summaryrefslogtreecommitdiff
path: root/pod/perlop.pod
blob: cae38ebf5584f8ca64f983ed3a6038c996840dc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
=head1 NAME

perlop - Perl operators and precedence

=head1 SYNOPSIS

Perl operators have the following associativity and precedence,
listed from highest precedence to lowest.  Note that all operators
borrowed from C keep the same precedence relationship with each other,
even where C's precedence is slightly screwy.  (This makes learning
Perl easier for C folks.)  With very few exceptions, these all
operate on scalar values only, not array values.

    left	terms and list operators (leftward)
    left	->
    nonassoc	++ --
    right	**
    right	! ~ \ and unary + and -
    left	=~ !~
    left	* / % x
    left	+ - .
    left	<< >>
    nonassoc	named unary operators
    nonassoc	< > <= >= lt gt le ge
    nonassoc	== != <=> eq ne cmp
    left	&
    left	| ^
    left	&&
    left	||
    nonassoc	..  ...
    right	?:
    right	= += -= *= etc.
    left	, =>
    nonassoc	list operators (rightward)
    right	not
    left	and
    left	or xor

In the following sections, these operators are covered in precedence order.

=head1 DESCRIPTION

=head2 Terms and List Operators (Leftward)

A TERM has the highest precedence in Perl.  They includes variables,
quote and quote-like operators, any expression in parentheses,
and any function whose arguments are parenthesized.  Actually, there
aren't really functions in this sense, just list operators and unary
operators behaving as functions because you put parentheses around
the arguments.  These are all documented in L<perlfunc>.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
is followed by a left parenthesis as the next token, the operator and
arguments within parentheses are taken to be of highest precedence,
just like a normal function call.

In the absence of parentheses, the precedence of list operators such as
C<print>, C<sort>, or C<chmod> is either very high or very low depending on
whether you are looking at the left side or the right side of the operator.
For example, in

    @ary = (1, 3, sort 4, 2);
    print @ary;		# prints 1324

the commas on the right of the sort are evaluated before the sort, but
the commas on the left are evaluated after.  In other words, list
operators tend to gobble up all the arguments that follow them, and
then act like a simple TERM with regard to the preceding expression.
Note that you have to be careful with parentheses:

    # These evaluate exit before doing the print:
    print($foo, exit);	# Obviously not what you want.
    print $foo, exit;	# Nor is this.

    # These do the print before evaluating exit:
    (print $foo), exit;	# This is what you want.
    print($foo), exit;	# Or this.
    print ($foo), exit;	# Or even this.

Also note that

    print ($foo & 255) + 1, "\n";

probably doesn't do what you expect at first glance.  See
L<Named Unary Operators> for more discussion of this.

Also parsed as terms are the C<do {}> and C<eval {}> constructs, as
well as subroutine and method calls, and the anonymous
constructors C<[]> and C<{}>.

See also L<Quote and Quote-like Operators> toward the end of this section,
as well as L<"I/O Operators">.

=head2 The Arrow Operator

Just as in C and C++, "C<-E<gt>>" is an infix dereference operator.  If the
right side is either a C<[...]> or C<{...}> subscript, then the left side
must be either a hard or symbolic reference to an array or hash (or
a location capable of holding a hard reference, if it's an lvalue (assignable)).
See L<perlref>.

Otherwise, the right side is a method name or a simple scalar variable
containing the method name, and the left side must either be an object
(a blessed reference) or a class name (that is, a package name).
See L<perlobj>.

=head2 Auto-increment and Auto-decrement

"++" and "--" work as in C.  That is, if placed before a variable, they
increment or decrement the variable before returning the value, and if
placed after, increment or decrement the variable after returning the value.

The auto-increment operator has a little extra builtin magic to it.  If
you increment a variable that is numeric, or that has ever been used in
a numeric context, you get a normal increment.  If, however, the
variable has been used in only string contexts since it was set, and
has a value that is not null and matches the pattern
C</^[a-zA-Z]*[0-9]*$/>, the increment is done as a string, preserving each
character within its range, with carry:

    print ++($foo = '99');	# prints '100'
    print ++($foo = 'a0');	# prints 'a1'
    print ++($foo = 'Az');	# prints 'Ba'
    print ++($foo = 'zz');	# prints 'aaa'

The auto-decrement operator is not magical.

=head2 Exponentiation

Binary "**" is the exponentiation operator.  Note that it binds even more
tightly than unary minus, so -2**4 is -(2**4), not (-2)**4. (This is
implemented using C's pow(3) function, which actually works on doubles
internally.)

=head2 Symbolic Unary Operators

Unary "!" performs logical negation, i.e., "not".  See also C<not> for a lower
precedence version of this.

Unary "-" performs arithmetic negation if the operand is numeric.  If
the operand is an identifier, a string consisting of a minus sign
concatenated with the identifier is returned.  Otherwise, if the string
starts with a plus or minus, a string starting with the opposite sign
is returned.  One effect of these rules is that C<-bareword> is equivalent
to C<"-bareword">.

Unary "~" performs bitwise negation, i.e., 1's complement.
(See also L<Integer Arithmetic> and L<Bitwise String Operators>.)

Unary "+" has no effect whatsoever, even on strings.  It is useful
syntactically for separating a function name from a parenthesized expression
that would otherwise be interpreted as the complete list of function
arguments.  (See examples above under L<Terms and List Operators (Leftward)>.)

Unary "\" creates a reference to whatever follows it.  See L<perlref>.
Do not confuse this behavior with the behavior of backslash within a
string, although both forms do convey the notion of protecting the next
thing from interpretation.

=head2 Binding Operators

Binary "=~" binds a scalar expression to a pattern match.  Certain operations
search or modify the string $_ by default.  This operator makes that kind
of operation work on some other string.  The right argument is a search
pattern, substitution, or transliteration.  The left argument is what is
supposed to be searched, substituted, or transliterated instead of the default
$_.  The return value indicates the success of the operation.  (If the
right argument is an expression rather than a search pattern,
substitution, or transliteration, it is interpreted as a search pattern at run
time.  This can be is less efficient than an explicit search, because the
pattern must be compiled every time the expression is evaluated.

