summaryrefslogtreecommitdiff
path: root/lib/Benchmark.pm
blob: ad04a754bbbab1b5dc8bebdc787e5b183db74eb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
package Benchmark;

use strict;


=head1 NAME

Benchmark - benchmark running times of Perl code

=head1 SYNOPSIS

    use Benchmark qw(:all) ;

    timethis ($count, "code");

    # Use Perl code in strings...
    timethese($count, {
	'Name1' => '...code1...',
	'Name2' => '...code2...',
    });

    # ... or use subroutine references.
    timethese($count, {
	'Name1' => sub { ...code1... },
	'Name2' => sub { ...code2... },
    });

    # cmpthese can be used both ways as well
    cmpthese($count, {
	'Name1' => '...code1...',
	'Name2' => '...code2...',
    });

    cmpthese($count, {
	'Name1' => sub { ...code1... },
	'Name2' => sub { ...code2... },
    });

    # ...or in two stages
    $results = timethese($count, 
        {
	    'Name1' => sub { ...code1... },
	    'Name2' => sub { ...code2... },
        },
	'none'
    );
    cmpthese( $results ) ;

    $t = timeit($count, '...other code...')
    print "$count loops of other code took:",timestr($t),"\n";

    $t = countit($time, '...other code...')
    $count = $t->iters ;
    print "$count loops of other code took:",timestr($t),"\n";

    # enable hires wallclock timing if possible
    use Benchmark ':hireswallclock';

=head1 DESCRIPTION

The Benchmark module encapsulates a number of routines to help you
figure out how long it takes to execute some code.

timethis - run a chunk of code several times

timethese - run several chunks of code several times

cmpthese - print results of timethese as a comparison chart

timeit - run a chunk of code and see how long it goes

countit - see how many times a chunk of code runs in a given time


=head2 Methods

=over 10

=item new

Returns the current time.   Example:

    use Benchmark;
    $t0 = new Benchmark;
    # ... your code here ...
    $t1 = new Benchmark;
    $td = timediff($t1, $t0);
    print "the code took:",timestr($td),"\n";

=item debug

Enables or disable debugging by setting the C<$Benchmark::Debug> flag:

    debug Benchmark 1;
    $t = timeit(10, ' 5 ** $Global ');
    debug Benchmark 0;

=item iters

Returns the number of iterations.

=back

=head2 Standard Exports

The following routines will be exported into your namespace
if you use the Benchmark module:

=over 10

=item timeit(COUNT, CODE)

Arguments: COUNT is the number of times to run the loop, and CODE is
the code to run.  CODE may be either a code reference or a string to
be eval'd; either way it will be run in the caller's package.

Returns: a Benchmark object.

=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )

Time COUNT iterations of CODE. CODE may be a string to eval or a
code reference; either way the CODE will run in the caller's package.
Results will be printed to STDOUT as TITLE followed by the times.
TITLE defaults to "timethis COUNT" if none is provided. STYLE
determines the format of the output, as described for timestr() below.

The COUNT can be zero or negative: this means the I<minimum number of
CPU seconds> to run.  A zero signifies the default of 3 seconds.  For
example to run at least for 10 seconds:

	timethis(-10, $code)

or to run two pieces of code tests for at least 3 seconds:

	timethese(0, { test1 => '...', test2 => '...'})

CPU seconds is, in UNIX terms, the user time plus the system time of
the process itself, as opposed to the real (wallclock) time and the
time spent by the child processes.  Less than 0.1 seconds is not
accepted (-0.01 as the count, for example, will cause a fatal runtime
exception).

Note that the CPU seconds is the B<minimum> time: CPU scheduling and
other operating system factors may complicate the attempt so that a
little bit more time is spent.  The benchmark output will, however,
also tell the number of C<$code> runs/second, which should be a more
interesting number than the actually spent seconds.

Returns a Benchmark object.

