1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
|
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE rfc SYSTEM 'rfc2629.dtd'>
<?rfc toc="yes" symrefs="yes" ?>
<rfc ipr="trust200902" category="std" docName="draft-ietf-codec-opus-11">
<front>
<title abbrev="Interactive Audio Codec">Definition of the Opus Audio Codec</title>
<author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
<organization>Mozilla Corporation</organization>
<address>
<postal>
<street>650 Castro Street</street>
<city>Mountain View</city>
<region>CA</region>
<code>94041</code>
<country>USA</country>
</postal>
<phone>+1 650 903-0800</phone>
<email>jmvalin@jmvalin.ca</email>
</address>
</author>
<author initials="K." surname="Vos" fullname="Koen Vos">
<organization>Skype Technologies S.A.</organization>
<address>
<postal>
<street>Soder Malarstrand 43</street>
<city>Stockholm</city>
<region></region>
<code>11825</code>
<country>SE</country>
</postal>
<phone>+46 73 085 7619</phone>
<email>koen.vos@skype.net</email>
</address>
</author>
<author initials="T." surname="Terriberry" fullname="Timothy B. Terriberry">
<organization>Mozilla Corporation</organization>
<address>
<postal>
<street>650 Castro Street</street>
<city>Mountain View</city>
<region>CA</region>
<code>94041</code>
<country>USA</country>
</postal>
<phone>+1 650 903-0800</phone>
<email>tterriberry@mozilla.com</email>
</address>
</author>
<date day="17" month="February" year="2012" />
<area>General</area>
<workgroup></workgroup>
<abstract>
<t>
This document defines the Opus interactive speech and audio codec.
Opus is designed to handle a wide range of interactive audio applications,
including Voice over IP, videoconferencing, in-game chat, and even live,
distributed music performances.
It scales from low bitrate narrowband speech at 6 kb/s to very high quality
stereo music at 510 kb/s.
Opus uses both linear prediction (LP) and the Modified Discrete Cosine
Transform (MDCT) to achieve good compression of both speech and music.
</t>
</abstract>
</front>
<middle>
<section anchor="introduction" title="Introduction">
<t>
The Opus codec is a real-time interactive audio codec designed to meet the requirements
described in <xref target="requirements"></xref>.
It is composed of a linear
prediction (LP)-based <xref target="LPC"/> layer and a Modified Discrete Cosine Transform
(MDCT)-based <xref target="MDCT"/> layer.
The main idea behind using two layers is that in speech, linear prediction
techniques (such as CELP) code low frequencies more efficiently than transform
(e.g., MDCT) domain techniques, while the situation is reversed for music and
higher speech frequencies.
Thus a codec with both layers available can operate over a wider range than
either one alone and, by combining them, achieve better quality than either
one individually.
</t>
<t>
The primary normative part of this specification is provided by the source code
in <xref target="ref-implementation"></xref>.
Only the decoder portion of this software is normative, though a
significant amount of code is shared by both the encoder and decoder.
<xref target="conformance"/> provides a decoder conformance test.
The decoder contains a great deal of integer and fixed-point arithmetic which
must be performed exactly, including all rounding considerations, so any
useful specification requires domain-specific symbolic language to adequately
define these operations.
Additionally, any
conflict between the symbolic representation and the included reference
implementation must be resolved. For the practical reasons of compatibility and
testability it would be advantageous to give the reference implementation
priority in any disagreement. The C language is also one of the most
widely understood human-readable symbolic representations for machine
behavior.
For these reasons this RFC uses the reference implementation as the sole
symbolic representation of the codec.
</t>
<t>While the symbolic representation is unambiguous and complete it is not
always the easiest way to understand the codec's operation. For this reason
this document also describes significant parts of the codec in English and
takes the opportunity to explain the rationale behind many of the more
surprising elements of the design. These descriptions are intended to be
accurate and informative, but the limitations of common English sometimes
result in ambiguity, so it is expected that the reader will always read
them alongside the symbolic representation. Numerous references to the
implementation are provided for this purpose. The descriptions sometimes
differ from the reference in ordering or through mathematical simplification
wherever such deviation makes an explanation easier to understand.
For example, the right shift and left shift operations in the reference
implementation are often described using division and multiplication in the text.
In general, the text is focused on the "what" and "why" while the symbolic
representation most clearly provides the "how".
</t>
<section anchor="notation" title="Notation and Conventions">
<t>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 <xref target="rfc2119"></xref>.
</t>
<t>
Even when using floating-point, various operations in the codec require
bit-exact fixed-point behavior.
The notation "Q<n>", where n is an integer, denotes the number of binary
digits to the right of the decimal point in a fixed-point number.
For example, a signed Q14 value in a 16-bit word can represent values from
-2.0 to 1.99993896484375, inclusive.
This notation is for informational purposes only.
Arithmetic, when described, always operates on the underlying integer.
E.g., the text will explicitly indicate any shifts required after a
multiplication.
</t>
<t>
Expressions, where included in the text, follow C operator rules and
precedence, with the exception that the syntax "x**y" indicates x raised to
the power y.
The text also makes use of the following functions:
</t>
<section anchor="min" toc="exclude" title="min(x,y)">
<t>
The smallest of two values x and y.
</t>
</section>
<section anchor="max" toc="exclude" title="max(x,y)">
<t>
The largest of two values x and y.
</t>
</section>
<section anchor="clamp" toc="exclude" title="clamp(lo,x,hi)">
<figure align="center">
<artwork align="center"><![CDATA[
clamp(lo,x,hi) = max(lo,min(x,hi))
]]></artwork>
</figure>
<t>
With this definition, if lo > hi, the lower bound is the one that
is enforced.
</t>
</section>
<section anchor="sign" toc="exclude" title="sign(x)">
<t>
The sign of x, i.e.,
<figure align="center">
<artwork align="center"><![CDATA[
( -1, x < 0 ,
sign(x) = < 0, x == 0 ,
( 1, x > 0 .
]]></artwork>
</figure>
</t>
</section>
<section anchor="log2" toc="exclude" title="log2(f)">
<t>
The base-two logarithm of f.
</t>
</section>
<section anchor="ilog" toc="exclude" title="ilog(n)">
<t>
The minimum number of bits required to store a positive integer n in two's
complement notation, or 0 for a non-positive integer n.
<figure align="center">
<artwork align="center"><![CDATA[
( 0, n <= 0,
ilog(n) = <
( floor(log2(n))+1, n > 0
]]></artwork>
</figure>
Examples:
<list style="symbols">
<t>ilog(-1) = 0</t>
<t>ilog(0) = 0</t>
<t>ilog(1) = 1</t>
<t>ilog(2) = 2</t>
<t>ilog(3) = 2</t>
<t>ilog(4) = 3</t>
<t>ilog(7) = 3</t>
</list>
</t>
</section>
</section>
</section>
<section anchor="overview" title="Opus Codec Overview">
<t>
The Opus codec scales from 6 kb/s narrowband mono speech to 510 kb/s
fullband stereo music, with algorithmic delays ranging from 5 ms to
65.2 ms.
At any given time, either the LP layer, the MDCT layer, or both, may be active.
It can seamlessly switch between all of its various operating modes, giving it
a great deal of flexibility to adapt to varying content and network
conditions without renegotiating the current session.
The codec allows input and output of various audio bandwidths, defined as
follows:
</t>
<texttable anchor="audio-bandwidth">
<ttcol>Abbreviation</ttcol>
<ttcol align="right">Audio Bandwidth</ttcol>
<ttcol align="right">Sample Rate (Effective)</ttcol>
<c>NB (narrowband)</c> <c>4 kHz</c> <c>8 kHz</c>
<c>MB (medium-band)</c> <c>6 kHz</c> <c>12 kHz</c>
<c>WB (wideband)</c> <c>8 kHz</c> <c>16 kHz</c>
<c>SWB (super-wideband)</c> <c>12 kHz</c> <c>24 kHz</c>
<c>FB (fullband)</c> <c>20 kHz (*)</c> <c>48 kHz</c>
</texttable>
<t>
(*) Although the sampling theorem allows a bandwidth as large as half the
sampling rate, Opus never codes audio above 20 kHz, as that is the
generally accepted upper limit of human hearing.
</t>
<t>
Opus defines super-wideband (SWB) with an effective sample rate of 24 kHz,
unlike some other audio coding standards that use 32 kHz.
This was chosen for a number of reasons.
The band layout in the MDCT layer naturally allows skipping coefficients for
frequencies over 12 kHz, but does not allow cleanly dropping just those
frequencies over 16 kHz.
A sample rate of 24 kHz also makes resampling in the MDCT layer easier,
as 24 evenly divides 48, and when 24 kHz is sufficient, it can save
computation in other processing, such as Acoustic Echo Cancellation (AEC).
Experimental changes to the band layout to allow a 16 kHz cutoff
(32 kHz effective sample rate) showed potential quality degradations at
other sample rates, and at typical bitrates the number of bits saved by using
such a cutoff instead of coding in fullband (FB) mode is very small.
