summaryrefslogtreecommitdiff
path: root/doc/src/sgml/queries.sgml
blob: c427303db3a7135ef6a982c0d9fac0d0ce6a444f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
<!-- $PostgreSQL: pgsql/doc/src/sgml/queries.sgml,v 1.41 2007/01/09 16:59:20 tgl Exp $ -->

<chapter id="queries">
 <title>Queries</title>

 <indexterm zone="queries">
  <primary>query</primary>
 </indexterm>

 <indexterm zone="queries">
  <primary>SELECT</primary>
 </indexterm>

 <para>
  The previous chapters explained how to create tables, how to fill
  them with data, and how to manipulate that data.  Now we finally
  discuss how to retrieve the data out of the database.
 </para>


 <sect1 id="queries-overview">
  <title>Overview</title>

  <para>
   The process of retrieving or the command to retrieve data from a
   database is called a <firstterm>query</firstterm>.  In SQL the
   <xref linkend="sql-select" endterm="sql-select-title"> command is
   used to specify queries.  The general syntax of the
   <command>SELECT</command> command is
<synopsis>
SELECT <replaceable>select_list</replaceable> FROM <replaceable>table_expression</replaceable> <optional><replaceable>sort_specification</replaceable></optional>
</synopsis>
   The following sections describe the details of the select list, the
   table expression, and the sort specification.
  </para>

  <para>
   A simple kind of query has the form
<programlisting>
SELECT * FROM table1;
</programlisting>
  Assuming that there is a table called <literal>table1</literal>,
  this command would retrieve all rows and all columns from
  <literal>table1</literal>.  (The method of retrieval depends on the
  client application.  For example, the
  <application>psql</application> program will display an ASCII-art
  table on the screen, while client libraries will offer functions to
  extract individual values from the query result.)  The select list
  specification <literal>*</literal> means all columns that the table
  expression happens to provide.  A select list can also select a
  subset of the available columns or make calculations using the
  columns.  For example, if
  <literal>table1</literal> has columns named <literal>a</>,
  <literal>b</>, and <literal>c</> (and perhaps others) you can make
  the following query:
<programlisting>
SELECT a, b + c FROM table1;
</programlisting>
  (assuming that <literal>b</> and <literal>c</> are of a numerical
  data type).
  See <xref linkend="queries-select-lists"> for more details.
 </para>

 <para>
  <literal>FROM table1</literal> is a particularly simple kind of
  table expression: it reads just one table.  In general, table
  expressions can be complex constructs of base tables, joins, and
  subqueries.  But you can also omit the table expression entirely and
  use the <command>SELECT</command> command as a calculator:
<programlisting>
SELECT 3 * 4;
</programlisting>
  This is more useful if the expressions in the select list return
  varying results.  For example, you could call a function this way:
<programlisting>
SELECT random();
</programlisting>
  </para>
 </sect1>


 <sect1 id="queries-table-expressions">
  <title>Table Expressions</title>

  <indexterm zone="queries-table-expressions">
   <primary>table expression</primary>
  </indexterm>

  <para>
   A <firstterm>table expression</firstterm> computes a table.  The
   table expression contains a <literal>FROM</> clause that is
   optionally followed by <literal>WHERE</>, <literal>GROUP BY</>, and
   <literal>HAVING</> clauses.  Trivial table expressions simply refer
   to a table on disk, a so-called base table, but more complex
   expressions can be used to modify or combine base tables in various
   ways.
  </para>

  <para>
   The optional <literal>WHERE</>, <literal>GROUP BY</>, and
   <literal>HAVING</> clauses in the table expression specify a
   pipeline of successive transformations performed on the table
   derived in the <literal>FROM</> clause.  All these transformations
   produce a virtual table that provides the rows that are passed to
   the select list to compute the output rows of the query.
  </para>

  <sect2 id="queries-from">
   <title>The <literal>FROM</literal> Clause</title>
 
   <para>
    The <xref linkend="sql-from" endterm="sql-from-title"> derives a
    table from one or more other tables given in a comma-separated
    table reference list.
<synopsis>
FROM <replaceable>table_reference</replaceable> <optional>, <replaceable>table_reference</replaceable> <optional>, ...</optional></optional>
</synopsis>

    A table reference may be a table name (possibly schema-qualified),
    or a derived table such as a subquery, a table join, or complex
    combinations of these.  If more than one table reference is listed
    in the <literal>FROM</> clause they are cross-joined (see below)
    to form the intermediate virtual table that may then be subject to
    transformations by the <literal>WHERE</>, <literal>GROUP BY</>,
    and <literal>HAVING</> clauses and is finally the result of the
    overall table expression.
   </para>

   <indexterm>
    <primary>ONLY</primary>
   </indexterm>

   <para>
    When a table reference names a table that is the parent of a
    table inheritance hierarchy, the table reference produces rows of
    not only that table but all of its descendant tables, unless the
    key word <literal>ONLY</> precedes the table name.  However, the
    reference produces only the columns that appear in the named table
    &mdash; any columns added in subtables are ignored.
   </para>

   <sect3 id="queries-join">
    <title>Joined Tables</title>

    <indexterm zone="queries-join">
     <primary>join</primary>
    </indexterm>

    <para>
     A joined table is a table derived from two other (real or
     derived) tables according to the rules of the particular join
     type.  Inner, outer, and cross-joins are available.
    </para>

    <variablelist>
     <title>Join Types</title>

     <varlistentry>
      <term>Cross join</term>

      <indexterm>
       <primary>join</primary>
       <secondary>cross</secondary>
      </indexterm>

      <indexterm>
       <primary>cross join</primary>
      </indexterm>

      <listitem>
<synopsis>
<replaceable>T1</replaceable> CROSS JOIN <replaceable>T2</replaceable>
</synopsis>