=item timethese ( COUNT, CODEHASHREF, [ STYLE ] )

The CODEHASHREF is a reference to a hash containing names as keys
and either a string to eval or a code reference for each value.
For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
call

	timethis(COUNT, VALUE, KEY, STYLE)

The routines are called in string comparison order of KEY.

The COUNT can be zero or negative, see timethis().

Returns a hash of Benchmark objects, keyed by name.

=item timediff ( T1, T2 )

Returns the difference between two Benchmark times as a Benchmark
object suitable for passing to timestr().

=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )

Returns a string that formats the times in the TIMEDIFF object in
the requested STYLE. TIMEDIFF is expected to be a Benchmark object
similar to that returned by timediff().

STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
each of the 5 times available ('wallclock' time, user time, system time,
user time of children, and system time of children). 'noc' shows all
except the two children times. 'nop' shows only wallclock and the
two children times. 'auto' (the default) will act as 'all' unless
the children times are both zero, in which case it acts as 'noc'.
'none' prevents output.

FORMAT is the L<printf(3)>-style format specifier (without the
leading '%') to use to print the times. It defaults to '5.2f'.

=back

=head2 Optional Exports

The following routines will be exported into your namespace
if you specifically ask that they be imported:

=over 10

=item clearcache ( COUNT )

Clear the cached time for COUNT rounds of the null loop.

=item clearallcache ( )

Clear all cached times.

=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )

=item cmpthese ( RESULTSHASHREF, [ STYLE ] )

Optionally calls timethese(), then outputs comparison chart.  This:

    cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;

outputs a chart like:

           Rate    b    a
    b 2831802/s   -- -61%
    a 7208959/s 155%   --

This chart is sorted from slowest to fastest, and shows the percent speed
difference between each pair of tests.

c<cmpthese> can also be passed the data structure that timethese() returns:

    $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
    cmpthese( $results );

in case you want to see both sets of results.

Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
above chart, including labels. This:

    my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" );

returns a data structure like:

    [
        [ '',       'Rate',   'b',    'a' ],
        [ 'b', '2885232/s',  '--', '-59%' ],
        [ 'a', '7099126/s', '146%',  '--' ],
    ]

B<NOTE>: This result value differs from previous versions, which returned
the C<timethese()> result structure.  If you want that, just use the two
statement C<timethese>...C<cmpthese> idiom shown above.

Incidently, note the variance in the result values between the two examples;
this is typical of benchmarking.  If this were a real benchmark, you would
probably want to run a lot more iterations.

=item countit(TIME, CODE)

Arguments: TIME is the minimum length of time to run CODE for, and CODE is
the code to run.  CODE may be either a code reference or a string to
be eval'd; either way it will be run in the caller's package.

TIME is I<not> negative.  countit() will run the loop many times to
calculate the speed of CODE before running it for TIME.  The actual
time run for will usually be greater than TIME due to system clock
resolution, so it's best to look at the number of iterations divided
by the times that you are concerned with, not just the iterations.

Returns: a Benchmark object.

=item disablecache ( )

Disable caching of timings for the null loop. This will force Benchmark
to recalculate these timings for each new piece of code timed.

=item enablecache ( )

Enable caching of timings for the null loop. The time taken for COUNT
rounds of the null loop will be calculated only once for each
different COUNT used.

=item timesum ( T1, T2 )

Returns the sum of two Benchmark times as a Benchmark object suitable
for passing to timestr().

=back

=head2 :hireswallclock

If the Time::HiRes module has been installed, you can specify the
special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
available, the tag will be silently ignored).  This tag will cause the
wallclock time to be measured in microseconds, instead of integer
seconds.  Note though that the speed computations are still conducted
in CPU time, not wallclock time.

=head1 NOTES

The data is stored as a list of values from the time and times
functions:

      ($real, $user, $system, $children_user, $children_system, $iters)

in seconds for the whole loop (not divided by the number of rounds).