Therefore, if an application wishes to process a signal sampled at 32 kHz,
it should just use FB.
</t>
<t>
The LP layer is based on the SILK codec
<xref target="SILK"></xref>.
It supports NB, MB, or WB audio and frame sizes from 10 ms to 60 ms,
and requires an additional 5 ms look-ahead for noise shaping estimation.
A small additional delay (up to 1.5 ms) may be required for sampling rate
conversion.
Like Vorbis and many other modern codecs, SILK is inherently designed for
variable-bitrate (VBR) coding, though the encoder can also produce
constant-bitrate (CBR) streams.
The version of SILK used in Opus is substantially modified from, and not
compatible with, the stand-alone SILK codec previously deployed by Skype.
This document does not serve to define that format, but those interested in the
original SILK codec should see <xref target="SILK"/> instead.
</t>
<t>
The MDCT layer is based on the CELT codec <xref target="CELT"></xref>.
It supports NB, WB, SWB, or FB audio and frame sizes from 2.5 ms to
20 ms, and requires an additional 2.5 ms look-ahead due to the
overlapping MDCT windows.
The CELT codec is inherently designed for CBR coding, but unlike many CBR
codecs it is not limited to a set of predetermined rates.
It internally allocates bits to exactly fill any given target budget, and an
encoder can produce a VBR stream by varying the target on a per-frame basis.
The MDCT layer is not used for speech when the audio bandwidth is WB or less,
as it is not useful there.
On the other hand, non-speech signals are not always adequately coded using
linear prediction, so for music only the MDCT layer should be used.
</t>
<t>
A "Hybrid" mode allows the use of both layers simultaneously with a frame size
of 10 or 20 ms and a SWB or FB audio bandwidth.
Each frame is split into a low frequency signal and a high frequency signal,
with a cutoff of 8 kHz.
The LP layer then codes the low frequency signal, followed by the MDCT layer
coding the high frequency signal.
In the MDCT layer, all bands below 8 kHz are discarded, so there is no
coding redundancy between the two layers.
</t>
<t>
The sample rate (in contrast to the actual audio bandwidth) can be chosen
independently on the encoder and decoder side, e.g., a fullband signal can be
decoded as wideband, or vice versa.
This approach ensures a sender and receiver can always interoperate, regardless
of the capabilities of their actual audio hardware.
Internally, the LP layer always operates at a sample rate of twice the audio
bandwidth, up to a maximum of 16 kHz, which it continues to use for SWB
and FB.
The decoder simply resamples its output to support different sample rates.
The MDCT layer always operates internally at a sample rate of 48 kHz.
Since all the supported sample rates evenly divide this rate, and since the
the decoder may easily zero out the high frequency portion of the spectrum in
the frequency domain, it can simply decimate the MDCT layer output to achieve
the other supported sample rates very cheaply.
</t>
<t>
After conversion to the common, desired output sample rate, the decoder simply
adds the output from the two layers together.
To compensate for the different look-ahead required by each layer, the CELT
encoder input is delayed by an additional 2.7 ms.
This ensures that low frequencies and high frequencies arrive at the same time.
This extra delay may be reduced by an encoder by using less look-ahead for noise
shaping or using a simpler resampler in the LP layer, but this will reduce
quality.
However, the base 2.5 ms look-ahead in the CELT layer cannot be reduced in
the encoder because it is needed for the MDCT overlap, whose size is fixed by
the decoder.
</t>
<t>
Both layers use the same entropy coder, avoiding any waste from "padding bits"
between them.
The hybrid approach makes it easy to support both CBR and VBR coding.
Although the LP layer is VBR, the bit allocation of the MDCT layer can produce
a final stream that is CBR by using all the bits left unused by the LP layer.
</t>
<section title="Control Parameters">
<t>
The Opus codec includes a number of control parameters which can be changed dynamically during
regular operation of the codec, without interrupting the audio stream from the encoder to the decoder.
These parameters only affect the encoder since any impact they have on the bit-stream is signaled
in-band such that a decoder can decode any Opus stream without any out-of-band signaling. Any Opus
implementation can add or modify these control parameters without affecting interoperability. The most
important encoder control parameters in the reference encoder are listed below.
</t>
<section title="Bitrate" toc="exlcude">
<t>
Opus supports all bitrates from 6 kb/s to 510 kb/s. All other parameters being
equal, higher bitrate results in higher quality. For a frame size of 20 ms, these
are the bitrate "sweet spots" for Opus in various configurations:
<list style="symbols">
<t>8-12 kb/s for NB speech,</t>
<t>16-20 kb/s for WB speech,</t>
<t>28-40 kb/s for FB speech,</t>
<t>48-64 kb/s for FB mono music, and</t>
<t>64-128 kb/s for FB stereo music.</t>
</list>
</t>
</section>
<section title="Number of Channels (Mono/Stereo)" toc="exlcude">
<t>
Opus can transmit either mono or stereo frames within a single stream.
When decoding a mono frame in a stereo decoder, the left and right channels are
identical, and when decoding a stereo frame in a mono decoder, the mono output
is the average of the left and right channels.
In some cases, it is desirable to encode a stereo input stream in mono (e.g.,
because the bitrate is too low to encode stereo with sufficient quality).
The number of channels encoded can be selected in real-time, but by default the
reference encoder attempts to make the best decision possible given the
current bitrate.
</t>
</section>
<section title="Audio Bandwidth" toc="exlcude">
<t>
The audio bandwidths supported by Opus are listed in
<xref target="audio-bandwidth"/>.
Just like for the number of channels, any decoder can decode audio encoded at
any bandwidth.
For example, any Opus decoder operating at 8 kHz can decode a FB Opus
frame, and any Opus decoder operating at 48 kHz can decode a NB frame.
Similarly, the reference encoder can take a 48 kHz input signal and
encode it as NB.
The higher the audio bandwidth, the higher the required bitrate to achieve
acceptable quality.
The audio bandwidth can be explicitly specified in real-time, but by default
the reference encoder attempts to make the best bandwidth decision possible
given the current bitrate.
</t>
</section>
<section title="Frame Duration" toc="exlcude">
<t>
Opus can encode frames of 2.5, 5, 10, 20, 40 or 60 ms.
It can also combine multiple frames into packets of up to 120 ms.
For real-time applications, sending fewer packets per second reduces the
bitrate, since it reduces the overhead from IP, UDP, and RTP headers.
However, it increases latency and sensitivity to packet losses, as losing one
packet constitutes a loss of a bigger chunk of audio.
Increasing the frame duration also slightly improves coding efficiency, but the
gain becomes small for frame sizes above 20 ms.
For this reason, 20 ms frames are a good choice for most applications.
</t>
</section>
<section title="Complexity" toc="exlcude">
<t>
There are various aspects of the Opus encoding process where trade-offs
can be made between CPU complexity and quality/bitrate. In the reference
encoder, the complexity is selected using an integer from 0 to 10, where
0 is the lowest complexity and 10 is the highest. Examples of
computations for which such trade-offs may occur are:
<list style="symbols">
<t>The order of the pitch analysis whitening filter <xref target="Whitening"/>,</t>
<t>The order of the short-term noise shaping filter,</t>
<t>The number of states in delayed decision quantization of the
residual signal, and</t>
<t>The use of certain bit-stream features such as variable time-frequency
resolution and the pitch post-filter.</t>
</list>
</t>
</section>
<section title="Packet Loss Resilience" toc="exlcude">
<t>
Audio codecs often exploit inter-frame correlations to reduce the
bitrate at a cost in error propagation: after losing one packet
several packets need to be received before the decoder is able to
accurately reconstruct the speech signal. The extent to which Opus
exploits inter-frame dependencies can be adjusted on the fly to
choose a trade-off between bitrate and amount of error propagation.
</t>
</section>
<section title="Forward Error Correction (FEC)" toc="exlcude">
<t>
Another mechanism providing robustness against packet loss is the in-band
Forward Error Correction (FEC). Packets that are determined to
contain perceptually important speech information, such as onsets or
transients, are encoded again at a lower bitrate and this re-encoded
information is added to a subsequent packet.
</t>
</section>
<section title="Constant/Variable Bitrate" toc="exlcude">
<t>
Opus is more efficient when operating with variable bitrate (VBR), which is
the default. However, in some (rare) applications, constant bitrate (CBR)
is required. There are two main reasons to operate in CBR mode:
<list style="symbols">
<t>When the transport only supports a fixed size for each compressed frame</t>
<t>When encryption is used for an audio stream that is either highly constrained
(e.g. yes/no, recorded prompts) or highly sensitive <xref target="SRTP-VBR"></xref> </t>
</list>
When low-latency transmission is required over a relatively slow connection, then
constrained VBR can also be used. This uses VBR in a way that simulates a
"bit reservoir" and is equivalent to what MP3 and AAC call CBR (i.e. not true
CBR due to the bit reservoir).