       <para>
        For each combination of rows from
        <replaceable>T1</replaceable> and
        <replaceable>T2</replaceable>, the derived table will contain a
        row consisting of all columns in <replaceable>T1</replaceable>
        followed by all columns in <replaceable>T2</replaceable>.  If
        the tables have N and M rows respectively, the joined
        table will have N * M rows.
       </para>

       <para>
        <literal>FROM <replaceable>T1</replaceable> CROSS JOIN
        <replaceable>T2</replaceable></literal> is equivalent to
        <literal>FROM <replaceable>T1</replaceable>,
        <replaceable>T2</replaceable></literal>.  It is also equivalent to
        <literal>FROM <replaceable>T1</replaceable> INNER JOIN
        <replaceable>T2</replaceable> ON TRUE</literal> (see below).
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>Qualified joins</term>

      <indexterm>
       <primary>join</primary>
       <secondary>outer</secondary>
      </indexterm>

      <indexterm>
       <primary>outer join</primary>
      </indexterm>

      <listitem>
<synopsis>
<replaceable>T1</replaceable> { <optional>INNER</optional> | { LEFT | RIGHT | FULL } <optional>OUTER</optional> } JOIN <replaceable>T2</replaceable> ON <replaceable>boolean_expression</replaceable>
<replaceable>T1</replaceable> { <optional>INNER</optional> | { LEFT | RIGHT | FULL } <optional>OUTER</optional> } JOIN <replaceable>T2</replaceable> USING ( <replaceable>join column list</replaceable> )
<replaceable>T1</replaceable> NATURAL { <optional>INNER</optional> | { LEFT | RIGHT | FULL } <optional>OUTER</optional> } JOIN <replaceable>T2</replaceable>
</synopsis>
        
       <para>
        The words <literal>INNER</literal> and
        <literal>OUTER</literal> are optional in all forms.
        <literal>INNER</literal> is the default;
        <literal>LEFT</literal>, <literal>RIGHT</literal>, and
        <literal>FULL</literal> imply an outer join.
       </para>

       <para>
        The <firstterm>join condition</firstterm> is specified in the
        <literal>ON</> or <literal>USING</> clause, or implicitly by
        the word <literal>NATURAL</>.  The join condition determines
        which rows from the two source tables are considered to
        <quote>match</quote>, as explained in detail below.
       </para>

       <para>
        The <literal>ON</> clause is the most general kind of join
        condition: it takes a Boolean value expression of the same
        kind as is used in a <literal>WHERE</> clause.  A pair of rows
        from <replaceable>T1</> and <replaceable>T2</> match if the
        <literal>ON</> expression evaluates to true for them.
       </para>

       <para>
        <literal>USING</> is a shorthand notation: it takes a
        comma-separated list of column names, which the joined tables
        must have in common, and forms a join condition specifying
        equality of each of these pairs of columns.  Furthermore, the
        output of a <literal>JOIN USING</> has one column for each of
        the equated pairs of input columns, followed by all of the
        other columns from each table.  Thus, <literal>USING (a, b,
        c)</literal> is equivalent to <literal>ON (t1.a = t2.a AND
        t1.b = t2.b AND t1.c = t2.c)</literal> with the exception that
        if <literal>ON</> is used there will be two columns
        <literal>a</>, <literal>b</>, and <literal>c</> in the result,
        whereas with <literal>USING</> there will be only one of each.
       </para>

       <para>
        <indexterm>
         <primary>join</primary>
         <secondary>natural</secondary>
        </indexterm>
        <indexterm>
         <primary>natural join</primary>
        </indexterm>
        Finally, <literal>NATURAL</> is a shorthand form of
        <literal>USING</>: it forms a <literal>USING</> list
        consisting of exactly those column names that appear in both
        input tables.  As with <literal>USING</>, these columns appear
        only once in the output table.
       </para>

       <para>
        The possible types of qualified join are:

       <variablelist>
        <varlistentry>
         <term><literal>INNER JOIN</></term>

         <listitem>
          <para>
           For each row R1 of T1, the joined table has a row for each
           row in T2 that satisfies the join condition with R1.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><literal>LEFT OUTER JOIN</></term>

         <indexterm>
          <primary>join</primary>
          <secondary>left</secondary>
         </indexterm>

         <indexterm>
          <primary>left join</primary>
         </indexterm>

         <listitem>
          <para>
           First, an inner join is performed.  Then, for each row in
           T1 that does not satisfy the join condition with any row in
           T2, a joined row is added with null values in columns of
           T2.  Thus, the joined table unconditionally has at least
           one row for each row in T1.
          </para>
         </listitem>
        </varlistentry>
         
        <varlistentry>
         <term><literal>RIGHT OUTER JOIN</></term>

         <indexterm>
          <primary>join</primary>
          <secondary>right</secondary>
         </indexterm>

         <indexterm>
          <primary>right join</primary>
         </indexterm>

         <listitem>
          <para>
           First, an inner join is performed.  Then, for each row in
           T2 that does not satisfy the join condition with any row in
           T1, a joined row is added with null values in columns of
           T1.  This is the converse of a left join: the result table
           will unconditionally have a row for each row in T2.
          </para>
         </listitem>
        </varlistentry>
         
        <varlistentry>
         <term><literal>FULL OUTER JOIN</></term>

         <listitem>
          <para>
           First, an inner join is performed.  Then, for each row in
           T1 that does not satisfy the join condition with any row in
           T2, a joined row is added with null values in columns of
           T2.  Also, for each row of T2 that does not satisfy the
           join condition with any row in T1, a joined row with null
           values in the columns of T1 is added.
          </para>
         </listitem>
        </varlistentry>
       </variablelist>
       </para>
      </listitem>
     </varlistentry>
    </variablelist>