The timing is done using time(3) and times(3).

Code is executed in the caller's package.

The time of the null loop (a loop with the same
number of rounds but empty loop body) is subtracted
from the time of the real loop.

The null loop times can be cached, the key being the
number of rounds. The caching can be controlled using
calls like these:

    clearcache($key);
    clearallcache();

    disablecache();
    enablecache();

Caching is off by default, as it can (usually slightly) decrease
accuracy and does not usually noticably affect runtimes.

=head1 EXAMPLES

For example,

    use Benchmark qw( cmpthese ) ;
    $x = 3;
    cmpthese( -5, {
        a => sub{$x*$x},
        b => sub{$x**2},
    } );

outputs something like this:

   Benchmark: running a, b, each for at least 5 CPU seconds...
          Rate    b    a
   b 1559428/s   -- -62%
   a 4152037/s 166%   --


while 

    use Benchmark qw( timethese cmpthese ) ;
    $x = 3;
    $r = timethese( -5, {
        a => sub{$x*$x},
        b => sub{$x**2},
    } );
    cmpthese $r;

outputs something like this:

    Benchmark: running a, b, each for at least 5 CPU seconds...
             a: 10 wallclock secs ( 5.14 usr +  0.13 sys =  5.27 CPU) @ 3835055.60/s (n=20210743)
             b:  5 wallclock secs ( 5.41 usr +  0.00 sys =  5.41 CPU) @ 1574944.92/s (n=8520452)
           Rate    b    a
    b 1574945/s   -- -59%
    a 3835056/s 144%   --


=head1 INHERITANCE

Benchmark inherits from no other class, except of course
for Exporter.

=head1 CAVEATS

Comparing eval'd strings with code references will give you
inaccurate results: a code reference will show a slightly slower
execution time than the equivalent eval'd string.

The real time timing is done using time(2) and
the granularity is therefore only one second.

Short tests may produce negative figures because perl
can appear to take longer to execute the empty loop
than a short test; try:

    timethis(100,'1');

The system time of the null loop might be slightly
more than the system time of the loop with the actual
code and therefore the difference might end up being E<lt> 0.

=head1 SEE ALSO

L<Devel::DProf> - a Perl code profiler

=head1 AUTHORS

Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>

=head1 MODIFICATION HISTORY

September 8th, 1994; by Tim Bunce.

March 28th, 1997; by Hugo van der Sanden: added support for code
references and the already documented 'debug' method; revamped
documentation.

April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
functionality.

September, 1999; by Barrie Slaymaker: math fixes and accuracy and 
efficiency tweaks.  Added cmpthese().  A result is now returned from 
timethese().  Exposed countit() (was runfor()).

December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
and return an empty string. If cmpthese is calling timethese, make it pass the
style in. (so that 'none' will suppress output). Make sub new dump its
debugging output to STDERR, to be consistent with everything else.
All bugs found while writing a regression test.

September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.

February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
statistics for children instead of parent when the style is 'nop'.

=cut

# evaluate something in a clean lexical environment
sub _doeval { no strict;  eval shift }

#
# put any lexicals at file scope AFTER here
#

use Carp;
use Exporter;

our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);

@ISA=qw(Exporter);
@EXPORT=qw(timeit timethis timethese timediff timestr);
@EXPORT_OK=qw(timesum cmpthese countit
	      clearcache clearallcache disablecache enablecache);
%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;

$VERSION = 1.07;