</t>
</section>
<section title="Discontinuous Transmission (DTX)" toc="exlcude">
<t>
Discontinuous Transmission (DTX) reduces the bitrate during silence
or background noise. When DTX is enabled, only one frame is encoded
every 400 milliseconds.
</t>
</section>
</section>
</section>
<section anchor="modes" title="Internal Framing">
<t>
The Opus encoder produces "packets", which are each a contiguous set of bytes
meant to be transmitted as a single unit.
The packets described here do not include such things as IP, UDP, or RTP
headers which are normally found in a transport-layer packet.
A single packet may contain multiple audio frames, so long as they share a
common set of parameters, including the operating mode, audio bandwidth, frame
size, and channel count (mono vs. stereo).
This section describes the possible combinations of these parameters and the
internal framing used to pack multiple frames into a single packet.
This framing is not self-delimiting.
Instead, it assumes that a higher layer (such as UDP or RTP or Ogg or Matroska)
will communicate the length, in bytes, of the packet, and it uses this
information to reduce the framing overhead in the packet itself.
A decoder implementation MUST support the framing described in this section.
An alternative, self-delimiting variant of the framing is described in
<xref target="self-delimiting-framing"/>.
Support for that variant is OPTIONAL.
</t>
<section anchor="toc_byte" title="The TOC Byte">
<t>
An Opus packet begins with a single-byte table-of-contents (TOC) header that
signals which of the various modes and configurations a given packet uses.
It is composed of a frame count code, "c", a stereo flag, "s", and a
configuration number, "config", arranged as illustrated in
<xref target="toc_byte_fig"/>.
A description of each of these fields follows.
</t>
<figure anchor="toc_byte_fig" title="The TOC byte">
<artwork align="center"><![CDATA[
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| c |s| config |
+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
The top five bits of the TOC byte, labeled "config", encode one of 32 possible
configurations of operating mode, audio bandwidth, and frame size.
As described, the LP layer and MDCT layer can be combined in three possible
operating modes:
<list style="numbers">
<t>An LP-only mode for use in low bitrate connections with an audio bandwidth
of WB or less,</t>
<t>A Hybrid (LP+MDCT) mode for SWB or FB speech at medium bitrates, and</t>
<t>An MDCT-only mode for very low delay speech transmission as well as music
transmission (NB to FB).</t>
</list>
The 32 possible configurations each identify which one of these operating modes
the packet uses, as well as the audio bandwidth and the frame size.
<xref target="config_bits"/> lists the parameters for each configuration.
</t>
<texttable anchor="config_bits" title="TOC Byte Configuration Parameters">
<ttcol>Configuration Number(s)</ttcol>
<ttcol>Mode</ttcol>
<ttcol>Bandwidth</ttcol>
<ttcol>Frame Sizes</ttcol>
<c>0...3</c> <c>SILK-only</c> <c>NB</c> <c>10, 20, 40, 60 ms</c>
<c>4...7</c> <c>SILK-only</c> <c>MB</c> <c>10, 20, 40, 60 ms</c>
<c>8...11</c> <c>SILK-only</c> <c>WB</c> <c>10, 20, 40, 60 ms</c>
<c>12...13</c> <c>Hybrid</c> <c>SWB</c> <c>10, 20 ms</c>
<c>14...15</c> <c>Hybrid</c> <c>FB</c> <c>10, 20 ms</c>
<c>16...19</c> <c>CELT-only</c> <c>NB</c> <c>2.5, 5, 10, 20 ms</c>
<c>20...23</c> <c>CELT-only</c> <c>WB</c> <c>2.5, 5, 10, 20 ms</c>
<c>24...27</c> <c>CELT-only</c> <c>SWB</c> <c>2.5, 5, 10, 20 ms</c>
<c>28...31</c> <c>CELT-only</c> <c>FB</c> <c>2.5, 5, 10, 20 ms</c>
</texttable>
<t>
The configuration numbers in each range (e.g., 0...3 for NB SILK-only)
correspond to the various choices of frame size, in the same order.
For example, configuration 0 has a 10 ms frame size and configuration 3
has a 60 ms frame size.
</t>
<t>
One additional bit, labeled "s", signals mono vs. stereo, with 0 indicating
mono and 1 indicating stereo.
</t>
<t>
The remaining two bits of the TOC byte, labeled "c", code the number of frames
per packet (codes 0 to 3) as follows:
<list style="symbols">
<t>0: 1 frame in the packet</t>
<t>1: 2 frames in the packet, each with equal compressed size</t>
<t>2: 2 frames in the packet, with different compressed sizes</t>
<t>3: an arbitrary number of frames in the packet</t>
</list>
This draft refers to a packet as a code 0 packet, code 1 packet, etc., based on
the value of "c".
</t>
<t>
A well-formed Opus packet MUST contain at least one byte with the TOC
information, though the frame(s) within a packet MAY be zero bytes long.
</t>
</section>
<section title="Frame Packing">
<t>
This section describes how frames are packed according to each possible value
of "c" in the TOC byte.
</t>
<section anchor="frame-length-coding" title="Frame Length Coding">
<t>
When a packet contains multiple VBR frames (i.e., code 2 or 3), the compressed
length of one or more of these frames is indicated with a one- or two-byte
sequence, with the meaning of the first byte as follows:
<list style="symbols">
<t>0: No frame (discontinuous transmission (DTX) or lost packet)</t>
<t>1...251: Length of the frame in bytes</t>
<t>252...255: A second byte is needed. The total length is (len[1]*4)+len[0]</t>
</list>
</t>
<t>
The special length 0 indicates that no frame is available, either because it
was dropped during transmission by some intermediary or because the encoder
chose not to transmit it.
A length of 0 is valid for any Opus frame in any mode.
</t>
<t>
The maximum representable length is 255*4+255=1275 bytes.
For 20 ms frames, this represents a bitrate of 510 kb/s, which is
approximately the highest useful rate for lossily compressed fullband stereo
music.
Beyond this point, lossless codecs are more appropriate.
It is also roughly the maximum useful rate of the MDCT layer, as shortly
thereafter quality no longer improves with additional bits due to limitations
on the codebook sizes.
</t>
<t>
No length is transmitted for the last frame in a VBR packet, or for any of the
frames in a CBR packet, as it can be inferred from the total size of the
packet and the size of all other data in the packet.
However, the length of any individual frame MUST NOT exceed 1275 bytes, to
allow for repacketization by gateways, conference bridges, or other software.
</t>
</section>
<section title="Code 0: One Frame in the Packet">
<t>
For code 0 packets, the TOC byte is immediately followed by N-1 bytes
of compressed data for a single frame (where N is the size of the packet),
as illustrated in <xref target="code0_packet"/>.
</t>
<figure anchor="code0_packet" title="A Code 0 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|0|s| config | |
+-+-+-+-+-+-+-+-+ |
| Compressed frame 1 (N-1 bytes)... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Code 1: Two Frames in the Packet, Each with Equal Compressed Size">
<t>
For code 1 packets, the TOC byte is immediately followed by the
(N-1)/2 bytes of compressed data for the first frame, followed by
(N-1)/2 bytes of compressed data for the second frame, as illustrated in
<xref target="code1_packet"/>.
The number of payload bytes available for compressed data, N-1, MUST be even
for all code 1 packets.
</t>
<figure anchor="code1_packet" title="A Code 1 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|0|s| config | |
+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 ((N-1)/2 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 2 ((N-1)/2 bytes)... |
: +-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Code 2: Two Frames in the Packet, with Different Compressed Sizes">
<t>
For code 2 packets, the TOC byte is followed by a one- or two-byte sequence
indicating the length of the first frame (marked N1 in the figure below),
followed by N1 bytes of compressed data for the first frame.
The remaining N-N1-2 or N-N1-3 bytes are the compressed data for the
second frame.
This is illustrated in <xref target="code2_packet"/>.
A code 2 packet MUST contain enough bytes to represent a valid length.
For example, a 1-byte code 2 packet is always invalid, and a 2-byte code 2
packet whose second byte is in the range 252...255 is also invalid.
The length of the first frame, N1, MUST also be no larger than the size of the
payload remaining after decoding that length for all code 2 packets.
This makes, for example, a 2-byte code 2 packet with a second byte in the range
1...251 invalid as well (the only valid 2-byte code 2 packet is one where the
length of both frames is zero).
</t>
<figure anchor="code2_packet" title="A Code 2 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|1|s| config | N1 (1-2 bytes): |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Compressed frame 2... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Code 3: A Signaled Number of Frames in the Packet">
<t>
Code 3 packets signal the number of frames, as well as additional
padding, called "Opus padding" to indicate that this padding is added at the
Opus layer, rather than at the transport layer.
Code 3 packets MUST have at least 2 bytes.