    <para>
     Joins of all types can be chained together or nested: either or
     both of <replaceable>T1</replaceable> and
     <replaceable>T2</replaceable> may be joined tables.  Parentheses
     may be used around <literal>JOIN</> clauses to control the join
     order.  In the absence of parentheses, <literal>JOIN</> clauses
     nest left-to-right.
    </para>

    <para>
     To put this together, assume we have tables <literal>t1</literal>
<programlisting>
 num | name
-----+------
   1 | a
   2 | b
   3 | c
</programlisting>
     and <literal>t2</literal>
<programlisting>
 num | value
-----+-------
   1 | xxx
   3 | yyy
   5 | zzz
</programlisting>
     then we get the following results for the various joins:
<screen>
<prompt>=&gt;</> <userinput>SELECT * FROM t1 CROSS JOIN t2;</>
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   1 | a    |   3 | yyy
   1 | a    |   5 | zzz
   2 | b    |   1 | xxx
   2 | b    |   3 | yyy
   2 | b    |   5 | zzz
   3 | c    |   1 | xxx
   3 | c    |   3 | yyy
   3 | c    |   5 | zzz
(9 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;</>
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   3 | c    |   3 | yyy
(2 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 INNER JOIN t2 USING (num);</>
 num | name | value
-----+------+-------
   1 | a    | xxx
   3 | c    | yyy
(2 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 NATURAL INNER JOIN t2;</>
 num | name | value
-----+------+-------
   1 | a    | xxx
   3 | c    | yyy
(2 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;</>
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   2 | b    |     |
   3 | c    |   3 | yyy
(3 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 LEFT JOIN t2 USING (num);</>
 num | name | value
-----+------+-------
   1 | a    | xxx
   2 | b    |
   3 | c    | yyy
(3 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;</>
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   3 | c    |   3 | yyy
     |      |   5 | zzz
(3 rows)

<prompt>=&gt;</> <userinput>SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;</>
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   2 | b    |     |
   3 | c    |   3 | yyy
     |      |   5 | zzz
(4 rows)
</screen>
    </para>

    <para>
     The join condition specified with <literal>ON</> can also contain
     conditions that do not relate directly to the join.  This can
     prove useful for some queries but needs to be thought out
     carefully.  For example:
<screen>
<prompt>=&gt;</> <userinput>SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = 'xxx';</>
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   2 | b    |     |
   3 | c    |     |
(3 rows)
</screen>
    </para>
   </sect3>

   <sect3 id="queries-table-aliases">
    <title>Table and Column Aliases</title>

    <indexterm zone="queries-table-aliases">
     <primary>alias</primary>
     <secondary>in the FROM clause</secondary>
    </indexterm>

    <indexterm>
     <primary>label</primary>
     <see>alias</see>
    </indexterm>

    <para>
     A temporary name can be given to tables and complex table
     references to be used for references to the derived table in
     the rest of the query.  This is called a <firstterm>table
     alias</firstterm>.
    </para>

    <para>
     To create a table alias, write
<synopsis>
FROM <replaceable>table_reference</replaceable> AS <replaceable>alias</replaceable>
</synopsis>
     or
<synopsis>
FROM <replaceable>table_reference</replaceable> <replaceable>alias</replaceable>
</synopsis>
     The <literal>AS</literal> key word is noise.
     <replaceable>alias</replaceable> can be any identifier.
    </para>

    <para>
     A typical application of table aliases is to assign short
     identifiers to long table names to keep the join clauses
     readable.  For example:
<programlisting>
SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;
</programlisting>
    </para>

    <para>
     The alias becomes the new name of the table reference for the
     current query &mdash; it is no longer possible to refer to the table
     by the original name.  Thus
<programlisting>
SELECT * FROM my_table AS m WHERE my_table.a &gt; 5;
</programlisting>
     is not valid according to the SQL standard.  In
     <productname>PostgreSQL</productname> this will draw an error if the
     <xref linkend="guc-add-missing-from"> configuration variable is
     <literal>off</> (as it is by default).  If it is <literal>on</>,
     an implicit table reference will be added to the
     <literal>FROM</literal> clause, so the query is processed as if
     it were written as
<programlisting>
SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a &gt; 5;
</programlisting>
     That will result in a cross join, which is usually not what you want.
    </para>

    <para>
     Table aliases are mainly for notational convenience, but it is
     necessary to use them when joining a table to itself, e.g.,
<programlisting>
SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;
</programlisting>
     Additionally, an alias is required if the table reference is a
     subquery (see <xref linkend="queries-subqueries">).
    </para>

    <para>
     Parentheses are used to resolve ambiguities.  In the following example,
     the first statement assigns the alias <literal>b</literal> to the second
     instance of <literal>my_table</>, but the second statement assigns the
     alias to the result of the join:
<programlisting>
SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...
</programlisting>
    </para>

    <para>
     Another form of table aliasing gives temporary names to the columns of
     the table, as well as the table itself:
<synopsis>
FROM <replaceable>table_reference</replaceable> <optional>AS</optional> <replaceable>alias</replaceable> ( <replaceable>column1</replaceable> <optional>, <replaceable>column2</replaceable> <optional>, ...</optional></optional> )
</synopsis>
     If fewer column aliases are specified than the actual table has
     columns, the remaining columns are not renamed.  This syntax is
     especially useful for self-joins or subqueries.
    </para>

    <para>
     When an alias is applied to the output of a <literal>JOIN</>
     clause, using any of these forms, the alias hides the original
     names within the <literal>JOIN</>.  For example,
<programlisting>
SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
</programlisting>
     is valid SQL, but
<programlisting>
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c
</programlisting>
     is not valid: the table alias <literal>a</> is not visible
     outside the alias <literal>c</>.
    </para>
   </sect3>

   <sect3 id="queries-subqueries">
    <title>Subqueries</title>

    <indexterm zone="queries-subqueries">
     <primary>subquery</primary>
    </indexterm>