# --- ':hireswallclock' special handling

my $hirestime;

sub mytime () { time }

init();

sub BEGIN {
    if (eval 'require Time::HiRes') {
	import Time::HiRes qw(time);
	$hirestime = \&Time::HiRes::time;
    }
}

sub import {
    my $class = shift;
    if (grep { $_ eq ":hireswallclock" } @_) {
	@_ = grep { $_ ne ":hireswallclock" } @_;
	*mytime = $hirestime if defined $hirestime;
    }
    Benchmark->export_to_level(1, $class, @_);
}

our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
    %_Usage, %Cache, $Do_Cache);

sub init {
    $Debug = 0;
    $Min_Count = 4;
    $Min_CPU   = 0.4;
    $Default_Format = '5.2f';
    $Default_Style = 'auto';
    # The cache can cause a slight loss of sys time accuracy. If a
    # user does many tests (>10) with *very* large counts (>10000)
    # or works on a very slow machine the cache may be useful.
    disablecache();
    clearallcache();
}

sub debug { $Debug = ($_[1] != 0); }

sub usage { 
    my $calling_sub = (caller(1))[3];
    $calling_sub =~ s/^Benchmark:://;
    return $_Usage{$calling_sub} || '';
}

# The cache needs two branches: 's' for strings and 'c' for code.  The
# empty loop is different in these two cases.

$_Usage{clearcache} = <<'USAGE';
usage: clearcache($count);
USAGE

sub clearcache    { 
    die usage unless @_ == 1;
    delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"}; 
}

$_Usage{clearallcache} = <<'USAGE';
usage: clearallcache();
USAGE

sub clearallcache { 
    die usage if @_;
    %Cache = (); 
}

$_Usage{enablecache} = <<'USAGE';
usage: enablecache();
USAGE

sub enablecache   {
    die usage if @_;
    $Do_Cache = 1; 
}

$_Usage{disablecache} = <<'USAGE';
usage: disablecache();
USAGE

sub disablecache  {
    die usage if @_;
    $Do_Cache = 0; 
}


# --- Functions to process the 'time' data type

sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
	  print STDERR "new=@t\n" if $Debug;
	  bless \@t; }

sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps         ; }
sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]};         $cu+$cs ; }
sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
sub real  { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r              ; }
sub iters { $_[0]->[5] ; }


$_Usage{timediff} = <<'USAGE';
usage: $result_diff = timediff($result1, $result2);
USAGE

sub timediff {
    my($a, $b) = @_;

    die usage unless ref $a and ref $b;

    my @r;
    for (my $i=0; $i < @$a; ++$i) {
	push(@r, $a->[$i] - $b->[$i]);
    }
    bless \@r;
}

$_Usage{timesum} = <<'USAGE';
usage: $sum = timesum($result1, $result2);
USAGE

sub timesum {
    my($a, $b) = @_;

    die usage unless ref $a and ref $b;

    my @r;
    for (my $i=0; $i < @$a; ++$i) {
 	push(@r, $a->[$i] + $b->[$i]);
    }
    bless \@r;
}


$_Usage{timestr} = <<'USAGE';
usage: $formatted_result = timestr($result1);
USAGE

sub timestr {
    my($tr, $style, $f) = @_;

    die usage unless ref $tr;

    my @t = @$tr;
    warn "bad time value (@t)" unless @t==6;
    my($r, $pu, $ps, $cu, $cs, $n) = @t;
    my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
    $f = $Default_Format unless defined $f;
    # format a time in the required style, other formats may be added here
    $style ||= $Default_Style;
    return '' if $style eq 'none';
    $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
    my $s = "@t $style"; # default for unknown style
    my $w = $hirestime ? "%2g" : "%2d";
    $s=sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
			    $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
    $s=sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
			    $r,$pu,$ps,$pt) if $style eq 'noc';
    $s=sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
			    $r,$cu,$cs,$ct) if $style eq 'nop';
    $s .= sprintf(" @ %$f/s (n=$n)", $n / ( $style eq 'nop' ? $cu + $cs : $pu + $ps ))
	if $n && ($style eq 'nop' ? $cu+$cs : $pu+$ps);
    $s;
}

sub timedebug {
    my($msg, $t) = @_;
    print STDERR "$msg",timestr($t),"\n" if $Debug;
}

