spare_ndx = _hash_log2(new_bucket + 1);
	if (spare_ndx > metap->hashm_ovflpoint)
	{
		Assert(spare_ndx == metap->hashm_ovflpoint + 1);
		/*
		 * The number of buckets in the new splitpoint is equal to the
		 * total number already in existence, i.e. new_bucket.  Currently
		 * this maps one-to-one to blocks required, but someday we may need
		 * a more complicated calculation here.
		 */
		if (!_hash_alloc_buckets(rel, start_nblkno, new_bucket))
		{
			/* can't split due to BlockNumber overflow */
			_hash_droplock(rel, start_oblkno, HASH_EXCLUSIVE);
			_hash_droplock(rel, start_nblkno, HASH_EXCLUSIVE);
			goto fail;
		}
	}

	/*
	 * Okay to proceed with split.	Update the metapage bucket mapping info.
	 *
	 * Since we are scribbling on the metapage data right in the shared
	 * buffer, any failure in this next little bit leaves us with a big
	 * problem: the metapage is effectively corrupt but could get written back
	 * to disk.  We don't really expect any failure, but just to be sure,
	 * establish a critical section.
	 */
	START_CRIT_SECTION();

	metap->hashm_maxbucket = new_bucket;

	if (new_bucket > metap->hashm_highmask)
	{
		/* Starting a new doubling */
		metap->hashm_lowmask = metap->hashm_highmask;
		metap->hashm_highmask = new_bucket | metap->hashm_lowmask;
	}

	/*
	 * If the split point is increasing (hashm_maxbucket's log base 2
	 * increases), we need to adjust the hashm_spares[] array and
	 * hashm_ovflpoint so that future overflow pages will be created beyond
	 * this new batch of bucket pages.
	 */
	if (spare_ndx > metap->hashm_ovflpoint)
	{
		metap->hashm_spares[spare_ndx] = metap->hashm_spares[metap->hashm_ovflpoint];
		metap->hashm_ovflpoint = spare_ndx;
	}

	/* Done mucking with metapage */
	END_CRIT_SECTION();

	/*
	 * Copy bucket mapping info now; this saves re-accessing the meta page
	 * inside _hash_splitbucket's inner loop.  Note that once we drop the
	 * split lock, other splits could begin, so these values might be out of
	 * date before _hash_splitbucket finishes.	That's okay, since all it
	 * needs is to tell which of these two buckets to map hashkeys into.
	 */
	maxbucket = metap->hashm_maxbucket;
	highmask = metap->hashm_highmask;
	lowmask = metap->hashm_lowmask;

	/* Write out the metapage and drop lock, but keep pin */
	_hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK);

	/* Release split lock; okay for other splits to occur now */
	_hash_droplock(rel, 0, HASH_EXCLUSIVE);

	/* Relocate records to the new bucket */
	_hash_splitbucket(rel, metabuf, old_bucket, new_bucket,
					  start_oblkno, start_nblkno,
					  maxbucket, highmask, lowmask);

	/* Release bucket locks, allowing others to access them */
	_hash_droplock(rel, start_oblkno, HASH_EXCLUSIVE);
	_hash_droplock(rel, start_nblkno, HASH_EXCLUSIVE);

	return;

	/* Here if decide not to split or fail to acquire old bucket lock */
fail:

	/* We didn't write the metapage, so just drop lock */
	_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);