Binary "!~" is just like "=~" except the return value is negated in
the logical sense.

=head2 Multiplicative Operators

Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" computes the modulus of two numbers.  Given integer
operands C<$a> and C<$b>: If C<$b> is positive, then C<$a % $b> is
C<$a> minus the largest multiple of C<$b> that is not greater than
C<$a>.  If C<$b> is negative, then C<$a % $b> is C<$a> minus the
smallest multiple of C<$b> that is not less than C<$a> (i.e. the
result will be less than or equal to zero).

Note than when C<use integer> is in scope "%" give you direct access
to the modulus operator as implemented by your C compiler.  This
operator is not as well defined for negative operands, but it will
execute faster.

Binary "x" is the repetition operator.  In a scalar context, it
returns a string consisting of the left operand repeated the number of
times specified by the right operand.  In a list context, if the left
operand is a list in parentheses, it repeats the list.

    print '-' x 80;		# print row of dashes

    print "\t" x ($tab/8), ' ' x ($tab%8);	# tab over

    @ones = (1) x 80;		# a list of 80 1's
    @ones = (5) x @ones;	# set all elements to 5


=head2 Additive Operators

Binary "+" returns the sum of two numbers.

Binary "-" returns the difference of two numbers.

Binary "." concatenates two strings.

=head2 Shift Operators

Binary "<<" returns the value of its left argument shifted left by the
number of bits specified by the right argument.  Arguments should be
integers.  (See also L<Integer Arithmetic>.)

Binary ">>" returns the value of its left argument shifted right by
the number of bits specified by the right argument.  Arguments should
be integers.  (See also L<Integer Arithmetic>.)

=head2 Named Unary Operators

The various named unary operators are treated as functions with one
argument, with optional parentheses.  These include the filetest
operators, like C<-f>, C<-M>, etc.  See L<perlfunc>.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
is followed by a left parenthesis as the next token, the operator and
arguments within parentheses are taken to be of highest precedence,
just like a normal function call.  Examples:

    chdir $foo    || die;	# (chdir $foo) || die
    chdir($foo)   || die;	# (chdir $foo) || die
    chdir ($foo)  || die;	# (chdir $foo) || die
    chdir +($foo) || die;	# (chdir $foo) || die

but, because * is higher precedence than ||:

    chdir $foo * 20;	# chdir ($foo * 20)
    chdir($foo) * 20;	# (chdir $foo) * 20
    chdir ($foo) * 20;	# (chdir $foo) * 20
    chdir +($foo) * 20;	# chdir ($foo * 20)

    rand 10 * 20;	# rand (10 * 20)
    rand(10) * 20;	# (rand 10) * 20
    rand (10) * 20;	# (rand 10) * 20
    rand +(10) * 20;	# rand (10 * 20)

See also L<"Terms and List Operators (Leftward)">.

=head2 Relational Operators

Binary "E<lt>" returns true if the left argument is numerically less than
the right argument.

Binary "E<gt>" returns true if the left argument is numerically greater
than the right argument.

Binary "E<lt>=" returns true if the left argument is numerically less than
or equal to the right argument.

Binary "E<gt>=" returns true if the left argument is numerically greater
than or equal to the right argument.

Binary "lt" returns true if the left argument is stringwise less than
the right argument.

Binary "gt" returns true if the left argument is stringwise greater
than the right argument.

Binary "le" returns true if the left argument is stringwise less than
or equal to the right argument.

Binary "ge" returns true if the left argument is stringwise greater
than or equal to the right argument.

=head2 Equality Operators

Binary "==" returns true if the left argument is numerically equal to
the right argument.

Binary "!=" returns true if the left argument is numerically not equal
to the right argument.

Binary "E<lt>=E<gt>" returns -1, 0, or 1 depending on whether the left
argument is numerically less than, equal to, or greater than the right
argument.

Binary "eq" returns true if the left argument is stringwise equal to
the right argument.

Binary "ne" returns true if the left argument is stringwise not equal
to the right argument.

Binary "cmp" returns -1, 0, or 1 depending on whether the left argument is stringwise
less than, equal to, or greater than the right argument.

"lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified
by the current locale if C<use locale> is in effect.  See L<perllocale>.

=head2 Bitwise And

Binary "&" returns its operators ANDed together bit by bit.
(See also L<Integer Arithmetic> and L<Bitwise String Operators>.)

=head2 Bitwise Or and Exclusive Or

Binary "|" returns its operators ORed together bit by bit.
(See also L<Integer Arithmetic> and L<Bitwise String Operators>.)

Binary "^" returns its operators XORed together bit by bit.
(See also L<Integer Arithmetic> and L<Bitwise String Operators>.)

=head2 C-style Logical And

Binary "&&" performs a short-circuit logical AND operation.  That is,
if the left operand is false, the right operand is not even evaluated.
Scalar or list context propagates down to the right operand if it
is evaluated.

=head2 C-style Logical Or

Binary "||" performs a short-circuit logical OR operation.  That is,
if the left operand is true, the right operand is not even evaluated.
Scalar or list context propagates down to the right operand if it
is evaluated.