# --- Functions implementing low-level support for timing loops

$_Usage{runloop} = <<'USAGE';
usage: runloop($number, [$string | $coderef])
USAGE

sub runloop {
    my($n, $c) = @_;

    $n+=0; # force numeric now, so garbage won't creep into the eval
    croak "negative loopcount $n" if $n<0;
    confess usage unless defined $c;
    my($t0, $t1, $td); # before, after, difference

    # find package of caller so we can execute code there
    my($curpack) = caller(0);
    my($i, $pack)= 0;
    while (($pack) = caller(++$i)) {
	last if $pack ne $curpack;
    }

    my ($subcode, $subref);
    if (ref $c eq 'CODE') {
	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
        $subref  = eval $subcode;
    }
    else {
	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
        $subref  = _doeval($subcode);
    }
    croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
    print STDERR "runloop $n '$subcode'\n" if $Debug;

    # Wait for the user timer to tick.  This makes the error range more like 
    # -0.01, +0.  If we don't wait, then it's more like -0.01, +0.01.  This
    # may not seem important, but it significantly reduces the chances of
    # getting a too low initial $n in the initial, 'find the minimum' loop
    # in &countit.  This, in turn, can reduce the number of calls to
    # &runloop a lot, and thus reduce additive errors.
    my $tbase = Benchmark->new(0)->[1];
    while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ;
    $subref->();
    $t1 = Benchmark->new($n);
    $td = &timediff($t1, $t0);
    timedebug("runloop:",$td);
    $td;
}

$_Usage{timeit} = <<'USAGE';
usage: $result = timeit($count, 'code' );        or
       $result = timeit($count, sub { code } );
USAGE

sub timeit {
    my($n, $code) = @_;
    my($wn, $wc, $wd);

    die usage unless defined $code and
                     (!ref $code or ref $code eq 'CODE');

    printf STDERR "timeit $n $code\n" if $Debug;
    my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
    if ($Do_Cache && exists $Cache{$cache_key} ) {
	$wn = $Cache{$cache_key};
    } else {
	$wn = &runloop($n, ref( $code ) ? sub { } : '' );
	# Can't let our baseline have any iterations, or they get subtracted
	# out of the result.
	$wn->[5] = 0;
	$Cache{$cache_key} = $wn;
    }

    $wc = &runloop($n, $code);

    $wd = timediff($wc, $wn);
    timedebug("timeit: ",$wc);
    timedebug("      - ",$wn);
    timedebug("      = ",$wd);

    $wd;
}


my $default_for = 3;
my $min_for     = 0.1;


$_Usage{countit} = <<'USAGE';
usage: $result = countit($time, 'code' );        or
       $result = countit($time, sub { code } );
USAGE

sub countit {
    my ( $tmax, $code ) = @_;

    die usage unless @_;

    if ( not defined $tmax or $tmax == 0 ) {
	$tmax = $default_for;
    } elsif ( $tmax < 0 ) {
	$tmax = -$tmax;
    }

    die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
	if $tmax < $min_for;

    my ($n, $tc);

    # First find the minimum $n that gives a significant timing.
    for ($n = 1; ; $n *= 2 ) {
	my $td = timeit($n, $code);
	$tc = $td->[1] + $td->[2];
	last if $tc > 0.1;
    }

    my $nmin = $n;

    # Get $n high enough that we can guess the final $n with some accuracy.
    my $tpra = 0.1 * $tmax; # Target/time practice.
    while ( $tc < $tpra ) {
	# The 5% fudge is to keep us from iterating again all
	# that often (this speeds overall responsiveness when $tmax is big
	# and we guess a little low).  This does not noticably affect 
	# accuracy since we're not couting these times.
	$n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
	my $td = timeit($n, $code);
	my $new_tc = $td->[1] + $td->[2];
        # Make sure we are making progress.
        $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
    }

