summaryrefslogtreecommitdiff
path: root/silk/silk_burg_modified.c
blob: 2d525b22fcce5f5ba4f0afc90af2a13a83144297 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "silk_SigProc_FIX.h"

#define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
#define MAX_NB_SUBFR                4

#define QA                          25
#define N_BITS_HEAD_ROOM            2
#define MIN_RSHIFTS                 -16
#define MAX_RSHIFTS                 (32 - QA)

/* Compute reflection coefficients from input signal */
void silk_burg_modified(
    opus_int32       *res_nrg,           /* O    residual energy                                                 */
    opus_int         *res_nrg_Q,         /* O    residual energy Q value                                         */
    opus_int32       A_Q16[],            /* O    prediction coefficients (length order)                          */
    const opus_int16 x[],                /* I    input signal, length: nb_subfr * ( D + subfr_length )           */
    const opus_int   subfr_length,       /* I    input signal subframe length (including D preceeding samples)   */
    const opus_int   nb_subfr,           /* I    number of subframes stacked in x                                */
    const opus_int32 WhiteNoiseFrac_Q32, /* I    fraction added to zero-lag autocorrelation                      */
    const opus_int   D                   /* I    order                                                           */
)
{
    opus_int         k, n, s, lz, rshifts, rshifts_extra;
    opus_int32       C0, num, nrg, rc_Q31, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
    const opus_int16 *x_ptr;

    opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
    opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
    opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];

    opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
    opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];

    SKP_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
    SKP_assert( nb_subfr <= MAX_NB_SUBFR );


    /* Compute autocorrelations, added over subframes */
    silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
    if( rshifts > MAX_RSHIFTS ) {
        C0 = SKP_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
        SKP_assert( C0 > 0 );
        rshifts = MAX_RSHIFTS;
    } else {
        lz = silk_CLZ32( C0 ) - 1;
        rshifts_extra = N_BITS_HEAD_ROOM - lz;
        if( rshifts_extra > 0 ) {
            rshifts_extra = SKP_min( rshifts_extra, MAX_RSHIFTS - rshifts );
            C0 = SKP_RSHIFT32( C0, rshifts_extra );
        } else {
            rshifts_extra = SKP_max( rshifts_extra, MIN_RSHIFTS - rshifts );
            C0 = SKP_LSHIFT32( C0, -rshifts_extra );
        }
        rshifts += rshifts_extra;
    }
    SKP_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
    if( rshifts > 0 ) {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += (opus_int32)SKP_RSHIFT64(
                    silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
            }
        }
    } else {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += SKP_LSHIFT32(
                    silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts );
            }
        }
    }
    SKP_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + SKP_SMMUL( WhiteNoiseFrac_Q32, C0 ) + 1;         /* Q(-rshifts)*/

    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        if( rshifts > -2 ) {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -SKP_LSHIFT32( (opus_int32)x_ptr[ n ],                    16 - rshifts );      /* Q(16-rshifts)*/
                x2  = -SKP_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts );      /* Q(16-rshifts)*/
                tmp1 = SKP_LSHIFT32( (opus_int32)x_ptr[ n ],                    QA - 16 );           /* Q(QA-16)*/
                tmp2 = SKP_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 );           /* Q(QA-16)*/
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = SKP_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts )*/
                    C_last_row[ k ]  = SKP_SMLAWB( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/
                    Atmp_QA = Af_QA[ k ];
                    tmp1 = SKP_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ]            );              /* Q(QA-16)*/
                    tmp2 = SKP_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] );              /* Q(QA-16)*/
                }
                tmp1 = SKP_LSHIFT32( -tmp1, 32 - QA - rshifts );                                    /* Q(16-rshifts)*/
                tmp2 = SKP_LSHIFT32( -tmp2, 32 - QA - rshifts );                                    /* Q(16-rshifts)*/
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = SKP_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ]                    );     /* Q( -rshift )*/
                    CAb[ k ] = SKP_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] );     /* Q( -rshift )*/
                }
            }
        } else {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -SKP_LSHIFT32( (opus_int32)x_ptr[ n ],                    -rshifts );          /* Q( -rshifts )*/
                x2  = -SKP_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts );          /* Q( -rshifts )*/
                tmp1 = SKP_LSHIFT32( (opus_int32)x_ptr[ n ],                    17 );                /* Q17*/
                tmp2 = SKP_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 );                /* Q17*/
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = SKP_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts )*/
                    C_last_row[ k ]  = SKP_MLA( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/
                    Atmp1 = SKP_RSHIFT_ROUND( Af_QA[ k ], QA - 17 );                                /* Q17*/
                    tmp1 = SKP_MLA( tmp1, x_ptr[ n - k - 1 ],            Atmp1 );                   /* Q17*/
                    tmp2 = SKP_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 );                   /* Q17*/
                }
                tmp1 = -tmp1;                                                                       /* Q17*/
                tmp2 = -tmp2;                                                                       /* Q17*/
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = SKP_SMLAWW( CAf[ k ], tmp1,
                        SKP_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) );                  /* Q( -rshift )*/
                    CAb[ k ] = SKP_SMLAWW( CAb[ k ], tmp2,
                        SKP_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) );/* Q( -rshift )*/
                }
            }
        }