	/* Release split lock */
	_hash_droplock(rel, 0, HASH_EXCLUSIVE);
}


/*
 * _hash_alloc_buckets -- allocate a new splitpoint's worth of bucket pages
 *
 * This does not need to initialize the new bucket pages; we'll do that as
 * each one is used by _hash_expandtable().  But we have to extend the logical
 * EOF to the end of the splitpoint; this keeps smgr's idea of the EOF in
 * sync with ours, so that we don't get complaints from smgr.
 *
 * We do this by writing a page of zeroes at the end of the splitpoint range.
 * We expect that the filesystem will ensure that the intervening pages read
 * as zeroes too.  On many filesystems this "hole" will not be allocated
 * immediately, which means that the index file may end up more fragmented
 * than if we forced it all to be allocated now; but since we don't scan
 * hash indexes sequentially anyway, that probably doesn't matter.
 *
 * XXX It's annoying that this code is executed with the metapage lock held.
 * We need to interlock against _hash_getovflpage() adding a new overflow page
 * concurrently, but it'd likely be better to use LockRelationForExtension
 * for the purpose.  OTOH, adding a splitpoint is a very infrequent operation,
 * so it may not be worth worrying about.
 *
 * Returns TRUE if successful, or FALSE if allocation failed due to
 * BlockNumber overflow.
 */
static bool
_hash_alloc_buckets(Relation rel, BlockNumber firstblock, uint32 nblocks)
{
	BlockNumber	lastblock;
	char		zerobuf[BLCKSZ];

	lastblock = firstblock + nblocks - 1;

	/*
	 * Check for overflow in block number calculation; if so, we cannot
	 * extend the index anymore.
	 */
	if (lastblock < firstblock || lastblock == InvalidBlockNumber)
		return false;

	MemSet(zerobuf, 0, sizeof(zerobuf));

	RelationOpenSmgr(rel);
	smgrextend(rel->rd_smgr, lastblock, zerobuf, rel->rd_istemp);

	return true;
}


/*
 * _hash_splitbucket -- split 'obucket' into 'obucket' and 'nbucket'
 *
 * We are splitting a bucket that consists of a base bucket page and zero
 * or more overflow (bucket chain) pages.  We must relocate tuples that
 * belong in the new bucket, and compress out any free space in the old
 * bucket.
 *
 * The caller must hold exclusive locks on both buckets to ensure that
 * no one else is trying to access them (see README).
 *
 * The caller must hold a pin, but no lock, on the metapage buffer.
 * The buffer is returned in the same state.  (The metapage is only
 * touched if it becomes necessary to add or remove overflow pages.)
 */
static void
_hash_splitbucket(Relation rel,
				  Buffer metabuf,
				  Bucket obucket,
				  Bucket nbucket,
				  BlockNumber start_oblkno,
				  BlockNumber start_nblkno,
				  uint32 maxbucket,
				  uint32 highmask,
				  uint32 lowmask)
{
	Bucket		bucket;
	Buffer		obuf;
	Buffer		nbuf;
	BlockNumber oblkno;
	BlockNumber nblkno;
	bool		null;
	Datum		datum;
	HashPageOpaque oopaque;
	HashPageOpaque nopaque;
	IndexTuple	itup;
	Size		itemsz;
	OffsetNumber ooffnum;
	OffsetNumber noffnum;
	OffsetNumber omaxoffnum;
	Page		opage;
	Page		npage;
	TupleDesc	itupdesc = RelationGetDescr(rel);

	/*
	 * It should be okay to simultaneously write-lock pages from each bucket,
	 * since no one else can be trying to acquire buffer lock on pages of
	 * either bucket.
	 */
	oblkno = start_oblkno;
	obuf = _hash_getbuf(rel, oblkno, HASH_WRITE, LH_BUCKET_PAGE);
	opage = BufferGetPage(obuf);
	oopaque = (HashPageOpaque) PageGetSpecialPointer(opage);

	nblkno = start_nblkno;
	nbuf = _hash_getnewbuf(rel, nblkno);
	npage = BufferGetPage(nbuf);

	/* initialize the new bucket's primary page */
	nopaque = (HashPageOpaque) PageGetSpecialPointer(npage);
	nopaque->hasho_prevblkno = InvalidBlockNumber;
	nopaque->hasho_nextblkno = InvalidBlockNumber;
	nopaque->hasho_bucket = nbucket;
	nopaque->hasho_flag = LH_BUCKET_PAGE;
	nopaque->hasho_page_id = HASHO_PAGE_ID;