The TOC byte is followed by a byte encoding the number of frames in the packet
in bits 0 to 5 (marked "M" in the figure below), with bit 6 indicating whether
or not Opus padding is inserted (marked "p" in the figure below), and bit 7
indicating VBR (marked "v" in the figure below).
M MUST NOT be zero, and the audio duration contained within a packet MUST NOT
exceed 120 ms.
This limits the maximum frame count for any frame size to 48 (for 2.5 ms
frames), with lower limits for longer frame sizes.
<xref target="frame_count_byte"/> illustrates the layout of the frame count
byte.
</t>
<figure anchor="frame_count_byte" title="The frame count byte">
<artwork align="center"><![CDATA[
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| M |p|v|
+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
When Opus padding is used, the number of bytes of padding is encoded in the
bytes following the frame count byte.
Values from 0...254 indicate that 0...254 bytes of padding are included,
in addition to the byte(s) used to indicate the size of the padding.
If the value is 255, then the size of the additional padding is 254 bytes,
plus the padding value encoded in the next byte.
There MUST be at least one more byte in the packet in this case.
By using the value 255 multiple times, it is possible to create a packet of any
specific, desired size.
The additional padding bytes appear at the end of the packet, and MUST be set
to zero by the encoder to avoid creating a covert channel.
The decoder MUST accept any value for the padding bytes, however.
Let P be the total amount of padding, including both the trailing padding bytes
themselves and the header bytes used to indicate how many trailing bytes there
are.
Then P MUST be no more than N-2.
</t>
<t>
In the CBR case, the compressed length of each frame in bytes is equal to the
number of remaining bytes in the packet after subtracting the (optional)
padding, (N-2-P), divided by M.
This number MUST be a non-negative integer multiple of M.
The compressed data for all M frames then follows, each of size
(N-2-P)/M bytes, as illustrated in <xref target="code3cbr_packet"/>.
</t>
<figure anchor="code3cbr_packet" title="A CBR Code 3 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|s| config | M |p|0| Padding length (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 ((N-2-P)/M bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 ((N-2-P)/M bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M ((N-2-P)/M bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
In the VBR case, the (optional) padding length is followed by M-1 frame
lengths (indicated by "N1" to "N[M-1]" in the figure below), each encoded in a
one- or two-byte sequence as described above.
The packet MUST contain enough data for the M-1 lengths after removing the
(optional) padding, and the sum of these lengths MUST be no larger than the
number of bytes remaining in the packet after decoding them.
The compressed data for all M frames follows, each frame consisting of the
indicated number of bytes, with the final frame consuming any remaining bytes
before the final padding, as illustrated in <xref target="code3cbr_packet"/>.
The number of header bytes (TOC byte, frame count byte, padding length bytes,
and frame length bytes), plus the length of the first M-1 frames themselves,
plus the length of the padding MUST be no larger than N, the total size of the
packet.
</t>
<figure anchor="code3vbr_packet" title="A VBR Code 3 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|s| config | M |p|1| Padding length (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: N1 (1-2 bytes): N2 (1-2 bytes): ... : N[M-1] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (N2 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
</section>
<section anchor="examples" title="Examples">
<t>
Simplest case, one NB mono 20 ms SILK frame:
</t>
<figure>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|0|0| 1 | compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Two FB mono 5 ms CELT frames of the same compressed size:
</t>
<figure>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|0|0| 29 | compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Two FB mono 20 ms Hybrid frames of different compressed size:
</t>
<figure>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|0| 15 | 2 |0|1| N1 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Four FB stereo 20 ms CELT frames of the same compressed size:
</t>
<figure>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|1| 31 | 4 |0|0| compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Extending Opus">
<t>
A receiver MUST NOT process packets which violate any of the rules above as
normal Opus packets.
They are reserved for future applications, such as in-band headers (containing
metadata, etc.).
These constraints are summarized here for reference:
<list style="symbols">
<t>Packets are at least one byte.</t>
<t>No implicit frame length is larger than 1275 bytes.</t>
<t>Code 1 packets have an odd total length, N, so that (N-1)/2 is an
integer.</t>
<t>Code 2 packets have enough bytes after the TOC for a valid frame length, and
that length is no larger than the number of bytes remaining in the packet.</t>
<t>Code 3 packets contain at least one frame, but no more than 120 ms of
audio total.</t>
<t>The length of a CBR code 3 packet, N, is at least two bytes, the size of the
padding, P (including both the padding length bytes in the header and the
trailing padding bytes) is no more than N-2, and the frame count, M, satisfies
the constraint that (N-2-P) is a non-negative integer multiple of M.</t>
<t>VBR code 3 packets are large enough to contain all the header bytes (TOC
byte, frame count byte, any padding length bytes, and any frame length bytes),
plus the length of the first M-1 frames, plus any trailing padding bytes.</t>
</list>
</t>
</section>
</section>
<section title="Opus Decoder">
<t>
The Opus decoder consists of two main blocks: the SILK decoder and the CELT
decoder.
At any given time, one or both of the SILK and CELT decoders may be active.
The output of the Opus decode is the sum of the outputs from the SILK and CELT
decoders with proper sample rate conversion and delay compensation on the SILK
side, and optional decimation (when decoding to sample rates less than
48 kHz) on the CELT side, as illustrated in the block diagram below.
</t>
<figure>
<artwork>
<![CDATA[
+---------+ +------------+
| SILK | | Sample |
+->| Decoder |--->| Rate |----+
Bit- +---------+ | | | | Conversion | v
stream | Range |---+ +---------+ +------------+ /---\ Audio
------->| Decoder | | + |------>
| |---+ +---------+ +------------+ \---/
+---------+ | | CELT | | Decimation | ^
+->| Decoder |--->| (Optional) |----+
| | | |
+---------+ +------------+
]]>
</artwork>
</figure>
<section anchor="range-decoder" title="Range Decoder">
<t>
Opus uses an entropy coder based on <xref target="range-coding"></xref>,
which is itself a rediscovery of the FIFO arithmetic code introduced by <xref target="coding-thesis"></xref>.
It is very similar to arithmetic encoding, except that encoding is done with
digits in any base instead of with bits,
so it is faster when using larger bases (i.e., an octet). All of the
calculations in the range coder must use bit-exact integer arithmetic.
</t>
<t>
Symbols may also be coded as "raw bits" packed directly into the bitstream,
bypassing the range coder.
These are packed backwards starting at the end of the frame, as illustrated in
<xref target="rawbits-example"/>.
This reduces complexity and makes the stream more resilient to bit errors, as
corruption in the raw bits will not desynchronize the decoding process, unlike
corruption in the input to the range decoder.
Raw bits are only used in the CELT layer.
</t>
<figure anchor="rawbits-example" title="Illustrative example of packing range
coder and raw bits data">
<artwork align="center"><![CDATA[
0 1 2 3
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Range coder data (packed MSB to LSB) -> :
+ +
: :
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | <- Boundary occurs at an arbitrary bit position :
+-+-+-+ +
: <- Raw bits data (packed LSB to MSB) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Each symbol coded by the range coder is drawn from a finite alphabet and coded
in a separate "context", which describes the size of the alphabet and the
relative frequency of each symbol in that alphabet.
</t>
<t>
Suppose there is a context with n symbols, identified with an index that ranges
from 0 to n-1.
The parameters needed to encode or decode symbol k in this context are
represented by a three-tuple (fl[k], fh[k], ft), with
0 <= fl[k] < fh[k] <= ft <= 65535.
The values of this tuple are derived from the probability model for the
symbol, represented by traditional "frequency counts".
Because Opus uses static contexts these are not updated as symbols are decoded.
Let f[i] be the frequency of symbol i.
Then the three-tuple corresponding to symbol k is given by
</t>
<figure align="center">
<artwork align="center"><![CDATA[
k-1 n-1
__ __
fl[k] = \ f[i], fh[k] = fl[k] + f[k], ft = \ f[i]
/_ /_
i=0 i=0
]]></artwork>
</figure>
<t>
The range decoder extracts the symbols and integers encoded using the range
encoder in <xref target="range-encoder"/>.
The range decoder maintains an internal state vector composed of the two-tuple
(val, rng), representing the difference between the high end of the
current range and the actual coded value, minus one, and the size of the
current range, respectively.
Both val and rng are 32-bit unsigned integer values.
The decoder initializes rng to 128 and initializes val to 127 minus the top 7
bits of the first input octet.
It saves the remaining bit for use in the renormalization procedure described
in <xref target="range-decoder-renorm"/>, which the decoder invokes
immediately after initialization to read additional bits and establish the
invariant that rng > 2**23.
</t>
<section anchor="decoding-symbols" title="Decoding Symbols">
<t>
Decoding a symbol is a two-step process.
The first step determines a 16-bit unsigned value fs, which lies within the
range of some symbol in the current context.
The second step updates the range decoder state with the three-tuple
(fl[k], fh[k], ft) corresponding to that symbol.