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        tmp1 = C_first_row[ n ];                                                            /* Q( -rshifts )*/
        tmp2 = C_last_row[ n ];                                                             /* Q( -rshifts )*/
        num  = 0;                                                                           /* Q( -rshifts )*/
        nrg  = SKP_ADD32( CAb[ 0 ], CAf[ 0 ] );                                             /* Q( 1-rshifts )*/
        for( k = 0; k < n; k++ ) {
            Atmp_QA = Af_QA[ k ];
            lz = silk_CLZ32( SKP_abs( Atmp_QA ) ) - 1;
            lz = SKP_min( 32 - QA, lz );
            Atmp1 = SKP_LSHIFT32( Atmp_QA, lz );                                            /* Q( QA + lz )*/

            tmp1 = SKP_ADD_LSHIFT32( tmp1, SKP_SMMUL( C_last_row[  n - k - 1 ], Atmp1 ), 32 - QA - lz );    /* Q( -rshifts )*/
            tmp2 = SKP_ADD_LSHIFT32( tmp2, SKP_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz );    /* Q( -rshifts )*/
            num  = SKP_ADD_LSHIFT32( num,  SKP_SMMUL( CAb[ n - k ],             Atmp1 ), 32 - QA - lz );    /* Q( -rshifts )*/
            nrg  = SKP_ADD_LSHIFT32( nrg,  SKP_SMMUL( SKP_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
                                                                                Atmp1 ), 32 - QA - lz );    /* Q( 1-rshifts )*/
        }
        CAf[ n + 1 ] = tmp1;                                                                /* Q( -rshifts )*/
        CAb[ n + 1 ] = tmp2;                                                                /* Q( -rshifts )*/
        num = SKP_ADD32( num, tmp2 );                                                       /* Q( -rshifts )*/
        num = SKP_LSHIFT32( -num, 1 );                                                      /* Q( 1-rshifts )*/

        /* Calculate the next order reflection (parcor) coefficient */
        if( SKP_abs( num ) < nrg ) {
            rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
        } else {
            /* Negative energy or ratio too high; set remaining coefficients to zero and exit loop */
            SKP_memset( &Af_QA[ n ], 0, ( D - n ) * sizeof( opus_int32 ) );
            SKP_assert( 0 );
            break;
        }

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af_QA[ k ];                                                              /* QA*/
            tmp2 = Af_QA[ n - k - 1 ];                                                      /* QA*/
            Af_QA[ k ]         = SKP_ADD_LSHIFT32( tmp1, SKP_SMMUL( tmp2, rc_Q31 ), 1 );    /* QA*/
            Af_QA[ n - k - 1 ] = SKP_ADD_LSHIFT32( tmp2, SKP_SMMUL( tmp1, rc_Q31 ), 1 );    /* QA*/
        }
        Af_QA[ n ] = SKP_RSHIFT32( rc_Q31, 31 - QA );                                       /* QA*/

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];                                                                /* Q( -rshifts )*/
            tmp2 = CAb[ n - k + 1 ];                                                        /* Q( -rshifts )*/
            CAf[ k ]         = SKP_ADD_LSHIFT32( tmp1, SKP_SMMUL( tmp2, rc_Q31 ), 1 );      /* Q( -rshifts )*/
            CAb[ n - k + 1 ] = SKP_ADD_LSHIFT32( tmp2, SKP_SMMUL( tmp1, rc_Q31 ), 1 );      /* Q( -rshifts )*/
        }
    }

    /* Return residual energy */
    nrg  = CAf[ 0 ];                                                                        /* Q( -rshifts )*/
    tmp1 = 1 << 16;                                                                         /* Q16*/
    for( k = 0; k < D; k++ ) {
        Atmp1 = SKP_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );                                    /* Q16*/
        nrg  = SKP_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 );                                      /* Q( -rshifts )*/
        tmp1 = SKP_SMLAWW( tmp1, Atmp1, Atmp1 );                                            /* Q16*/
        A_Q16[ k ] = -Atmp1;
    }
    *res_nrg = SKP_SMLAWW( nrg, SKP_SMMUL( WhiteNoiseFrac_Q32, C0 ), -tmp1 );               /* Q( -rshifts )*/
    *res_nrg_Q = -rshifts;
}