	/*
	 * Partition the tuples in the old bucket between the old bucket and the
	 * new bucket, advancing along the old bucket's overflow bucket chain and
	 * adding overflow pages to the new bucket as needed.
	 */
	ooffnum = FirstOffsetNumber;
	omaxoffnum = PageGetMaxOffsetNumber(opage);
	for (;;)
	{
		/*
		 * at each iteration through this loop, each of these variables should
		 * be up-to-date: obuf opage oopaque ooffnum omaxoffnum
		 */

		/* check if we're at the end of the page */
		if (ooffnum > omaxoffnum)
		{
			/* at end of page, but check for an(other) overflow page */
			oblkno = oopaque->hasho_nextblkno;
			if (!BlockNumberIsValid(oblkno))
				break;

			/*
			 * we ran out of tuples on this particular page, but we have more
			 * overflow pages; advance to next page.
			 */
			_hash_wrtbuf(rel, obuf);

			obuf = _hash_getbuf(rel, oblkno, HASH_WRITE, LH_OVERFLOW_PAGE);
			opage = BufferGetPage(obuf);
			oopaque = (HashPageOpaque) PageGetSpecialPointer(opage);
			ooffnum = FirstOffsetNumber;
			omaxoffnum = PageGetMaxOffsetNumber(opage);
			continue;
		}

		/*
		 * Re-hash the tuple to determine which bucket it now belongs in.
		 *
		 * It is annoying to call the hash function while holding locks, but
		 * releasing and relocking the page for each tuple is unappealing too.
		 */
		itup = (IndexTuple) PageGetItem(opage, PageGetItemId(opage, ooffnum));
		datum = index_getattr(itup, 1, itupdesc, &null);
		Assert(!null);

		bucket = _hash_hashkey2bucket(_hash_datum2hashkey(rel, datum),
									  maxbucket, highmask, lowmask);

		if (bucket == nbucket)
		{
			/*
			 * insert the tuple into the new bucket.  if it doesn't fit on the
			 * current page in the new bucket, we must allocate a new overflow
			 * page and place the tuple on that page instead.
			 */
			itemsz = IndexTupleDSize(*itup);
			itemsz = MAXALIGN(itemsz);

			if (PageGetFreeSpace(npage) < itemsz)
			{
				/* write out nbuf and drop lock, but keep pin */
				_hash_chgbufaccess(rel, nbuf, HASH_WRITE, HASH_NOLOCK);
				/* chain to a new overflow page */
				nbuf = _hash_addovflpage(rel, metabuf, nbuf);
				npage = BufferGetPage(nbuf);
				/* we don't need nopaque within the loop */
			}

			noffnum = OffsetNumberNext(PageGetMaxOffsetNumber(npage));
			if (PageAddItem(npage, (Item) itup, itemsz, noffnum, false, false)
				== InvalidOffsetNumber)
				elog(ERROR, "failed to add index item to \"%s\"",
					 RelationGetRelationName(rel));

			/*
			 * now delete the tuple from the old bucket.  after this section
			 * of code, 'ooffnum' will actually point to the ItemId to which
			 * we would point if we had advanced it before the deletion
			 * (PageIndexTupleDelete repacks the ItemId array).  this also
			 * means that 'omaxoffnum' is exactly one less than it used to be,
			 * so we really can just decrement it instead of calling
			 * PageGetMaxOffsetNumber.
			 */
			PageIndexTupleDelete(opage, ooffnum);
			omaxoffnum = OffsetNumberPrev(omaxoffnum);
		}
		else
		{
			/*
			 * the tuple stays on this page.  we didn't move anything, so we
			 * didn't delete anything and therefore we don't have to change
			 * 'omaxoffnum'.
			 */
			Assert(bucket == obucket);
			ooffnum = OffsetNumberNext(ooffnum);
		}
	}

	/*
	 * We're at the end of the old bucket chain, so we're done partitioning
	 * the tuples.	Before quitting, call _hash_squeezebucket to ensure the
	 * tuples remaining in the old bucket (including the overflow pages) are
	 * packed as tightly as possible.  The new bucket is already tight.
	 */
	_hash_wrtbuf(rel, obuf);
	_hash_wrtbuf(rel, nbuf);

	_hash_squeezebucket(rel, obucket, start_oblkno, NULL);
}