The C<||> and C<&&> operators differ from C's in that, rather than returning
0 or 1, they return the last value evaluated.  Thus, a reasonably portable
way to find out the home directory (assuming it's not "0") might be:

    $home = $ENV{'HOME'} || $ENV{'LOGDIR'} ||
	(getpwuid($<))[7] || die "You're homeless!\n";

As more readable alternatives to C<&&> and C<||>, Perl provides "and" and
"or" operators (see below).  The short-circuit behavior is identical.  The
precedence of "and" and "or" is much lower, however, so that you can
safely use them after a list operator without the need for
parentheses:

    unlink "alpha", "beta", "gamma"
	    or gripe(), next LINE;

With the C-style operators that would have been written like this:

    unlink("alpha", "beta", "gamma")
	    || (gripe(), next LINE);

=head2 Range Operator

Binary ".." is the range operator, which is really two different
operators depending on the context.  In a list context, it returns an
array of values counting (by ones) from the left value to the right
value.  This is useful for writing C<for (1..10)> loops and for doing
slice operations on arrays.  Be aware that under the current implementation,
a temporary array is created, so you'll burn a lot of memory if you
write something like this:

    for (1 .. 1_000_000) {
	# code
    }

In a scalar context, ".." returns a boolean value.  The operator is
bistable, like a flip-flop, and emulates the line-range (comma) operator
of B<sed>, B<awk>, and various editors.  Each ".." operator maintains its
own boolean state.  It is false as long as its left operand is false.
Once the left operand is true, the range operator stays true until the
right operand is true, I<AFTER> which the range operator becomes false
again.  (It doesn't become false till the next time the range operator is
evaluated.  It can test the right operand and become false on the same
evaluation it became true (as in B<awk>), but it still returns true once.
If you don't want it to test the right operand till the next evaluation
(as in B<sed>), use three dots ("...") instead of two.)  The right
operand is not evaluated while the operator is in the "false" state, and
the left operand is not evaluated while the operator is in the "true"
state.  The precedence is a little lower than || and &&.  The value
returned is either the null string for false, or a sequence number
(beginning with 1) for true.  The sequence number is reset for each range
encountered.  The final sequence number in a range has the string "E0"
appended to it, which doesn't affect its numeric value, but gives you
something to search for if you want to exclude the endpoint.  You can
exclude the beginning point by waiting for the sequence number to be
greater than 1.  If either operand of scalar ".." is a numeric literal,
that operand is implicitly compared to the C<$.> variable, the current
line number.  Examples:

As a scalar operator:

    if (101 .. 200) { print; }	# print 2nd hundred lines
    next line if (1 .. /^$/);	# skip header lines
    s/^/> / if (/^$/ .. eof());	# quote body

As a list operator:

    for (101 .. 200) { print; }	# print $_ 100 times
    @foo = @foo[0 .. $#foo];	# an expensive no-op
    @foo = @foo[$#foo-4 .. $#foo];	# slice last 5 items

The range operator (in a list context) makes use of the magical
auto-increment algorithm if the operands are strings.  You
can say

    @alphabet = ('A' .. 'Z');

to get all the letters of the alphabet, or

    $hexdigit = (0 .. 9, 'a' .. 'f')[$num & 15];

to get a hexadecimal digit, or

    @z2 = ('01' .. '31');  print $z2[$mday];

to get dates with leading zeros.  If the final value specified is not
in the sequence that the magical increment would produce, the sequence
goes until the next value would be longer than the final value
specified.

=head2 Conditional Operator

Ternary "?:" is the conditional operator, just as in C.  It works much
like an if-then-else.  If the argument before the ? is true, the
argument before the : is returned, otherwise the argument after the :
is returned.  For example:

    printf "I have %d dog%s.\n", $n,
	    ($n == 1) ? '' : "s";

Scalar or list context propagates downward into the 2nd
or 3rd argument, whichever is selected.

    $a = $ok ? $b : $c;  # get a scalar
    @a = $ok ? @b : @c;  # get an array
    $a = $ok ? @b : @c;  # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are
legal lvalues (meaning that you can assign to them):

    ($a_or_b ? $a : $b) = $c;

This is not necessarily guaranteed to contribute to the readability of your program.

=head2 Assignment Operators

"=" is the ordinary assignment operator.

Assignment operators work as in C.  That is,

    $a += 2;

is equivalent to

    $a = $a + 2;

although without duplicating any side effects that dereferencing the lvalue
might trigger, such as from tie().  Other assignment operators work similarly.
The following are recognized:

    **=    +=    *=    &=    <<=    &&=
           -=    /=    |=    >>=    ||=
           .=    %=    ^=
	         x=

Note that while these are grouped by family, they all have the precedence
of assignment.

Unlike in C, the assignment operator produces a valid lvalue.  Modifying
an assignment is equivalent to doing the assignment and then modifying
the variable that was assigned to.  This is useful for modifying
a copy of something, like this:

    ($tmp = $global) =~ tr [A-Z] [a-z];

Likewise,

    ($a += 2) *= 3;

is equivalent to

    $a += 2;
    $a *= 3;

=head2 Comma Operator

Binary "," is the comma operator.  In a scalar context it evaluates
its left argument, throws that value away, then evaluates its right
argument and returns that value.  This is just like C's comma operator.

In a list context, it's just the list argument separator, and inserts
both its arguments into the list.

The =E<gt> digraph is mostly just a synonym for the comma operator.  It's useful for
documenting arguments that come in pairs.  As of release 5.001, it also forces
any word to the left of it to be interpreted as a string.

=head2 List Operators (Rightward)

On the right side of a list operator, it has very low precedence,
such that it controls all comma-separated expressions found there.
The only operators with lower precedence are the logical operators
"and", "or", and "not", which may be used to evaluate calls to list
operators without the need for extra parentheses:

    open HANDLE, "filename"
	or die "Can't open: $!\n";

See also discussion of list operators in L<Terms and List Operators (Leftward)>.

=head2 Logical Not

Unary "not" returns the logical negation of the expression to its right.
It's the equivalent of "!" except for the very low precedence.

=head2 Logical And

Binary "and" returns the logical conjunction of the two surrounding
expressions.  It's equivalent to && except for the very low
precedence.  This means that it short-circuits: i.e., the right
expression is evaluated only if the left expression is true.

=head2 Logical or and Exclusive Or

Binary "or" returns the logical disjunction of the two surrounding
expressions.  It's equivalent to || except for the very low
precedence.  This means that it short-circuits: i.e., the right
expression is evaluated only if the left expression is false.