    <para>
     Subqueries specifying a derived table must be enclosed in
     parentheses and <emphasis>must</emphasis> be assigned a table
     alias name.  (See <xref linkend="queries-table-aliases">.)  For
     example:
<programlisting>
FROM (SELECT * FROM table1) AS alias_name
</programlisting>
    </para>

    <para>
     This example is equivalent to <literal>FROM table1 AS
     alias_name</literal>.  More interesting cases, which can't be
     reduced to a plain join, arise when the subquery involves
     grouping or aggregation.
    </para>

    <para>
     A subquery can also be a <command>VALUES</> list:
<programlisting>
FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
     AS names(first, last)
</programlisting>
     Again, a table alias is required.  Assigning alias names to the columns
     of the <command>VALUES</> list is optional, but is good practice.
     For more information see <xref linkend="queries-values">.
    </para>
   </sect3>

   <sect3 id="queries-tablefunctions">
    <title>Table Functions</title>

    <indexterm zone="queries-tablefunctions"><primary>table function</></>

    <indexterm zone="queries-tablefunctions">
     <primary>function</>
     <secondary>in the FROM clause</>
    </indexterm>

    <para>
     Table functions are functions that produce a set of rows, made up
     of either base data types (scalar types) or composite data types
     (table rows).  They are used like a table, view, or subquery in
     the <literal>FROM</> clause of a query. Columns returned by table
     functions may be included in <literal>SELECT</>,
     <literal>JOIN</>, or <literal>WHERE</> clauses in the same manner
     as a table, view, or subquery column.
    </para>

    <para>
     If a table function returns a base data type, the single result
     column is named like the function. If the function returns a
     composite type, the result columns get the same names as the
     individual attributes of the type.
    </para>

    <para>
     A table function may be aliased in the <literal>FROM</> clause,
     but it also may be left unaliased. If a function is used in the
     <literal>FROM</> clause with no alias, the function name is used
     as the resulting table name.
    </para>

    <para>
     Some examples:
<programlisting>
CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
    SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
    WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
                           where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;
</programlisting>
    </para>

    <para>
     In some cases it is useful to define table functions that can
     return different column sets depending on how they are invoked.
     To support this, the table function can be declared as returning
     the pseudotype <type>record</>.  When such a function is used in
     a query, the expected row structure must be specified in the
     query itself, so that the system can know how to parse and plan
     the query.  Consider this example:
<programlisting>
SELECT *
    FROM dblink('dbname=mydb', 'select proname, prosrc from pg_proc')
      AS t1(proname name, prosrc text)
    WHERE proname LIKE 'bytea%';
</programlisting>
     The <literal>dblink</> function executes a remote query (see
     <filename>contrib/dblink</>).  It is declared to return
     <type>record</> since it might be used for any kind of query.
     The actual column set must be specified in the calling query so
     that the parser knows, for example, what <literal>*</> should
     expand to.
    </para>
   </sect3>
  </sect2>

  <sect2 id="queries-where">
   <title>The <literal>WHERE</literal> Clause</title>

   <indexterm zone="queries-where">
    <primary>WHERE</primary>
   </indexterm>

   <para>
    The syntax of the <xref linkend="sql-where"
    endterm="sql-where-title"> is
<synopsis>
WHERE <replaceable>search_condition</replaceable>
</synopsis>
    where <replaceable>search_condition</replaceable> is any value
    expression (see <xref linkend="sql-expressions">) that
    returns a value of type <type>boolean</type>.
   </para>

   <para>
    After the processing of the <literal>FROM</> clause is done, each
    row of the derived virtual table is checked against the search
    condition.  If the result of the condition is true, the row is
    kept in the output table, otherwise (that is, if the result is
    false or null) it is discarded.  The search condition typically
    references at least some column of the table generated in the
    <literal>FROM</> clause; this is not required, but otherwise the
    <literal>WHERE</> clause will be fairly useless.
   </para>

   <note>
    <para>
     The join condition of an inner join can be written either in
     the <literal>WHERE</> clause or in the <literal>JOIN</> clause.
     For example, these table expressions are equivalent:
<programlisting>
FROM a, b WHERE a.id = b.id AND b.val &gt; 5
</programlisting>
     and
<programlisting>
FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val &gt; 5
</programlisting>
     or perhaps even
<programlisting>
FROM a NATURAL JOIN b WHERE b.val &gt; 5
</programlisting>
     Which one of these you use is mainly a matter of style.  The
     <literal>JOIN</> syntax in the <literal>FROM</> clause is
     probably not as portable to other SQL database management systems.  For
     outer joins there is no choice in any case: they must be done in
     the <literal>FROM</> clause.  An <literal>ON</>/<literal>USING</>
     clause of an outer join is <emphasis>not</> equivalent to a
     <literal>WHERE</> condition, because it determines the addition
     of rows (for unmatched input rows) as well as the removal of rows
     from the final result.
    </para>
   </note>

   <para>
    Here are some examples of <literal>WHERE</literal> clauses:
<programlisting>
SELECT ... FROM fdt WHERE c1 &gt; 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 &gt; fdt.c1)
</programlisting>
    <literal>fdt</literal> is the table derived in the
    <literal>FROM</> clause. Rows that do not meet the search
    condition of the <literal>WHERE</> clause are eliminated from
    <literal>fdt</literal>. Notice the use of scalar subqueries as
    value expressions.  Just like any other query, the subqueries can
    employ complex table expressions.  Notice also how
    <literal>fdt</literal> is referenced in the subqueries.
    Qualifying <literal>c1</> as <literal>fdt.c1</> is only necessary
    if <literal>c1</> is also the name of a column in the derived
    input table of the subquery.  But qualifying the column name adds
    clarity even when it is not needed.  This example shows how the column
    naming scope of an outer query extends into its inner queries.
   </para>
  </sect2>