    # Now, do the 'for real' timing(s), repeating until we exceed
    # the max.
    my $ntot  = 0;
    my $rtot  = 0;
    my $utot  = 0.0;
    my $stot  = 0.0;
    my $cutot = 0.0;
    my $cstot = 0.0;
    my $ttot  = 0.0;

    # The 5% fudge is because $n is often a few % low even for routines
    # with stable times and avoiding extra timeit()s is nice for
    # accuracy's sake.
    $n = int( $n * ( 1.05 * $tmax / $tc ) );

    while () {
	my $td = timeit($n, $code);
	$ntot  += $n;
	$rtot  += $td->[0];
	$utot  += $td->[1];
	$stot  += $td->[2];
	$cutot += $td->[3];
	$cstot += $td->[4];
	$ttot = $utot + $stot;
	last if $ttot >= $tmax;

        $ttot = 0.01 if $ttot < 0.01;
	my $r = $tmax / $ttot - 1; # Linear approximation.
	$n = int( $r * $ntot );
	$n = $nmin if $n < $nmin;
    }

    return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
}

# --- Functions implementing high-level time-then-print utilities

sub n_to_for {
    my $n = shift;
    return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
}

$_Usage{timethis} = <<'USAGE';
usage: $result = timethis($time, 'code' );        or
       $result = timethis($time, sub { code } );
USAGE

sub timethis{
    my($n, $code, $title, $style) = @_;
    my($t, $forn);

    die usage unless defined $code and
                     (!ref $code or ref $code eq 'CODE');

    if ( $n > 0 ) {
	croak "non-integer loopcount $n, stopped" if int($n)<$n;
	$t = timeit($n, $code);
	$title = "timethis $n" unless defined $title;
    } else {
	my $fort  = n_to_for( $n );
	$t     = countit( $fort, $code );
	$title = "timethis for $fort" unless defined $title;
	$forn  = $t->[-1];
    }
    local $| = 1;
    $style = "" unless defined $style;
    printf("%10s: ", $title) unless $style eq 'none';
    print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';

    $n = $forn if defined $forn;

    # A conservative warning to spot very silly tests.
    # Don't assume that your benchmark is ok simply because
    # you don't get this warning!
    print "            (warning: too few iterations for a reliable count)\n"
	if     $n < $Min_Count
	    || ($t->real < 1 && $n < 1000)
	    || $t->cpu_a < $Min_CPU;
    $t;
}


$_Usage{timethese} = <<'USAGE';
usage: timethese($count, { Name1 => 'code1', ... });        or
       timethese($count, { Name1 => sub { code1 }, ... });
USAGE

sub timethese{
    my($n, $alt, $style) = @_;
    die usage unless ref $alt eq 'HASH';

    my @names = sort keys %$alt;
    $style = "" unless defined $style;
    print "Benchmark: " unless $style eq 'none';
    if ( $n > 0 ) {
	croak "non-integer loopcount $n, stopped" if int($n)<$n;
	print "timing $n iterations of" unless $style eq 'none';
    } else {
	print "running" unless $style eq 'none';
    }
    print " ", join(', ',@names) unless $style eq 'none';
    unless ( $n > 0 ) {
	my $for = n_to_for( $n );
	print ", each" if $n > 1 && $style ne 'none';
	print " for at least $for CPU seconds" unless $style eq 'none';
    }
    print "...\n" unless $style eq 'none';

    # we could save the results in an array and produce a summary here
    # sum, min, max, avg etc etc
    my %results;
    foreach my $name (@names) {
        $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
    }

    return \%results;
}


$_Usage{cmpthese} = <<'USAGE';
usage: cmpthese($count, { Name1 => 'code1', ... });        or
       cmpthese($count, { Name1 => sub { code1 }, ... });  or
       cmpthese($result, $style);
USAGE

sub cmpthese{
    my ($results, $style);

    if( ref $_[0] ) {
        ($results, $style) = @_;
    }
    else {
        my($count, $code) = @_[0,1];
        $style = $_[2] if defined $_[2];

        die usage unless ref $code eq 'HASH';