Binary "xor" returns the exclusive-OR of the two surrounding expressions.
It cannot short circuit, of course.

=head2 C Operators Missing From Perl

Here is what C has that Perl doesn't:

=over 8

=item unary &

Address-of operator.  (But see the "\" operator for taking a reference.)

=item unary *

Dereference-address operator. (Perl's prefix dereferencing
operators are typed: $, @, %, and &.)

=item (TYPE)

Type casting operator.

=back

=head2 Quote and Quote-like Operators

While we usually think of quotes as literal values, in Perl they
function as operators, providing various kinds of interpolating and
pattern matching capabilities.  Perl provides customary quote characters
for these behaviors, but also provides a way for you to choose your
quote character for any of them.  In the following table, a C<{}> represents
any pair of delimiters you choose.  Non-bracketing delimiters use
the same character fore and aft, but the 4 sorts of brackets
(round, angle, square, curly) will all nest.

    Customary  Generic        Meaning	     Interpolates
	''	 q{}	      Literal		  no
	""	qq{}	      Literal		  yes
	``	qx{}	      Command		  yes
		qw{}	     Word list		  no
	//	 m{}	   Pattern match	  yes
		 s{}{}	    Substitution	  yes
		tr{}{}	  Transliteration	  no (but see below)

Note that there can be whitespace between the operator and the quoting
characters, except when C<#> is being used as the quoting character.
C<q#foo#> is parsed as being the string C<foo>, while C<q #foo#> is the
operator C<q> followed by a comment. Its argument will be taken from the
next line. This allows you to write:

    s {foo}  # Replace foo
      {bar}  # with bar.

For constructs that do interpolation, variables beginning with "C<$>"
or "C<@>" are interpolated, as are the following sequences. Within
a transliteration, the first ten of these sequences may be used.

    \t		tab             (HT, TAB)
    \n		newline         (LF, NL)
    \r		return          (CR)
    \f		form feed       (FF)
    \b		backspace       (BS)
    \a		alarm (bell)    (BEL)
    \e		escape          (ESC)
    \033	octal char
    \x1b	hex char
    \c[		control char

    \l		lowercase next char
    \u		uppercase next char
    \L		lowercase till \E
    \U		uppercase till \E
    \E		end case modification
    \Q		quote non-word characters till \E

If C<use locale> is in effect, the case map used by C<\l>, C<\L>, C<\u>
and C<\U> is taken from the current locale.  See L<perllocale>.

You cannot include a literal C<$> or C<@> within a C<\Q> sequence. 
An unescaped C<$> or C<@> interpolates the corresponding variable, 
while escaping will cause the literal string C<\$> to be inserted.
You'll need to write something like C<m/\Quser\E\@\Qhost/>. 

Patterns are subject to an additional level of interpretation as a
regular expression.  This is done as a second pass, after variables are
interpolated, so that regular expressions may be incorporated into the
pattern from the variables.  If this is not what you want, use C<\Q> to
interpolate a variable literally.

Apart from the above, there are no multiple levels of interpolation.  In
particular, contrary to the expectations of shell programmers, back-quotes
do I<NOT> interpolate within double quotes, nor do single quotes impede
evaluation of variables when used within double quotes.

=head2 Regexp Quote-Like Operators

Here are the quote-like operators that apply to pattern
matching and related activities.

=over 8

=item ?PATTERN?

This is just like the C</pattern/> search, except that it matches only
once between calls to the reset() operator.  This is a useful
optimization when you want to see only the first occurrence of
something in each file of a set of files, for instance.  Only C<??>
patterns local to the current package are reset.

This usage is vaguely deprecated, and may be removed in some future
version of Perl.

=item m/PATTERN/cgimosx

=item /PATTERN/cgimosx

Searches a string for a pattern match, and in a scalar context returns
true (1) or false ('').  If no string is specified via the C<=~> or
C<!~> operator, the $_ string is searched.  (The string specified with
C<=~> need not be an lvalue--it may be the result of an expression
evaluation, but remember the C<=~> binds rather tightly.)  See also
L<perlre>.
See L<perllocale> for discussion of additional considerations which apply
when C<use locale> is in effect.

Options are:

    c	Do not reset search position on a failed match when /g is in effect.
    g	Match globally, i.e., find all occurrences.
    i	Do case-insensitive pattern matching.
    m	Treat string as multiple lines.
    o	Compile pattern only once.
    s	Treat string as single line.
    t	Taint $1 etc. if target string is tainted.
    x	Use extended regular expressions.

If "/" is the delimiter then the initial C<m> is optional.  With the C<m>
you can use any pair of non-alphanumeric, non-whitespace characters as
delimiters.  This is particularly useful for matching Unix path names
that contain "/", to avoid LTS (leaning toothpick syndrome).  If "?" is
the delimiter, then the match-only-once rule of C<?PATTERN?> applies.

PATTERN may contain variables, which will be interpolated (and the
pattern recompiled) every time the pattern search is evaluated.  (Note
that C<$)> and C<$|> might not be interpolated because they look like
end-of-string tests.)  If you want such a pattern to be compiled only
once, add a C</o> after the trailing delimiter.  This avoids expensive
run-time recompilations, and is useful when the value you are
interpolating won't change over the life of the script.  However, mentioning
C</o> constitutes a promise that you won't change the variables in the pattern.
If you change them, Perl won't even notice.

If the PATTERN evaluates to a null string, the last
successfully matched regular expression is used instead.

If used in a context that requires a list value, a pattern match returns a
list consisting of the subexpressions matched by the parentheses in the
pattern, i.e., (C<$1>, $2, $3...).  (Note that here $1 etc. are also set, and
that this differs from Perl 4's behavior.)  If there are no parentheses,
the return value is the list C<(1)> for success or C<('')> upon failure.
With parentheses, C<()> is returned upon failure.