</t>
<t>
The first step is implemented by ec_decode() (entdec.c), which computes
<figure align="center">
<artwork align="center"><![CDATA[
val
fs = ft - min(------ + 1, ft) .
rng/ft
]]></artwork>
</figure>
The divisions here are exact integer division.
</t>
<t>
The decoder then identifies the symbol in the current context corresponding to
fs; i.e., the value of k whose three-tuple (fl[k], fh[k], ft)
satisfies fl[k] <= fs < fh[k].
It uses this tuple to update val according to
<figure align="center">
<artwork align="center"><![CDATA[
rng
val = val - --- * (ft - fh[k]) .
ft
]]></artwork>
</figure>
If fl[k] is greater than zero, then the decoder updates rng using
<figure align="center">
<artwork align="center"><![CDATA[
rng
rng = --- * (fh[k] - fl[k]) .
ft
]]></artwork>
</figure>
Otherwise, it updates rng using
<figure align="center">
<artwork align="center"><![CDATA[
rng
rng = rng - --- * (ft - fh[k]) .
ft
]]></artwork>
</figure>
</t>
<t>
Using a special case for the first symbol (rather than the last symbol, as is
commonly done in other arithmetic coders) ensures that all the truncation
error from the finite precision arithmetic accumulates in symbol 0.
This makes the cost of coding a 0 slightly smaller, on average, than its
estimated probability indicates and makes the cost of coding any other symbol
slightly larger.
When contexts are designed so that 0 is the most probable symbol, which is
often the case, this strategy minimizes the inefficiency introduced by the
finite precision.
It also makes some of the special-case decoding routines in
<xref target="decoding-alternate"/> particularly simple.
</t>
<t>
After the updates, implemented by ec_dec_update() (entdec.c), the decoder
normalizes the range using the procedure in the next section, and returns the
index k.
</t>
<section anchor="range-decoder-renorm" title="Renormalization">
<t>
To normalize the range, the decoder repeats the following process, implemented
by ec_dec_normalize() (entdec.c), until rng > 2**23.
If rng is already greater than 2**23, the entire process is skipped.
First, it sets rng to (rng<<8).
Then it reads the next octet of the payload and combines it with the left-over
bit buffered from the previous octet to form the 8-bit value sym.
It takes the left-over bit as the high bit (bit 7) of sym, and the top 7 bits
of the octet it just read as the other 7 bits of sym.
The remaining bit in the octet just read is buffered for use in the next
iteration.
If no more input octets remain, it uses zero bits instead.
Then, it sets
<figure align="center">
<artwork align="center"><![CDATA[
val = ((val<<8) + (255-sym)) & 0x7FFFFFFF .
]]></artwork>
</figure>
</t>
<t>
It is normal and expected that the range decoder will read several bytes
into the raw bits data (if any) at the end of the packet by the time the frame
is completely decoded, as illustrated in <xref target="finalize-example"/>.
This same data MUST also be returned as raw bits when requested.
The encoder is expected to terminate the stream in such a way that the decoder
will decode the intended values regardless of the data contained in the raw
bits.
<xref target="encoder-finalizing"/> describes a procedure for doing this.
If the range decoder consumes all of the bytes belonging to the current frame,
it MUST continue to use zero when any further input bytes are required, even
if there is additional data in the current packet from padding or other
frames.
</t>
<figure anchor="finalize-example" title="Illustrative example of raw bits
overlapping range coder data">
<artwork align="center"><![CDATA[
n n+1 n+2 n+3
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | <----------- Overlap region ------------> | :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
^ ^
| End of data buffered by the range coder |
...-----------------------------------------------+
|
| End of data consumed by raw bits
+-------------------------------------------------------...
]]></artwork>
</figure>
</section>
</section>
<section anchor="decoding-alternate" title="Alternate Decoding Methods">
<t>
The reference implementation uses three additional decoding methods that are
exactly equivalent to the above, but make assumptions and simplifications that
allow for a more efficient implementation.
</t>
<section anchor="ec_decode_bin" title="ec_decode_bin()">
<t>
The first is ec_decode_bin() (entdec.c), defined using the parameter ftb
instead of ft.
It is mathematically equivalent to calling ec_decode() with
ft = (1<<ftb), but avoids one of the divisions.
</t>
</section>
<section anchor="ec_dec_bit_logp" title="ec_dec_bit_logp()">
<t>
The next is ec_dec_bit_logp() (entdec.c), which decodes a single binary symbol,
replacing both the ec_decode() and ec_dec_update() steps.
The context is described by a single parameter, logp, which is the absolute
value of the base-2 logarithm of the probability of a "1".
It is mathematically equivalent to calling ec_decode() with
ft = (1<<logp), followed by ec_dec_update() with
the 3-tuple (fl[k] = 0,
fh[k] = (1<<logp) - 1,
ft = (1<<logp)) if the returned value
of fs is less than (1<<logp) - 1 (a "0" was decoded), and with
(fl[k] = (1<<logp) - 1,
fh[k] = ft = (1<<logp)) otherwise (a "1" was
decoded).
The implementation requires no multiplications or divisions.
</t>
</section>
<section anchor="ec_dec_icdf" title="ec_dec_icdf()">
<t>
The last is ec_dec_icdf() (entdec.c), which decodes a single symbol with a
table-based context of up to 8 bits, also replacing both the ec_decode() and
ec_dec_update() steps, as well as the search for the decoded symbol in between.
The context is described by two parameters, an icdf
("inverse" cumulative distribution function) table and ftb.
As with ec_decode_bin(), (1<<ftb) is equivalent to ft.
idcf[k], on the other hand, stores (1<<ftb)-fh[k], which is equal to
(1<<ftb) - fl[k+1].
fl[0] is assumed to be 0, and the table is terminated by a value of 0 (where
fh[k] == ft).
</t>
<t>
The function is mathematically equivalent to calling ec_decode() with
ft = (1<<ftb), using the returned value fs to search the table
for the first entry where fs < (1<<ftb)-icdf[k], and
calling ec_dec_update() with
fl[k] = (1<<ftb) - icdf[k-1] (or 0
if k == 0), fh[k] = (1<<ftb) - idcf[k],
and ft = (1<<ftb).
Combining the search with the update allows the division to be replaced by a
series of multiplications (which are usually much cheaper), and using an
inverse CDF allows the use of an ftb as large as 8 in an 8-bit table without
any special cases.
This is the primary interface with the range decoder in the SILK layer, though
it is used in a few places in the CELT layer as well.
</t>
<t>
Although icdf[k] is more convenient for the code, the frequency counts, f[k],
are a more natural representation of the probability distribution function
(PDF) for a given symbol.
Therefore this draft lists the latter, not the former, when describing the
context in which a symbol is coded as a list, e.g., {4, 4, 4, 4}/16 for a
uniform context with four possible values and ft = 16.
The value of ft after the slash is always the sum of the entries in the PDF,
but is included for convenience.
Contexts with identical probabilities, f[k]/ft, but different values of ft
(or equivalently, ftb) are not the same, and cannot, in general, be used in
place of one another.
An icdf table is also not capable of representing a PDF where the first symbol
has 0 probability.
In such contexts, ec_dec_icdf() can decode the symbol by using a table that
drops the entries for any initial zero-probability values and adding the
constant offset of the first value with a non-zero probability to its return
value.
</t>
</section>
</section>
<section anchor="decoding-bits" title="Decoding Raw Bits">
<t>
The raw bits used by the CELT layer are packed at the end of the packet, with
the least significant bit of the first value packed in the least significant
bit of the last byte, filling up to the most significant bit in the last byte,
continuing on to the least significant bit of the penultimate byte, and so on.
The reference implementation reads them using ec_dec_bits() (entdec.c).
Because the range decoder must read several bytes ahead in the stream, as
described in <xref target="range-decoder-renorm"/>, the input consumed by the
raw bits may overlap with the input consumed by the range coder, and a decoder
MUST allow this.
The format should render it impossible to attempt to read more raw bits than
there are actual bits in the frame, though a decoder may wish to check for
this and report an error.
</t>
</section>
<section anchor="ec_dec_uint" title="Decoding Uniformly Distributed Integers">
<t>
The function ec_dec_uint() (entdec.c) decodes one of ft equiprobable values in
the range 0 to (ft - 1), inclusive, each with a frequency of 1,
where ft may be as large as (2**32 - 1).
Because ec_decode() is limited to a total frequency of (2**16 - 1),
it splits up the value into a range coded symbol representing up to 8 of the
high bits, and, if necessary, raw bits representing the remainder of the
value.
The limit of 8 bits in the range coded symbol is a trade-off between
implementation complexity, modeling error (since the symbols no longer truly
have equal coding cost), and rounding error introduced by the range coder
itself (which gets larger as more bits are included).
Using raw bits reduces the maximum number of divisions required in the worst
case, but means that it may be possible to decode a value outside the range
0 to (ft - 1), inclusive.