  <sect2 id="queries-group">
   <title>The <literal>GROUP BY</literal> and <literal>HAVING</literal> Clauses</title>

   <indexterm zone="queries-group">
    <primary>GROUP BY</primary>
   </indexterm>

   <indexterm zone="queries-group">
    <primary>grouping</primary>
   </indexterm>

   <para>
    After passing the <literal>WHERE</> filter, the derived input
    table may be subject to grouping, using the <literal>GROUP BY</>
    clause, and elimination of group rows using the <literal>HAVING</>
    clause.
   </para>

<synopsis>
SELECT <replaceable>select_list</replaceable>
    FROM ...
    <optional>WHERE ...</optional>
    GROUP BY <replaceable>grouping_column_reference</replaceable> <optional>, <replaceable>grouping_column_reference</replaceable></optional>...
</synopsis>

   <para>
    The <xref linkend="sql-groupby" endterm="sql-groupby-title"> is
    used to group together those rows in a table that share the same
    values in all the columns listed. The order in which the columns
    are listed does not matter.  The effect is to combine each set
    of rows sharing common values into one group row that is
    representative of all rows in the group.  This is done to
    eliminate redundancy in the output and/or compute aggregates that
    apply to these groups.  For instance:
<screen>
<prompt>=&gt;</> <userinput>SELECT * FROM test1;</>
 x | y
---+---
 a | 3
 c | 2
 b | 5
 a | 1
(4 rows)

<prompt>=&gt;</> <userinput>SELECT x FROM test1 GROUP BY x;</>
 x
---
 a
 b
 c
(3 rows)
</screen>
   </para>

   <para>
    In the second query, we could not have written <literal>SELECT *
    FROM test1 GROUP BY x</literal>, because there is no single value
    for the column <literal>y</> that could be associated with each
    group.  The grouped-by columns can be referenced in the select list since
    they have a single value in each group.
   </para>

   <para>
    In general, if a table is grouped, columns that are not
    used in the grouping cannot be referenced except in aggregate
    expressions.  An example with aggregate expressions is:
<screen>
<prompt>=&gt;</> <userinput>SELECT x, sum(y) FROM test1 GROUP BY x;</>
 x | sum
---+-----
 a |   4
 b |   5
 c |   2
(3 rows)
</screen>
    Here <literal>sum</literal> is an aggregate function that
    computes a single value over the entire group.  More information
    about the available aggregate functions can be found in <xref
    linkend="functions-aggregate">.
   </para>

   <tip>
    <para>
     Grouping without aggregate expressions effectively calculates the
     set of distinct values in a column.  This can also be achieved
     using the <literal>DISTINCT</> clause (see <xref
     linkend="queries-distinct">).
    </para>
   </tip>

   <para>
    Here is another example:  it calculates the total sales for each
    product (rather than the total sales on all products).
<programlisting>
SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
    FROM products p LEFT JOIN sales s USING (product_id)
    GROUP BY product_id, p.name, p.price;
</programlisting>
    In this example, the columns <literal>product_id</literal>,
    <literal>p.name</literal>, and <literal>p.price</literal> must be
    in the <literal>GROUP BY</> clause since they are referenced in
    the query select list.  (Depending on how exactly the products
    table is set up, name and price may be fully dependent on the
    product ID, so the additional groupings could theoretically be
    unnecessary, but this is not implemented yet.)  The column
    <literal>s.units</> does not have to be in the <literal>GROUP
    BY</> list since it is only used in an aggregate expression
    (<literal>sum(...)</literal>), which represents the sales
    of a product.  For each product, the query returns a summary row about
    all sales of the product.
   </para>

   <para>
    In strict SQL, <literal>GROUP BY</> can only group by columns of
    the source table but <productname>PostgreSQL</productname> extends
    this to also allow <literal>GROUP BY</> to group by columns in the
    select list.  Grouping by value expressions instead of simple
    column names is also allowed.
   </para>

   <indexterm>
    <primary>HAVING</primary>
   </indexterm>

   <para>
    If a table has been grouped using a <literal>GROUP BY</literal>
    clause, but then only certain groups are of interest, the
    <literal>HAVING</literal> clause can be used, much like a
    <literal>WHERE</> clause, to eliminate groups from a grouped
    table.  The syntax is:
<synopsis>
SELECT <replaceable>select_list</replaceable> FROM ... <optional>WHERE ...</optional> GROUP BY ... HAVING <replaceable>boolean_expression</replaceable>
</synopsis>
    Expressions in the <literal>HAVING</> clause can refer both to
    grouped expressions and to ungrouped expressions (which necessarily
    involve an aggregate function).
   </para>

   <para>
    Example:
<screen>
<prompt>=&gt;</> <userinput>SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) &gt; 3;</>
 x | sum
---+-----
 a |   4
 b |   5
(2 rows)

<prompt>=&gt;</> <userinput>SELECT x, sum(y) FROM test1 GROUP BY x HAVING x &lt; 'c';</>
 x | sum
---+-----
 a |   4
 b |   5
(2 rows)
</screen>
   </para>

   <para>
    Again, a more realistic example:
<programlisting>
SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
    FROM products p LEFT JOIN sales s USING (product_id)
    WHERE s.date &gt; CURRENT_DATE - INTERVAL '4 weeks'
    GROUP BY product_id, p.name, p.price, p.cost
    HAVING sum(p.price * s.units) &gt; 5000;
</programlisting>
    In the example above, the <literal>WHERE</> clause is selecting
    rows by a column that is not grouped (the expression is only true for
    sales during the last four weeks), while the <literal>HAVING</>
    clause restricts the output to groups with total gross sales over
    5000.  Note that the aggregate expressions do not necessarily need
    to be the same in all parts of the query.
   </para>
  </sect2>
 </sect1>