Examples:

    open(TTY, '/dev/tty');
    <TTY> =~ /^y/i && foo();	# do foo if desired

    if (/Version: *([0-9.]*)/) { $version = $1; }

    next if m#^/usr/spool/uucp#;

    # poor man's grep
    $arg = shift;
    while (<>) {
	print if /$arg/o;	# compile only once
    }

    if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the
remainder of the line, and assigns those three fields to $F1, $F2, and
$Etc.  The conditional is true if any variables were assigned, i.e., if
the pattern matched.

The C</g> modifier specifies global pattern matching--that is, matching
as many times as possible within the string.  How it behaves depends on
the context.  In a list context, it returns a list of all the
substrings matched by all the parentheses in the regular expression.
If there are no parentheses, it returns a list of all the matched
strings, as if there were parentheses around the whole pattern.

In a scalar context, C<m//g> iterates through the string, returning TRUE
each time it matches, and FALSE when it eventually runs out of matches.
(In other words, it remembers where it left off last time and restarts
the search at that point.  You can actually find the current match
position of a string or set it using the pos() function; see
L<perlfunc/pos>.)  A failed match normally resets the search position to
the beginning of the string, but you can avoid that by adding the C</c>
modifier (e.g. C<m//gc>).  Modifying the target string also resets the
search position.

You can intermix C<m//g> matches with C<m/\G.../g>, where C<\G> is a
zero-width assertion that matches the exact position where the previous
C<m//g>, if any, left off.  The C<\G> assertion is not supported without
the C</g> modifier; currently, without C</g>, C<\G> behaves just like
C<\A>, but that's accidental and may change in the future.

Examples:

    # list context
    ($one,$five,$fifteen) = (`uptime` =~ /(\d+\.\d+)/g);

    # scalar context
    $/ = ""; $* = 1;  # $* deprecated in modern perls
    while (defined($paragraph = <>)) {
	while ($paragraph =~ /[a-z]['")]*[.!?]+['")]*\s/g) {
	    $sentences++;
	}
    }
    print "$sentences\n";

    # using m//gc with \G
    $_ = "ppooqppqq";
    while ($i++ < 2) {
        print "1: '";
        print $1 while /(o)/gc; print "', pos=", pos, "\n";
        print "2: '";
        print $1 if /\G(q)/gc;  print "', pos=", pos, "\n";
        print "3: '";
        print $1 while /(p)/gc; print "', pos=", pos, "\n";
    }

The last example should print:

    1: 'oo', pos=4
    2: 'q', pos=5
    3: 'pp', pos=7
    1: '', pos=7
    2: 'q', pos=8
    3: '', pos=8

A useful idiom for C<lex>-like scanners is C</\G.../gc>.  You can
combine several regexps like this to process a string part-by-part,
doing different actions depending on which regexp matched.  Each
regexp tries to match where the previous one leaves off.

 $_ = <<'EOL';
      $url = new URI::URL "http://www/";   die if $url eq "xXx";
 EOL
 LOOP:
    {
      print(" digits"),		redo LOOP if /\G\d+\b[,.;]?\s*/gc;
      print(" lowercase"),	redo LOOP if /\G[a-z]+\b[,.;]?\s*/gc;
      print(" UPPERCASE"),	redo LOOP if /\G[A-Z]+\b[,.;]?\s*/gc;
      print(" Capitalized"),	redo LOOP if /\G[A-Z][a-z]+\b[,.;]?\s*/gc;
      print(" MiXeD"),		redo LOOP if /\G[A-Za-z]+\b[,.;]?\s*/gc;
      print(" alphanumeric"),	redo LOOP if /\G[A-Za-z0-9]+\b[,.;]?\s*/gc;
      print(" line-noise"),	redo LOOP if /\G[^A-Za-z0-9]+/gc;
      print ". That's all!\n";
    }

Here is the output (split into several lines):

 line-noise lowercase line-noise lowercase UPPERCASE line-noise
 UPPERCASE line-noise lowercase line-noise lowercase line-noise
 lowercase lowercase line-noise lowercase lowercase line-noise
 MiXeD line-noise. That's all!

=item q/STRING/

=item C<'STRING'>

A single-quoted, literal string. A backslash represents a backslash
unless followed by the delimiter or another backslash, in which case
the delimiter or backslash is interpolated.

    $foo = q!I said, "You said, 'She said it.'"!;
    $bar = q('This is it.');
    $baz = '\n';		# a two-character string

=item qq/STRING/

=item "STRING"

A double-quoted, interpolated string.

    $_ .= qq
     (*** The previous line contains the naughty word "$1".\n)
		if /(tcl|rexx|python)/;      # :-)
    $baz = "\n";		# a one-character string

=item qx/STRING/

=item `STRING`

A string which is interpolated and then executed as a system command.
The collected standard output of the command is returned.  In scalar
context, it comes back as a single (potentially multi-line) string.
In list context, returns a list of lines (however you've defined lines
with $/ or $INPUT_RECORD_SEPARATOR).

    $today = qx{ date };

Note that how the string gets evaluated is entirely subject to the
command interpreter on your system.  On most platforms, you will have
to protect shell metacharacters if you want them treated literally.
On some platforms (notably DOS-like ones), the shell may not be
capable of dealing with multiline commands, so putting newlines in
the string may not get you what you want.  You may be able to evaluate
multiple commands in a single line by separating them with the command
separator character, if your shell supports that (e.g. C<;> on many Unix
shells; C<&> on the Windows NT C<cmd> shell).

Beware that some command shells may place restrictions on the length
of the command line.  You must ensure your strings don't exceed this
limit after any necessary interpolations.  See the platform-specific
release notes for more details about your particular environment.

Also realize that using this operator frequently leads to unportable
programs.

See L<"I/O Operators"> for more discussion.

=item qw/STRING/

Returns a list of the words extracted out of STRING, using embedded
whitespace as the word delimiters.  It is exactly equivalent to

    split(' ', q/STRING/);

Some frequently seen examples:

    use POSIX qw( setlocale localeconv )
    @EXPORT = qw( foo bar baz );

A common mistake is to try to separate the words with comma or to put
comments into a multi-line qw-string.  For this reason the C<-w>
switch produce warnings if the STRING contains the "," or the "#"
character.