</t>
<t>
ec_dec_uint() takes a single, positive parameter, ft, which is not necessarily
a power of two, and returns an integer, t, whose value lies between 0 and
(ft - 1), inclusive.
Let ftb = ilog(ft - 1), i.e., the number of bits required
to store (ft - 1) in two's complement notation.
If ftb is 8 or less, then t is decoded with t = ec_decode(ft), and
the range coder state is updated using the three-tuple (t, t + 1,
ft).
</t>
<t>
If ftb is greater than 8, then the top 8 bits of t are decoded using
<figure align="center">
<artwork align="center"><![CDATA[
t = ec_decode(((ft - 1) >> (ftb - 8)) + 1) ,
]]></artwork>
</figure>
the decoder state is updated using the three-tuple
(t, t + 1,
((ft - 1) >> (ftb - 8)) + 1),
and the remaining bits are decoded as raw bits, setting
<figure align="center">
<artwork align="center"><![CDATA[
t = (t << (ftb - 8)) | ec_dec_bits(ftb - 8) .
]]></artwork>
</figure>
If, at this point, t >= ft, then the current frame is corrupt.
In that case, the decoder should assume there has been an error in the coding,
decoding, or transmission and SHOULD take measures to conceal the
error and/or report to the application that the error has occurred.
</t>
</section>
<section anchor="decoder-tell" title="Current Bit Usage">
<t>
The bit allocation routines in the CELT decoder need a conservative upper bound
on the number of bits that have been used from the current frame thus far,
including both range coder bits and raw bits.
This drives allocation decisions that must match those made in the encoder.
The upper bound is computed in the reference implementation to whole-bit
precision by the function ec_tell() (entcode.h) and to fractional 1/8th bit
precision by the function ec_tell_frac() (entcode.c).
Like all operations in the range coder, it must be implemented in a bit-exact
manner, and must produce exactly the same value returned by the same functions
in the encoder after encoding the same symbols.
</t>
<t>
ec_tell() is guaranteed to return ceil(ec_tell_frac()/8.0).
In various places the codec will check to ensure there is enough room to
contain a symbol before attempting to decode it.
In practice, although the number of bits used so far is an upper bound,
decoding a symbol whose probability model suggests it has a worst-case cost of
p 1/8th bits may actually advance the return value of ec_tell_frac() by
p-1, p, or p+1 1/8th bits, due to approximation error in that upper bound,
truncation error in the range coder, and for large values of ft, modeling
error in ec_dec_uint().
</t>
<t>
However, this error is bounded, and periodic calls to ec_tell() or
ec_tell_frac() at precisely defined points in the decoding process prevent it
from accumulating.
For a range coder symbol that requires a whole number of bits (i.e.,
for which ft/(fh[k] - fl[k]) is a power of two), where there are at
least p 1/8th bits available, decoding the symbol will never cause ec_tell() or
ec_tell_frac() to exceed the size of the frame ("bust the budget").
In this case the return value of ec_tell_frac() will only advance by more than
p 1/8th bits if there was an additional, fractional number of bits remaining,
and it will never advance beyond the next whole-bit boundary, which is safe,
since frames always contain a whole number of bits.
However, when p is not a whole number of bits, an extra 1/8th bit is required
to ensure that decoding the symbol will not bust the budget.
</t>
<t>
The reference implementation keeps track of the total number of whole bits that
have been processed by the decoder so far in the variable nbits_total,
including the (possibly fractional) number of bits that are currently
buffered, but not consumed, inside the range coder.
nbits_total is initialized to 9 just before the initial range renormalization
process completes (or equivalently, it can be initialized to 33 after the
first renormalization).
The extra two bits over the actual amount buffered by the range coder
guarantees that it is an upper bound and that there is enough room for the
encoder to terminate the stream.
Each iteration through the range coder's renormalization loop increases
nbits_total by 8.
Reading raw bits increases nbits_total by the number of raw bits read.
</t>
<section anchor="ec_tell" title="ec_tell()">
<t>
The whole number of bits buffered in rng may be estimated via lg = ilog(rng).
ec_tell() then becomes a simple matter of removing these bits from the total.
It returns (nbits_total - lg).
</t>
<t>
In a newly initialized decoder, before any symbols have been read, this reports
that 1 bit has been used.
This is the bit reserved for termination of the encoder.
</t>
</section>
<section anchor="ec_tell_frac" title="ec_tell_frac()">
<t>
ec_tell_frac() estimates the number of bits buffered in rng to fractional
precision.
Since rng must be greater than 2**23 after renormalization, lg must be at least
24.
Let
<figure align="center">
<artwork align="center">
<![CDATA[
r_Q15 = rng >> (l-16) ,
]]></artwork>
</figure>
so that 32768 <= r_Q15 < 65536, an unsigned Q15 value representing the
fractional part of rng.
Then the following procedure can be used to add one bit of precision to lg.
First, update
<figure align="center">
<artwork align="center">
<![CDATA[
r_Q15 = (r_Q15*r_Q15) >> 15 .
]]></artwork>
</figure>
Then add the 16th bit of r_Q15 to lg via
<figure align="center">
<artwork align="center">
<![CDATA[
lg = 2*lg + (r_Q15 >> 16) .
]]></artwork>
</figure>
Finally, if this bit was a 1, reduce r_Q15 by a factor of two via
<figure align="center">
<artwork align="center">
<![CDATA[
r_Q15 = r_Q15 >> 1 ,
]]></artwork>
</figure>
so that it once again lies in the range 32768 <= r_Q15 < 65536.
</t>
<t>
This procedure is repeated three times to extend lg to 1/8th bit precision.
ec_tell_frac() then returns (nbits_total*8 - lg).
</t>
</section>
</section>
</section>
<section anchor="silk_decoder_outline" title="SILK Decoder">
<t>
The decoder's LP layer uses a modified version of the SILK codec (herein simply
called "SILK"), which runs a decoded excitation signal through adaptive
long-term and short-term prediction synthesis filters.
It runs at NB, MB, and WB sample rates internally.
When used in a SWB or FB Hybrid frame, the LP layer itself still only runs in
WB.
</t>
<section title="SILK Decoder Modules">
<t>
An overview of the decoder is given in <xref target="silk_decoder_figure"/>.
</t>
<figure align="center" anchor="silk_decoder_figure" title="SILK Decoder">
<artwork align="center">
<![CDATA[
+---------+ +------------+
-->| Range |--->| Decode |---------------------------+
1 | Decoder | 2 | Parameters |----------+ 5 |
+---------+ +------------+ 4 | |
3 | | |
\/ \/ \/
+------------+ +------------+ +------------+
| Generate |-->| LTP |-->| LPC |
| Excitation | | Synthesis | | Synthesis |
+------------+ +------------+ +------------+
^ |
| |
+-------------------+----------------+
| 6
| +------------+ +-------------+
+-->| Stereo |-->| Sample Rate |-->
| Unmixing | 7 | Conversion | 8
+------------+ +-------------+
1: Range encoded bitstream
2: Coded parameters
3: Pulses, LSBs, and signs
4: Pitch lags, LTP coefficients
5: LPC coefficients and gains
6: Decoded signal (mono or mid-side stereo)
7: Unmixed signal (mono or left-right stereo)
8: Resampled signal
]]>
</artwork>
</figure>
<t>
The decoder feeds the bitstream (1) to the range decoder from
<xref target="range-decoder"/>, and then decodes the parameters in it (2)
using the procedures detailed in
Sections <xref format="counter" target="silk_header_bits"/>
through <xref format="counter" target="silk_signs"/>.
These parameters (3, 4, 5) are used to generate an excitation signal (see
<xref target="silk_excitation_reconstruction"/>), which is fed to an optional
long-term prediction (LTP) filter (voiced frames only, see
<xref target="silk_ltp_synthesis"/>) and then a short-term prediction filter
(see <xref target="silk_lpc_synthesis"/>), producing the decoded signal (6).
For stereo streams, the mid-side representation is converted to separate left
and right channels (7).
The result is finally resampled to the desired output sample rate (e.g.,
48 kHz) so that the resampled signal (8) can be mixed with the CELT
layer.
</t>
</section>
<section anchor="silk_layer_organization" title="LP Layer Organization">
<t>
Internally, the LP layer of a single Opus frame is composed of either a single
10 ms regular SILK frame or between one and three 20 ms regular SILK
frames.
A stereo Opus frame may double the number of regular SILK frames (up to a total
of six), since it includes separate frames for a mid channel and, optionally,
a side channel.
Optional Low Bit-Rate Redundancy (LBRR) frames, which are reduced-bitrate
encodings of previous SILK frames, may be included to aid in recovery from
packet loss.
If present, these appear before the regular SILK frames.
They are in most respects identical to regular, active SILK frames, except that
they are usually encoded with a lower bitrate.
This draft uses "SILK frame" to refer to either one and "regular SILK frame" if
it needs to draw a distinction between the two.