 <sect1 id="queries-select-lists">
  <title>Select Lists</title>

  <indexterm>
   <primary>SELECT</primary>
   <secondary>select list</secondary>
  </indexterm>

  <para>
   As shown in the previous section,
   the table expression in the <command>SELECT</command> command
   constructs an intermediate virtual table by possibly combining
   tables, views, eliminating rows, grouping, etc.  This table is
   finally passed on to processing by the <firstterm>select list</firstterm>.  The select
   list determines which <emphasis>columns</emphasis> of the
   intermediate table are actually output.
  </para>

  <sect2 id="queries-select-list-items">
   <title>Select-List Items</title>

   <indexterm>
    <primary>*</primary>
   </indexterm>

   <para>
    The simplest kind of select list is <literal>*</literal> which
    emits all columns that the table expression produces.  Otherwise,
    a select list is a comma-separated list of value expressions (as
    defined in <xref linkend="sql-expressions">).  For instance, it
    could be a list of column names:
<programlisting>
SELECT a, b, c FROM ...
</programlisting>
     The columns names <literal>a</>, <literal>b</>, and <literal>c</>
     are either the actual names of the columns of tables referenced
     in the <literal>FROM</> clause, or the aliases given to them as
     explained in <xref linkend="queries-table-aliases">.  The name
     space available in the select list is the same as in the
     <literal>WHERE</> clause, unless grouping is used, in which case
     it is the same as in the <literal>HAVING</> clause.
   </para>

   <para>
    If more than one table has a column of the same name, the table
    name must also be given, as in
<programlisting>
SELECT tbl1.a, tbl2.a, tbl1.b FROM ...
</programlisting>
    When working with multiple tables, it can also be useful to ask for
    all the columns of a particular table:
<programlisting>
SELECT tbl1.*, tbl2.a FROM ...
</programlisting>
    (See also <xref linkend="queries-where">.)
   </para>

   <para>
    If an arbitrary value expression is used in the select list, it
    conceptually adds a new virtual column to the returned table.  The
    value expression is evaluated once for each result row, with
    the row's values substituted for any column references.  But the
    expressions in the select list do not have to reference any
    columns in the table expression of the <literal>FROM</> clause;
    they could be constant arithmetic expressions as well, for
    instance.
   </para>
  </sect2>

  <sect2 id="queries-column-labels">
   <title>Column Labels</title>

   <indexterm zone="queries-column-labels">
    <primary>alias</primary>
    <secondary>in the select list</secondary>
   </indexterm>

   <para>
    The entries in the select list can be assigned names for further
    processing.  The <quote>further processing</quote> in this case is
    an optional sort specification and the client application (e.g.,
    column headers for display).  For example:
<programlisting>
SELECT a AS value, b + c AS sum FROM ...
</programlisting>
   </para>

   <para>
    If no output column name is specified using <literal>AS</>, the system assigns a
    default name.  For simple column references, this is the name of the
    referenced column.  For function 
    calls, this is the name of the function.  For complex expressions,
    the system will generate a generic name.
   </para>

   <note>
    <para>
     The naming of output columns here is different from that done in
     the <literal>FROM</> clause (see <xref
     linkend="queries-table-aliases">).  This pipeline will in fact
     allow you to rename the same column twice, but the name chosen in
     the select list is the one that will be passed on.
    </para>
   </note>
  </sect2>

  <sect2 id="queries-distinct">
   <title><literal>DISTINCT</literal></title>

   <indexterm zone="queries-distinct">
    <primary>DISTINCT</primary>
   </indexterm>

   <indexterm zone="queries-distinct">
    <primary>duplicates</primary>
   </indexterm>

   <para>
    After the select list has been processed, the result table may
    optionally be subject to the elimination of duplicate rows.  The
    <literal>DISTINCT</literal> key word is written directly after
    <literal>SELECT</literal> to specify this:
<synopsis>
SELECT DISTINCT <replaceable>select_list</replaceable> ...
</synopsis>
    (Instead of <literal>DISTINCT</> the key word <literal>ALL</literal>
    can be used to specify the default behavior of retaining all rows.)
   </para>

   <para>
    <indexterm><primary>null value</><secondary sortas="DISTINCT">in
    DISTINCT</></indexterm>
    Obviously, two rows are considered distinct if they differ in at
    least one column value.  Null values are considered equal in this
    comparison.
   </para>

   <para>
    Alternatively, an arbitrary expression can determine what rows are
    to be considered distinct:
<synopsis>
SELECT DISTINCT ON (<replaceable>expression</replaceable> <optional>, <replaceable>expression</replaceable> ...</optional>) <replaceable>select_list</replaceable> ...
</synopsis>
    Here <replaceable>expression</replaceable> is an arbitrary value
    expression that is evaluated for all rows.  A set of rows for
    which all the expressions are equal are considered duplicates, and
    only the first row of the set is kept in the output.  Note that
    the <quote>first row</quote> of a set is unpredictable unless the
    query is sorted on enough columns to guarantee a unique ordering
    of the rows arriving at the <literal>DISTINCT</> filter.
    (<literal>DISTINCT ON</> processing occurs after <literal>ORDER
    BY</> sorting.)
   </para>

   <para>
    The <literal>DISTINCT ON</> clause is not part of the SQL standard
    and is sometimes considered bad style because of the potentially
    indeterminate nature of its results.  With judicious use of
    <literal>GROUP BY</> and subqueries in <literal>FROM</> the
    construct can be avoided, but it is often the most convenient
    alternative.
   </para>
  </sect2>
 </sect1>