        $results = timethese($count, $code, ($style || "none"));
    }

    $style = "" unless defined $style;

    # Flatten in to an array of arrays with the name as the first field
    my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;

    for (@vals) {
	# The epsilon fudge here is to prevent div by 0.  Since clock
	# resolutions are much larger, it's below the noise floor.
	my $rate = $_->[6] / (( $style eq 'nop' ? $_->[4] + $_->[5]
						: $_->[2] + $_->[3]) + 0.000000000000001 );
	$_->[7] = $rate;
    }

    # Sort by rate
    @vals = sort { $a->[7] <=> $b->[7] } @vals;

    # If more than half of the rates are greater than one...
    my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;

    my @rows;
    my @col_widths;

    my @top_row = ( 
        '', 
	$display_as_rate ? 'Rate' : 's/iter', 
	map { $_->[0] } @vals 
    );

    push @rows, \@top_row;
    @col_widths = map { length( $_ ) } @top_row;

    # Build the data rows
    # We leave the last column in even though it never has any data.  Perhaps
    # it should go away.  Also, perhaps a style for a single column of
    # percentages might be nice.
    for my $row_val ( @vals ) {
	my @row;

        # Column 0 = test name
	push @row, $row_val->[0];
	$col_widths[0] = length( $row_val->[0] )
	    if length( $row_val->[0] ) > $col_widths[0];

        # Column 1 = performance
	my $row_rate = $row_val->[7];

	# We assume that we'll never get a 0 rate.
	my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;

	# Only give a few decimal places before switching to sci. notation,
	# since the results aren't usually that accurate anyway.
	my $format = 
	   $rate >= 100 ? 
	       "%0.0f" : 
	   $rate >= 10 ?
	       "%0.1f" :
	   $rate >= 1 ?
	       "%0.2f" :
	   $rate >= 0.1 ?
	       "%0.3f" :
	       "%0.2e";

	$format .= "/s"
	    if $display_as_rate;

	my $formatted_rate = sprintf( $format, $rate );
	push @row, $formatted_rate;
	$col_widths[1] = length( $formatted_rate )
	    if length( $formatted_rate ) > $col_widths[1];

        # Columns 2..N = performance ratios
	my $skip_rest = 0;
	for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
	    my $col_val = $vals[$col_num];
	    my $out;
	    if ( $skip_rest ) {
		$out = '';
	    }
	    elsif ( $col_val->[0] eq $row_val->[0] ) {
		$out = "--";
		# $skip_rest = 1;
	    }
	    else {
		my $col_rate = $col_val->[7];
		$out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
	    }
	    push @row, $out;
	    $col_widths[$col_num+2] = length( $out )
		if length( $out ) > $col_widths[$col_num+2];

	    # A little wierdness to set the first column width properly
	    $col_widths[$col_num+2] = length( $col_val->[0] )
		if length( $col_val->[0] ) > $col_widths[$col_num+2];
	}
	push @rows, \@row;
    }

    return \@rows if $style eq "none";

    # Equalize column widths in the chart as much as possible without
    # exceeding 80 characters.  This does not use or affect cols 0 or 1.
    my @sorted_width_refs = 
       sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
    my $max_width = ${$sorted_width_refs[-1]};

    my $total = @col_widths - 1 ;
    for ( @col_widths ) { $total += $_ }

    STRETCHER:
    while ( $total < 80 ) {
	my $min_width = ${$sorted_width_refs[0]};
	last
	   if $min_width == $max_width;
	for ( @sorted_width_refs ) {
	    last 
		if $$_ > $min_width;
	    ++$$_;
	    ++$total;
	    last STRETCHER
		if $total >= 80;
	}
    }

    # Dump the output
    my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
    substr( $format, 1, 0 ) = '-';
    for ( @rows ) {
	printf $format, @$_;
    }

    return \@rows ;
}


1;