</t>
<t>
Logically, each SILK frame is in turn composed of either two or four 5 ms
subframes.
Various parameters, such as the quantization gain of the excitation and the
pitch lag and filter coefficients can vary on a subframe-by-subframe basis.
Physically, the parameters for each subframe are interleaved in the bitstream,
as described in the relevant sections for each parameter.
</t>
<t>
All of these frames and subframes are decoded from the same range coder, with
no padding between them.
Thus packing multiple SILK frames in a single Opus frame saves, on average,
half a byte per SILK frame.
It also allows some parameters to be predicted from prior SILK frames in the
same Opus frame, since this does not degrade packet loss robustness (beyond
any penalty for merely using fewer, larger packets to store multiple frames).
</t>
<t>
Stereo support in SILK uses a variant of mid-side coding, allowing a mono
decoder to simply decode the mid channel.
However, the data for the two channels is interleaved, so a mono decoder must
still unpack the data for the side channel.
It would be required to do so anyway for Hybrid Opus frames, or to support
decoding individual 20 ms frames.
</t>
<t>
<xref target="silk_symbols"/> summarizes the overall grouping of the contents of
the LP layer.
Figures <xref format="counter" target="silk_mono_60ms_frame"/>
and <xref format="counter" target="silk_stereo_60ms_frame"/> illustrate
the ordering of the various SILK frames for a 60 ms Opus frame, for both
mono and stereo, respectively.
</t>
<texttable anchor="silk_symbols"
title="Organization of the SILK layer of an Opus frame">
<ttcol align="center">Symbol(s)</ttcol>
<ttcol align="center">PDF(s)</ttcol>
<ttcol align="center">Condition</ttcol>
<c>VAD flags</c>
<c>{1, 1}/2</c>
<c/>
<c>LBRR flag</c>
<c>{1, 1}/2</c>
<c/>
<c>Per-frame LBRR flags</c>
<c><xref target="silk_lbrr_flag_pdfs"/></c>
<c><xref target="silk_lbrr_flags"/></c>
<c>LBRR Frame(s)</c>
<c><xref target="silk_frame"/></c>
<c><xref target="silk_lbrr_flags"/></c>
<c>Regular SILK Frame(s)</c>
<c><xref target="silk_frame"/></c>
<c/>
</texttable>
<figure align="center" anchor="silk_mono_60ms_frame"
title="A 60 ms Mono Frame">
<artwork align="center"><![CDATA[
+---------------------------------+
| VAD Flags |
+---------------------------------+
| LBRR Flag |
+---------------------------------+
| Per-Frame LBRR Flags (Optional) |
+---------------------------------+
| LBRR Frame 1 (Optional) |
+---------------------------------+
| LBRR Frame 2 (Optional) |
+---------------------------------+
| LBRR Frame 3 (Optional) |
+---------------------------------+
| Regular SILK Frame 1 |
+---------------------------------+
| Regular SILK Frame 2 |
+---------------------------------+
| Regular SILK Frame 3 |
+---------------------------------+
]]></artwork>
</figure>
<figure align="center" anchor="silk_stereo_60ms_frame"
title="A 60 ms Stereo Frame">
<artwork align="center"><![CDATA[
+---------------------------------------+
| Mid VAD Flags |
+---------------------------------------+
| Mid LBRR Flag |
+---------------------------------------+
| Side VAD Flags |
+---------------------------------------+
| Side LBRR Flag |
+---------------------------------------+
| Mid Per-Frame LBRR Flags (Optional) |
+---------------------------------------+
| Side Per-Frame LBRR Flags (Optional) |
+---------------------------------------+
| Mid LBRR Frame 1 (Optional) |
+---------------------------------------+
| Side LBRR Frame 1 (Optional) |
+---------------------------------------+
| Mid LBRR Frame 2 (Optional) |
+---------------------------------------+
| Side LBRR Frame 2 (Optional) |
+---------------------------------------+
| Mid LBRR Frame 3 (Optional) |
+---------------------------------------+
| Side LBRR Frame 3 (Optional) |
+---------------------------------------+
| Mid Regular SILK Frame 1 |
+---------------------------------------+
| Side Regular SILK Frame 1 (Optional) |
+---------------------------------------+
| Mid Regular SILK Frame 2 |
+---------------------------------------+
| Side Regular SILK Frame 2 (Optional) |
+---------------------------------------+
| Mid Regular SILK Frame 3 |
+---------------------------------------+
| Side Regular SILK Frame 3 (Optional) |
+---------------------------------------+
]]></artwork>
</figure>
</section>
<section anchor="silk_header_bits" title="Header Bits">
<t>
The LP layer begins with two to eight header bits, decoded in silk_Decode()
(dec_API.c).
These consist of one Voice Activity Detection (VAD) bit per frame (up to 3),
followed by a single flag indicating the presence of LBRR frames.
For a stereo packet, these first flags correspond to the mid channel, and a
second set of flags is included for the side channel.
</t>
<t>
Because these are the first symbols decoded by the range coder and because they
are coded as binary values with uniform probability, they can be extracted
directly from the most significant bits of the first byte of compressed data.
Thus, a receiver can determine if an Opus frame contains any active SILK frames
without the overhead of using the range decoder.
</t>
</section>
<section anchor="silk_lbrr_flags" title="Per-Frame LBRR Flags">
<t>
For Opus frames longer than 20 ms, a set of LBRR flags is
decoded for each channel that has its LBRR flag set.
Each set contains one flag per 20 ms SILK frame.
40 ms Opus frames use the 2-frame LBRR flag PDF from
<xref target="silk_lbrr_flag_pdfs"/>, and 60 ms Opus frames use the
3-frame LBRR flag PDF.
For each channel, the resulting 2- or 3-bit integer contains the corresponding
LBRR flag for each frame, packed in order from the LSB to the MSB.
</t>
<texttable anchor="silk_lbrr_flag_pdfs" title="LBRR Flag PDFs">
<ttcol>Frame Size</ttcol>
<ttcol>PDF</ttcol>
<c>40 ms</c> <c>{0, 53, 53, 150}/256</c>
<c>60 ms</c> <c>{0, 41, 20, 29, 41, 15, 28, 82}/256</c>
</texttable>
<t>
A 10 or 20 ms Opus frame does not contain any per-frame LBRR flags,
as there may be at most one LBRR frame per channel.
The global LBRR flag in the header bits (see <xref target="silk_header_bits"/>)
is already sufficient to indicate the presence of that single LBRR frame.
</t>
</section>
<section anchor="silk_lbrr_frames" title="LBRR Frames">
<t>
The LBRR frames, if present, contain an encoded representation of the signal
immediately prior to the current Opus frame as if it were encoded with the
current mode, frame size, audio bandwidth, and channel count, even if those
differ from the prior Opus frame.
When one of these parameters changes from one Opus frame to the next, this
implies that the LBRR frames of the current Opus frame may not be simple
drop-in replacements for the contents of the previous Opus frame.
</t>
<t>
For example, when switching from 20 ms to 60 ms, the 60 ms Opus
frame may contain LBRR frames covering up to three prior 20 ms Opus
frames, even if those frames already contained LBRR frames covering some of
the same time periods.
When switching from 20 ms to 10 ms, the 10 ms Opus frame can
contain an LBRR frame covering at most half the prior 20 ms Opus frame,
potentially leaving a hole that needs to be concealed from even a single
packet loss.
When switching from mono to stereo, the LBRR frames in the first stereo Opus
frame MAY contain a non-trivial side channel.
</t>
<t>
In order to properly produce LBRR frames under all conditions, an encoder might
need to buffer up to 60 ms of audio and re-encode it during these
transitions.
However, the reference implementation opts to disable LBRR frames at the
transition point for simplicity.
</t>
<t>
The LBRR frames immediately follow the LBRR flags, prior to any regular SILK
frames.
<xref target="silk_frame"/> describes their exact contents.
LBRR frames do not include their own separate VAD flags.
LBRR frames are only meant to be transmitted for active speech, thus all LBRR
frames are treated as active.
</t>
<t>
In a stereo Opus frame longer than 20 ms, although the per-frame LBRR
flags for the mid channel are coded as a unit before the per-frame LBRR flags
for the side channel, the LBRR frames themselves are interleaved.
The decoder parses an LBRR frame for the mid channel of a given 20 ms
interval (if present) and then immediately parses the corresponding LBRR
frame for the side channel (if present), before proceeding to the next
20 ms interval.
</t>
</section>
<section anchor="silk_regular_frames" title="Regular SILK Frames">
<t>
The regular SILK frame(s) follow the LBRR frames (if any).
<xref target="silk_frame"/> describes their contents, as well.
Unlike the LBRR frames, a regular SILK frame is coded for each time interval in
an Opus frame, even if the corresponding VAD flags are unset.
For stereo Opus frames longer than 20 ms, the regular mid and side SILK
frames for each 20 ms interval are interleaved, just as with the LBRR
frames.