 <sect1 id="queries-union">
  <title>Combining Queries</title>

  <indexterm zone="queries-union">
   <primary>UNION</primary>
  </indexterm>
  <indexterm zone="queries-union">
   <primary>INTERSECT</primary>
  </indexterm>
  <indexterm zone="queries-union">
   <primary>EXCEPT</primary>
  </indexterm>
  <indexterm zone="queries-union">
   <primary>set union</primary>
  </indexterm>
  <indexterm zone="queries-union">
   <primary>set intersection</primary>
  </indexterm>
  <indexterm zone="queries-union">
   <primary>set difference</primary>
  </indexterm>
  <indexterm zone="queries-union">
   <primary>set operation</primary>
  </indexterm>

  <para>
   The results of two queries can be combined using the set operations
   union, intersection, and difference.  The syntax is
<synopsis>
<replaceable>query1</replaceable> UNION <optional>ALL</optional> <replaceable>query2</replaceable>
<replaceable>query1</replaceable> INTERSECT <optional>ALL</optional> <replaceable>query2</replaceable>
<replaceable>query1</replaceable> EXCEPT <optional>ALL</optional> <replaceable>query2</replaceable>
</synopsis>
   <replaceable>query1</replaceable> and
   <replaceable>query2</replaceable> are queries that can use any of
   the features discussed up to this point.  Set operations can also
   be nested and chained, for example
<synopsis>
<replaceable>query1</replaceable> UNION <replaceable>query2</replaceable> UNION <replaceable>query3</replaceable>
</synopsis>
   which really says
<synopsis>
(<replaceable>query1</replaceable> UNION <replaceable>query2</replaceable>) UNION <replaceable>query3</replaceable>
</synopsis>
  </para>

  <para>
   <literal>UNION</> effectively appends the result of
   <replaceable>query2</replaceable> to the result of
   <replaceable>query1</replaceable> (although there is no guarantee
   that this is the order in which the rows are actually returned).
   Furthermore, it eliminates duplicate rows from its result, in the same
   way as <literal>DISTINCT</>, unless <literal>UNION ALL</> is used.
  </para>

  <para>
   <literal>INTERSECT</> returns all rows that are both in the result
   of <replaceable>query1</replaceable> and in the result of
   <replaceable>query2</replaceable>.  Duplicate rows are eliminated
   unless <literal>INTERSECT ALL</> is used.
  </para>

  <para>
   <literal>EXCEPT</> returns all rows that are in the result of
   <replaceable>query1</replaceable> but not in the result of
   <replaceable>query2</replaceable>.  (This is sometimes called the
   <firstterm>difference</> between two queries.)  Again, duplicates
   are eliminated unless <literal>EXCEPT ALL</> is used.
  </para>

  <para>
   In order to calculate the union, intersection, or difference of two
   queries, the two queries must be <quote>union compatible</quote>,
   which means that they return the same number of columns and
   the corresponding columns have compatible data types, as
   described in <xref linkend="typeconv-union-case">.
  </para>
 </sect1>


 <sect1 id="queries-order">
  <title>Sorting Rows</title>

  <indexterm zone="queries-order">
   <primary>sorting</primary>
  </indexterm>

  <indexterm zone="queries-order">
   <primary>ORDER BY</primary>
  </indexterm>

  <para>
   After a query has produced an output table (after the select list
   has been processed) it can optionally be sorted.  If sorting is not
   chosen, the rows will be returned in an unspecified order.  The actual
   order in that case will depend on the scan and join plan types and
   the order on disk, but it must not be relied on.  A particular
   output ordering can only be guaranteed if the sort step is explicitly
   chosen.
  </para>

  <para>
   The <literal>ORDER BY</> clause specifies the sort order:
<synopsis>
SELECT <replaceable>select_list</replaceable>
    FROM <replaceable>table_expression</replaceable>
    ORDER BY <replaceable>sort_expression1</replaceable> <optional>ASC | DESC</optional> <optional>NULLS { FIRST | LAST }</optional>
             <optional>, <replaceable>sort_expression2</replaceable> <optional>ASC | DESC</optional> <optional>NULLS { FIRST | LAST }</optional> ...</optional>
</synopsis>
   The sort expression(s) can be any expression that would be valid in the
   query's select list.  An example is
<programlisting>
SELECT a, b FROM table1 ORDER BY a + b, c;
</programlisting>
   When more than one expression is specified,
   the later values are used to sort rows that are equal according to the
   earlier values.  Each expression may be followed by an optional
   <literal>ASC</> or <literal>DESC</> keyword to set the sort direction to
   ascending or descending.  <literal>ASC</> order is the default.
   Ascending order puts smaller values first, where
   <quote>smaller</quote> is defined in terms of the
   <literal>&lt;</literal> operator.  Similarly, descending order is
   determined with the <literal>&gt;</literal> operator.
    <footnote>
     <para>
      Actually, <productname>PostgreSQL</> uses the <firstterm>default B-tree
      operator class</> for the expression's data type to determine the sort
      ordering for <literal>ASC</> and <literal>DESC</>.  Conventionally,
      data types will be set up so that the <literal>&lt;</literal> and
      <literal>&gt;</literal> operators correspond to this sort ordering,
      but a user-defined data type's designer could choose to do something
      different.
     </para>
    </footnote>
  </para>

  <para>
   The <literal>NULLS FIRST</> and <literal>NULLS LAST</> options can be
   used to determine whether nulls appear before or after non-null values
   in the sort ordering.  By default, null values sort as if larger than any
   non-null value; that is, <literal>NULLS FIRST</> is the default for
   <literal>DESC</> order, and <literal>NULLS LAST</> otherwise.
  </para>

  <para>
   Note that the ordering options are considered independently for each
   sort column.  For example <literal>ORDER BY x, y DESC</> means
   <literal>ORDER BY x ASC, y DESC</>, which is not the same as
   <literal>ORDER BY x DESC, y DESC</>.
  </para>