=item s/PATTERN/REPLACEMENT/egimosx

Searches a string for a pattern, and if found, replaces that pattern
with the replacement text and returns the number of substitutions
made.  Otherwise it returns false (specifically, the empty string).

If no string is specified via the C<=~> or C<!~> operator, the C<$_>
variable is searched and modified.  (The string specified with C<=~> must
be a scalar variable, an array element, a hash element, or an assignment
to one of those, i.e., an lvalue.)

If the delimiter chosen is single quote, no variable interpolation is
done on either the PATTERN or the REPLACEMENT.  Otherwise, if the
PATTERN contains a $ that looks like a variable rather than an
end-of-string test, the variable will be interpolated into the pattern
at run-time.  If you want the pattern compiled only once the first time
the variable is interpolated, use the C</o> option.  If the pattern
evaluates to a null string, the last successfully executed regular
expression is used instead.  See L<perlre> for further explanation on these.
See L<perllocale> for discussion of additional considerations which apply
when C<use locale> is in effect.

Options are:

    e	Evaluate the right side as an expression.
    g	Replace globally, i.e., all occurrences.
    i	Do case-insensitive pattern matching.
    m	Treat string as multiple lines.
    o	Compile pattern only once.
    s	Treat string as single line.
    x	Use extended regular expressions.

Any non-alphanumeric, non-whitespace delimiter may replace the
slashes.  If single quotes are used, no interpretation is done on the
replacement string (the C</e> modifier overrides this, however).  Unlike
Perl 4, Perl 5 treats backticks as normal delimiters; the replacement
text is not evaluated as a command.  If the
PATTERN is delimited by bracketing quotes, the REPLACEMENT has its own
pair of quotes, which may or may not be bracketing quotes, e.g.,
C<s(foo)(bar)> or C<sE<lt>fooE<gt>/bar/>.  A C</e> will cause the
replacement portion to be interpreted as a full-fledged Perl expression
and eval()ed right then and there.  It is, however, syntax checked at
compile-time.

Examples:

    s/\bgreen\b/mauve/g;		# don't change wintergreen

    $path =~ s|/usr/bin|/usr/local/bin|;

    s/Login: $foo/Login: $bar/; # run-time pattern

    ($foo = $bar) =~ s/this/that/;

    $count = ($paragraph =~ s/Mister\b/Mr./g);

    $_ = 'abc123xyz';
    s/\d+/$&*2/e;		# yields 'abc246xyz'
    s/\d+/sprintf("%5d",$&)/e;	# yields 'abc  246xyz'
    s/\w/$& x 2/eg;		# yields 'aabbcc  224466xxyyzz'

    s/%(.)/$percent{$1}/g;	# change percent escapes; no /e
    s/%(.)/$percent{$1} || $&/ge;	# expr now, so /e
    s/^=(\w+)/&pod($1)/ge;	# use function call

    # /e's can even nest;  this will expand
    # simple embedded variables in $_
    s/(\$\w+)/$1/eeg;

    # Delete C comments.
    $program =~ s {
	/\*	# Match the opening delimiter.
	.*?	# Match a minimal number of characters.
	\*/	# Match the closing delimiter.
    } []gsx;

    s/^\s*(.*?)\s*$/$1/;	# trim white space

    s/([^ ]*) *([^ ]*)/$2 $1/;	# reverse 1st two fields

Note the use of $ instead of \ in the last example.  Unlike
B<sed>, we use the \E<lt>I<digit>E<gt> form in only the left hand side.
Anywhere else it's $E<lt>I<digit>E<gt>.

Occasionally, you can't use just a C</g> to get all the changes
to occur.  Here are two common cases:

    # put commas in the right places in an integer
    1 while s/(.*\d)(\d\d\d)/$1,$2/g;      # perl4
    1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;  # perl5

    # expand tabs to 8-column spacing
    1 while s/\t+/' ' x (length($&)*8 - length($`)%8)/e;


=item tr/SEARCHLIST/REPLACEMENTLIST/cds

=item y/SEARCHLIST/REPLACEMENTLIST/cds

Transliterates all occurrences of the characters found in the search list
with the corresponding character in the replacement list.  It returns
the number of characters replaced or deleted.  If no string is
specified via the =~ or !~ operator, the $_ string is transliterated.  (The
string specified with =~ must be a scalar variable, an array element, a
hash element, or an assignment to one of those, i.e., an lvalue.)
A character range may be specified with a hyphen, so C<tr/A-J/0-9/> 
does the same replacement as C<tr/ACEGIBDFHJ/0246813579/>.
For B<sed> devotees, C<y> is provided as a synonym for C<tr>.  If the
SEARCHLIST is delimited by bracketing quotes, the REPLACEMENTLIST has
its own pair of quotes, which may or may not be bracketing quotes,
e.g., C<tr[A-Z][a-z]> or C<tr(+\-*/)/ABCD/>.

Options:

    c	Complement the SEARCHLIST.
    d	Delete found but unreplaced characters.
    s	Squash duplicate replaced characters.

If the C</c> modifier is specified, the SEARCHLIST character set is
complemented.  If the C</d> modifier is specified, any characters specified
by SEARCHLIST not found in REPLACEMENTLIST are deleted.  (Note
that this is slightly more flexible than the behavior of some B<tr>
programs, which delete anything they find in the SEARCHLIST, period.)
If the C</s> modifier is specified, sequences of characters that were
transliterated to the same character are squashed down to a single instance of the
character.

If the C</d> modifier is used, the REPLACEMENTLIST is always interpreted
exactly as specified.  Otherwise, if the REPLACEMENTLIST is shorter
than the SEARCHLIST, the final character is replicated till it is long
enough.  If the REPLACEMENTLIST is null, the SEARCHLIST is replicated.
This latter is useful for counting characters in a class or for
squashing character sequences in a class.