  <para>
   For backwards compatibility with the SQL92 version of the standard,
   a <replaceable>sort_expression</> can instead be the name or number
   of an output column, as in
<programlisting>
SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;
</programlisting>
   both of which sort by the first output column.  Note that an output
   column name has to stand alone, it's not allowed as part of an expression
   &mdash; for example, this is <emphasis>not</> correct:
<programlisting>
SELECT a + b AS sum, c FROM table1 ORDER BY sum + c;          -- wrong
</programlisting>
   This restriction is made to reduce ambiguity.  There is still 
   ambiguity if an <literal>ORDER BY</> item is a simple name that
   could match either an output column name or a column from the table
   expression.  The output column is used in such cases.  This would
   only cause confusion if you use <literal>AS</> to rename an output
   column to match some other table column's name.
  </para>

  <para>
   <literal>ORDER BY</> can be applied to the result of a
   <literal>UNION</>, <literal>INTERSECT</>, or <literal>EXCEPT</>
   combination, but in this case it is only permitted to sort by
   output column names or numbers, not by expressions.
  </para>
 </sect1>


 <sect1 id="queries-limit">
  <title><literal>LIMIT</literal> and <literal>OFFSET</literal></title>

  <indexterm zone="queries-limit">
   <primary>LIMIT</primary>
  </indexterm>

  <indexterm zone="queries-limit">
   <primary>OFFSET</primary>
  </indexterm>

  <para>
   <literal>LIMIT</> and <literal>OFFSET</> allow you to retrieve just
   a portion of the rows that are generated by the rest of the query:
<synopsis>
SELECT <replaceable>select_list</replaceable>
    FROM <replaceable>table_expression</replaceable>
    <optional> ORDER BY ... </optional>
    <optional> LIMIT { <replaceable>number</replaceable> | ALL } </optional> <optional> OFFSET <replaceable>number</replaceable> </optional>
</synopsis>
  </para>

  <para>
   If a limit count is given, no more than that many rows will be
   returned (but possibly less, if the query itself yields less rows).
   <literal>LIMIT ALL</> is the same as omitting the <literal>LIMIT</>
   clause.
  </para>

  <para>
   <literal>OFFSET</> says to skip that many rows before beginning to
   return rows.  <literal>OFFSET 0</> is the same as
   omitting the <literal>OFFSET</> clause.  If both <literal>OFFSET</>
   and <literal>LIMIT</> appear, then <literal>OFFSET</> rows are
   skipped before starting to count the <literal>LIMIT</> rows that
   are returned.
  </para>

  <para>
   When using <literal>LIMIT</>, it is important to use an
   <literal>ORDER BY</> clause that constrains the result rows into a
   unique order.  Otherwise you will get an unpredictable subset of
   the query's rows. You may be asking for the tenth through
   twentieth rows, but tenth through twentieth in what ordering?  The
   ordering is unknown, unless you specified <literal>ORDER BY</>.
  </para>

  <para>
   The query optimizer takes <literal>LIMIT</> into account when
   generating a query plan, so you are very likely to get different
   plans (yielding different row orders) depending on what you give
   for <literal>LIMIT</> and <literal>OFFSET</>.  Thus, using
   different <literal>LIMIT</>/<literal>OFFSET</> values to select
   different subsets of a query result <emphasis>will give
   inconsistent results</emphasis> unless you enforce a predictable
   result ordering with <literal>ORDER BY</>.  This is not a bug; it
   is an inherent consequence of the fact that SQL does not promise to
   deliver the results of a query in any particular order unless
   <literal>ORDER BY</> is used to constrain the order.
  </para>

  <para>
   The rows skipped by an <literal>OFFSET</> clause still have to be
   computed inside the server; therefore a large <literal>OFFSET</>
   can be inefficient.
  </para>
 </sect1>


 <sect1 id="queries-values">
  <title><literal>VALUES</literal> Lists</title>

  <indexterm zone="queries-values">
   <primary>VALUES</primary>
  </indexterm>

  <para>
   <literal>VALUES</> provides a way to generate a <quote>constant table</>
   that can be used in a query without having to actually create and populate
   a table on-disk.  The syntax is
<synopsis>
VALUES ( <replaceable class="PARAMETER">expression</replaceable> [, ...] ) [, ...]
</synopsis>
   Each parenthesized list of expressions generates a row in the table.
   The lists must all have the same number of elements (i.e., the number
   of columns in the table), and corresponding entries in each list must
   have compatible data types.  The actual data type assigned to each column
   of the result is determined using the same rules as for <literal>UNION</>
   (see <xref linkend="typeconv-union-case">).
  </para>

  <para>
   As an example,

<programlisting>
VALUES (1, 'one'), (2, 'two'), (3, 'three');
</programlisting>

   will return a table of two columns and three rows.  It's effectively
   equivalent to

<programlisting>
SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';
</programlisting>

   By default, <productname>PostgreSQL</productname> assigns the names
   <literal>column1</>, <literal>column2</>, etc. to the columns of a
   <literal>VALUES</> table.  The column names are not specified by the
   SQL standard and different database systems do it differently, so
   it's usually better to override the default names with a table alias
   list.
  </para>

  <para>
   Syntactically, <literal>VALUES</> followed by expression lists is
   treated as equivalent to
<synopsis>
SELECT <replaceable>select_list</replaceable> FROM <replaceable>table_expression</replaceable>
</synopsis>
   and can appear anywhere a <literal>SELECT</> can.  For example, you can
   use it as an arm of a <literal>UNION</>, or attach a
   <replaceable>sort_specification</replaceable> (<literal>ORDER BY</>,
   <literal>LIMIT</>, and/or <literal>OFFSET</>) to it.  <literal>VALUES</>
   is most commonly used as the data source in an <command>INSERT</> command,
   and next most commonly as a subquery.
  </para>

  <para>
   For more information see <xref linkend="sql-values"
   endterm="sql-values-title">.
  </para>

 </sect1>

</chapter>