Examples:

    $ARGV[1] =~ tr/A-Z/a-z/;	# canonicalize to lower case

    $cnt = tr/*/*/;		# count the stars in $_

    $cnt = $sky =~ tr/*/*/;	# count the stars in $sky

    $cnt = tr/0-9//;		# count the digits in $_

    tr/a-zA-Z//s;		# bookkeeper -> bokeper

    ($HOST = $host) =~ tr/a-z/A-Z/;

    tr/a-zA-Z/ /cs;		# change non-alphas to single space

    tr [\200-\377]
       [\000-\177];		# delete 8th bit

If multiple transliterations are given for a character, only the first one is used:

    tr/AAA/XYZ/

will transliterate any A to X.

Note that because the transliteration table is built at compile time, neither
the SEARCHLIST nor the REPLACEMENTLIST are subjected to double quote
interpolation.  That means that if you want to use variables, you must use
an eval():

    eval "tr/$oldlist/$newlist/";
    die $@ if $@;

    eval "tr/$oldlist/$newlist/, 1" or die $@;

=back

=head2 I/O Operators

There are several I/O operators you should know about.
A string enclosed by backticks (grave accents) first undergoes
variable substitution just like a double quoted string.  It is then
interpreted as a command, and the output of that command is the value
of the pseudo-literal, like in a shell.  In a scalar context, a single
string consisting of all the output is returned.  In a list context,
a list of values is returned, one for each line of output.  (You can
set C<$/> to use a different line terminator.)  The command is executed
each time the pseudo-literal is evaluated.  The status value of the
command is returned in C<$?> (see L<perlvar> for the interpretation
of C<$?>).  Unlike in B<csh>, no translation is done on the return
data--newlines remain newlines.  Unlike in any of the shells, single
quotes do not hide variable names in the command from interpretation.
To pass a $ through to the shell you need to hide it with a backslash.
The generalized form of backticks is C<qx//>.  (Because backticks
always undergo shell expansion as well, see L<perlsec> for
security concerns.)

Evaluating a filehandle in angle brackets yields the next line from
that file (newline, if any, included), or C<undef> at end of file.
Ordinarily you must assign that value to a variable, but there is one
situation where an automatic assignment happens.  I<If and ONLY if> the
input symbol is the only thing inside the conditional of a C<while> or
C<for(;;)> loop, the value is automatically assigned to the variable
C<$_>.  In these loop constructs, the assigned value (whether assignment
is automatic or explcit) is then tested to see if it is defined.
The defined test avoids problems where line has a string value
that would be treated as false by perl e.g. "" or "0" with no trailing
newline. (This may seem like an odd thing to you, but you'll use the 
construct in almost every Perl script you write.) Anyway, the following 
lines are equivalent to each other:

    while (defined($_ = <STDIN>)) { print; }
    while ($_ = <STDIN>) { print; }
    while (<STDIN>) { print; }
    for (;<STDIN>;) { print; }
    print while defined($_ = <STDIN>);
    print while ($_ = <STDIN>);
    print while <STDIN>;

and this also behaves similarly, but avoids the use of $_ :

    while (my $line = <STDIN>) { print $line }    

If you really mean such values to terminate the loop they should be 
tested for explcitly:

    while (($_ = <STDIN>) ne '0') { ... }
    while (<STDIN>) { last unless $_; ... }

In other boolean contexts C<E<lt>I<filehandle>E<gt>> without explcit C<defined>
test or comparison will solicit a warning if C<-w> is in effect.

The filehandles STDIN, STDOUT, and STDERR are predefined.  (The
filehandles C<stdin>, C<stdout>, and C<stderr> will also work except in
packages, where they would be interpreted as local identifiers rather
than global.)  Additional filehandles may be created with the open()
function.  See L<perlfunc/open()> for details on this.

If a E<lt>FILEHANDLEE<gt> is used in a context that is looking for a list, a
list consisting of all the input lines is returned, one line per list
element.  It's easy to make a I<LARGE> data space this way, so use with
care.

The null filehandle E<lt>E<gt> is special and can be used to emulate the
behavior of B<sed> and B<awk>.  Input from E<lt>E<gt> comes either from
standard input, or from each file listed on the command line.  Here's
how it works: the first time E<lt>E<gt> is evaluated, the @ARGV array is
checked, and if it is null, C<$ARGV[0]> is set to "-", which when opened
gives you standard input.  The @ARGV array is then processed as a list
of filenames.  The loop

    while (<>) {
	...			# code for each line
    }

is equivalent to the following Perl-like pseudo code:

    unshift(@ARGV, '-') unless @ARGV;
    while ($ARGV = shift) {
	open(ARGV, $ARGV);
	while (<ARGV>) {
	    ...		# code for each line
	}
    }

except that it isn't so cumbersome to say, and will actually work.  It
really does shift array @ARGV and put the current filename into variable
$ARGV.  It also uses filehandle I<ARGV> internally--E<lt>E<gt> is just a
synonym for E<lt>ARGVE<gt>, which is magical.  (The pseudo code above
doesn't work because it treats E<lt>ARGVE<gt> as non-magical.)

You can modify @ARGV before the first E<lt>E<gt> as long as the array ends up
containing the list of filenames you really want.  Line numbers (C<$.>)
continue as if the input were one big happy file.  (But see example
under eof() for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead.  If
you want to pass switches into your script, you can use one of the
Getopts modules or put a loop on the front like this:

    while ($_ = $ARGV[0], /^-/) {
	shift;
        last if /^--$/;
	if (/^-D(.*)/) { $debug = $1 }
	if (/^-v/)     { $verbose++  }
	...		# other switches
    }
    while (<>) {
	...		# code for each line
    }

The E<lt>E<gt> symbol will return C<undef> for end-of-file only once.  
If you call it again after this it will assume you are processing another 
@ARGV list, and if you haven't set @ARGV, will input from STDIN.

If the string inside the angle brackets is a reference to a scalar
variable (e.g., E<lt>$fooE<gt>), then that variable contains the name of the
filehandle to input from, or a reference to the same.  For example:

    $fh = \*STDIN;
    $line = <$fh>;

If the string inside angle brackets is not a filehandle or a scalar
variable containing a filehandle name or reference, then it is interpreted
as a filename pattern to be globbed, and either a list of filenames or the
next filename in the list is returned, depending on context.  One level of
$ interpretation is done first, but you can't say C<E<lt>$fooE<gt>>
because that's an indirect filehandle as explained in the previous
paragraph.  (In older versions of Perl, programmers would insert curly
brackets to force interpretation as a filename glob: C<E<lt>${foo}E<gt>>.
These days, it's considered cleaner to call the internal function directly
as C<glob($foo)>, which is probably the right way to have done it in the
first place.)  Example:

    while (<*.c>) {
	chmod 0644, $_;
    }

is equivalent to

    open(FOO, "echo *.c | tr -s ' \t\r\f' '\\012\\012\\012\\012'|");
    while (<FOO>) {
	chop;
	chmod 0644, $_;
    }

In fact, it's currently implemented that way.  (Which means it will not
work on filenames with spaces in them unless you have csh(1) on your
machine.)  Of course, the shortest way to do the above is:

    chmod 0644, <*.c>;

Because globbing invokes a shell, it's often faster to call readdir() yourself
and do your own grep() on the filenames.  Furthermore, due to its current
implementation of using a shell, the glob() routine may get "Arg list too
long" errors (unless you've installed tcsh(1L) as F</bin/csh>).

A glob evaluates its (embedded) argument only when it is starting a new
list.  All values must be read before it will start over.  In a list
context this isn't important, because you automatically get them all
anyway.  In a scalar context, however, the operator returns the next value
each time it is called, or a C<undef> value if you've just run out. As
for filehandles an automatic C<defined> is generated when the glob
occurs in the test part of a C<while> or C<for> - because legal glob returns
(e.g. a file called F<0>) would otherwise terminate the loop.
Again, C<undef> is returned only once.  So if you're expecting a single value 
from a glob, it is much better to say

    ($file) = <blurch*>;

than

    $file = <blurch*>;

because the latter will alternate between returning a filename and
returning FALSE.

It you're trying to do variable interpolation, it's definitely better
to use the glob() function, because the older notation can cause people
to become confused with the indirect filehandle notation.

    @files = glob("$dir/*.[ch]");
    @files = glob($files[$i]);

=head2 Constant Folding

Like C, Perl does a certain amount of expression evaluation at
compile time, whenever it determines that all of the arguments to an
operator are static and have no side effects.  In particular, string
concatenation happens at compile time between literals that don't do
variable substitution.  Backslash interpretation also happens at
compile time.  You can say

    'Now is the time for all' . "\n" .
	'good men to come to.'

and this all reduces to one string internally.  Likewise, if
you say

    foreach $file (@filenames) {
	if (-s $file > 5 + 100 * 2**16) { ... }
    }

the compiler will precompute the number that
expression represents so that the interpreter
won't have to.

=head2 Bitwise String Operators

Bitstrings of any size may be manipulated by the bitwise operators
(C<~ | & ^>).

If the operands to a binary bitwise op are strings of different sizes,
B<or> and B<xor> ops will act as if the shorter operand had additional
zero bits on the right, while the B<and> op will act as if the longer
operand were truncated to the length of the shorter.

    # ASCII-based examples 
    print "j p \n" ^ " a h";        	# prints "JAPH\n"
    print "JA" | "  ph\n";          	# prints "japh\n"
    print "japh\nJunk" & '_____';   	# prints "JAPH\n";
    print 'p N$' ^ " E<H\n";		# prints "Perl\n";

If you are intending to manipulate bitstrings, you should be certain that
you're supplying bitstrings: If an operand is a number, that will imply
a B<numeric> bitwise operation. You may explicitly show which type of
operation you intend by using C<""> or C<0+>, as in the examples below.

    $foo =  150  |  105 ;	# yields 255  (0x96 | 0x69 is 0xFF)
    $foo = '150' |  105 ;	# yields 255
    $foo =  150  | '105';	# yields 255
    $foo = '150' | '105';	# yields string '155' (under ASCII)

    $baz = 0+$foo & 0+$bar;	# both ops explicitly numeric
    $biz = "$foo" ^ "$bar";	# both ops explicitly stringy

=head2 Integer Arithmetic

By default Perl assumes that it must do most of its arithmetic in
floating point.  But by saying

    use integer;

you may tell the compiler that it's okay to use integer operations
from here to the end of the enclosing BLOCK.  An inner BLOCK may
countermand this by saying

    no integer;

which lasts until the end of that BLOCK.

The bitwise operators ("&", "|", "^", "~", "<<", and ">>") always
produce integral results.  (But see also L<Bitwise String Operators>.)
However, C<use integer> still has meaning
for them.  By default, their results are interpreted as unsigned
integers.  However, if C<use integer> is in effect, their results are
interpreted as signed integers.  For example, C<~0> usually evaluates
to a large integral value.  However, C<use integer; ~0> is -1.

=head2 Floating-point Arithmetic

While C<use integer> provides integer-only arithmetic, there is no
similar ways to provide rounding or truncation at a certain number of
decimal places.  For rounding to a certain number of digits, sprintf()
or printf() is usually the easiest route.

The POSIX module (part of the standard perl distribution) implements
ceil(), floor(), and a number of other mathematical and trigonometric
functions.  The Math::Complex module (part of the standard perl
distribution) defines a number of mathematical functions that can also
work on real numbers.  Math::Complex not as efficient as POSIX, but
POSIX can't work with complex numbers.

Rounding in financial applications can have serious implications, and
the rounding method used should be specified precisely.  In these
cases, it probably pays not to trust whichever system rounding is
being used by Perl, but to instead implement the rounding function you
need yourself.