The side frame may be skipped by coding an appropriate flag, as detailed in
<xref target="silk_mid_only_flag"/>.
</t>
</section>
<section anchor="silk_frame" title="SILK Frame Contents">
<t>
Each SILK frame includes a set of side information that encodes
<list style="symbols">
<t>The frame type and quantization type (<xref target="silk_frame_type"/>),</t>
<t>Quantization gains (<xref target="silk_gains"/>),</t>
<t>Short-term prediction filter coefficients (<xref target="silk_nlsfs"/>),</t>
<t>An LSF interpolation weight (<xref target="silk_nlsf_interpolation"/>),</t>
<t>
Long-term prediction filter lags and gains (<xref target="silk_ltp_params"/>),
and
</t>
<t>A linear congruential generator (LCG) seed (<xref target="silk_seed"/>).</t>
</list>
The quantized excitation signal (see <xref target="silk_excitation"/>) follows
these at the end of the frame.
<xref target="silk_frame_symbols"/> details the overall organization of a
SILK frame.
</t>
<texttable anchor="silk_frame_symbols"
title="Order of the symbols in an individual SILK frame">
<ttcol align="center">Symbol(s)</ttcol>
<ttcol align="center">PDF(s)</ttcol>
<ttcol align="center">Condition</ttcol>
<c>Stereo Prediction Weights</c>
<c><xref target="silk_stereo_pred_pdfs"/></c>
<c><xref target="silk_stereo_pred"/></c>
<c>Mid-only Flag</c>
<c><xref target="silk_mid_only_pdf"/></c>
<c><xref target="silk_mid_only_flag"/></c>
<c>Frame Type</c>
<c><xref target="silk_frame_type"/></c>
<c/>
<c>Subframe Gains</c>
<c><xref target="silk_gains"/></c>
<c/>
<c>Normalized LSF Stage 1 Index</c>
<c><xref target="silk_nlsf_stage1_pdfs"/></c>
<c/>
<c>Normalized LSF Stage 2 Residual</c>
<c><xref target="silk_nlsf_stage2"/></c>
<c/>
<c>Normalized LSF Interpolation Weight</c>
<c><xref target="silk_nlsf_interp_pdf"/></c>
<c>20 ms frame</c>
<c>Primary Pitch Lag</c>
<c><xref target="silk_ltp_lags"/></c>
<c>Voiced frame</c>
<c>Subframe Pitch Contour</c>
<c><xref target="silk_pitch_contour_pdfs"/></c>
<c>Voiced frame</c>
<c>Periodicity Index</c>
<c><xref target="silk_perindex_pdf"/></c>
<c>Voiced frame</c>
<c>LTP Filter</c>
<c><xref target="silk_ltp_filter_pdfs"/></c>
<c>Voiced frame</c>
<c>LTP Scaling</c>
<c><xref target="silk_ltp_scaling_pdf"/></c>
<c><xref target="silk_ltp_scaling"/></c>
<c>LCG Seed</c>
<c><xref target="silk_seed_pdf"/></c>
<c/>
<c>Excitation Rate Level</c>
<c><xref target="silk_rate_level_pdfs"/></c>
<c/>
<c>Excitation Pulse Counts</c>
<c><xref target="silk_pulse_count_pdfs"/></c>
<c/>
<c>Excitation Pulse Locations</c>
<c><xref target="silk_pulse_locations"/></c>
<c>Non-zero pulse count</c>
<c>Excitation LSBs</c>
<c><xref target="silk_shell_lsb_pdf"/></c>
<c><xref target="silk_pulse_counts"/></c>
<c>Excitation Signs</c>
<c><xref target="silk_sign_pdfs"/></c>
<c/>
</texttable>
<section anchor="silk_stereo_pred" toc="include"
title="Stereo Prediction Weights">
<t>
A SILK frame corresponding to the mid channel of a stereo Opus frame begins
with a pair of side channel prediction weights, designed such that zeros
indicate normal mid-side coupling.
Since these weights can change on every frame, the first portion of each frame
linearly interpolates between the previous weights and the current ones, using
zeros for the previous weights if none are available.
These prediction weights are never included in a mono Opus frame, and the
previous weights are reset to zeros on any transition from mono to stereo.
They are also not included in an LBRR frame for the side channel, even if the
LBRR flags indicate the corresponding mid channel was not coded.
In that case, the previous weights are used, again substituting in zeros if no
previous weights are available since the last decoder reset
(see <xref target="decoder-reset"/>).
</t>
<t>
To summarize, these weights are coded if and only if
<list style="symbols">
<t>This is a stereo Opus frame (<xref target="toc_byte"/>), and</t>
<t>The current SILK frame corresponds to the mid channel.</t>
</list>
</t>
<t>
The prediction weights are coded in three separate pieces, which are decoded
by silk_stereo_decode_pred() (decode_stereo_pred.c).
The first piece jointly codes the high-order part of a table index for both
weights.
The second piece codes the low-order part of each table index.
The third piece codes an offset used to linearly interpolate between table
indices.
The details are as follows.
</t>
<t>
Let n be an index decoded with the 25-element stage-1 PDF in
<xref target="silk_stereo_pred_pdfs"/>.
Then let i0 and i1 be indices decoded with the stage-2 and stage-3 PDFs in
<xref target="silk_stereo_pred_pdfs"/>, respectively, and let i2 and i3
be two more indices decoded with the stage-2 and stage-3 PDFs, all in that
order.
</t>
<texttable anchor="silk_stereo_pred_pdfs" title="Stereo Weight PDFs">
<ttcol align="left">Stage</ttcol>
<ttcol align="left">PDF</ttcol>
<c>Stage 1</c>
<c>{7, 2, 1, 1, 1,
10, 24, 8, 1, 1,
3, 23, 92, 23, 3,
1, 1, 8, 24, 10,
1, 1, 1, 2, 7}/256</c>
<c>Stage 2</c>
<c>{85, 86, 85}/256</c>
<c>Stage 3</c>
<c>{51, 51, 52, 51, 51}/256</c>
</texttable>
<t>
Then use n, i0, and i2 to form two table indices, wi0 and wi1, according to
<figure align="center">
<artwork align="center"><![CDATA[
wi0 = i0 + 3*(n/5)
wi1 = i2 + 3*(n%5)
]]></artwork>
</figure>
where the division is exact integer division.
The range of these indices is 0 to 14, inclusive.
Let w[i] be the i'th weight from <xref target="silk_stereo_weights_table"/>.
Then the two prediction weights, w0_Q13 and w1_Q13, are
<figure align="center">
<artwork align="center"><![CDATA[
w1_Q13 = w_Q13[wi1]
+ ((w_Q13[wi1+1] - w_Q13[wi1])*6554) >> 16)*(2*i3 + 1)
w0_Q13 = w_Q13[wi0]
+ ((w_Q13[wi0+1] - w_Q13[wi0])*6554) >> 16)*(2*i1 + 1)
- w1_Q13
]]></artwork>
</figure>
N.b., w1_Q13 is computed first here, because w0_Q13 depends on it.
</t>
<texttable anchor="silk_stereo_weights_table"
title="Stereo Weight Table">
<ttcol align="left">Index</ttcol>
<ttcol align="right">Weight (Q13)</ttcol>
<c>0</c> <c>-13732</c>
<c>1</c> <c>-10050</c>
<c>2</c> <c>-8266</c>
<c>3</c> <c>-7526</c>
<c>4</c> <c>-6500</c>
<c>5</c> <c>-5000</c>
<c>6</c> <c>-2950</c>
<c>7</c> <c>-820</c>
<c>8</c> <c>820</c>
<c>9</c> <c>2950</c>
<c>10</c> <c>5000</c>
<c>11</c> <c>6500</c>
<c>12</c> <c>7526</c>
<c>13</c> <c>8266</c>
<c>14</c> <c>10050</c>
<c>15</c> <c>13732</c>
</texttable>
</section>
<section anchor="silk_mid_only_flag" toc="include" title="Mid-only Flag">
<t>
A flag appears after the stereo prediction weights that indicates if only the
mid channel is coded for this time interval.
It appears only when
<list style="symbols">
<t>This is a stereo Opus frame (see <xref target="toc_byte"/>),</t>
<t>The current SILK frame corresponds to the mid channel, and</t>
<t>Either
<list style="symbols">
<t>This is a regular SILK frame where the VAD flags
(see <xref target="silk_header_bits"/>) indicate that the corresponding side
channel is not active.</t>
<t>
This is an LBRR frame where the LBRR flags
(see <xref target="silk_header_bits"/> and <xref target="silk_lbrr_flags"/>)
indicate that the corresponding side channel is not coded.
</t>
</list>
</t>
</list>
It is omitted when there are no stereo weights, for all of the same reasons.
It is also omitted for a regular SILK frame when the VAD flag of the
corresponding side channel frame is set (indicating it is active).
The side channel must be coded in this case, making the mid-only flag
redundant.
It is also omitted for an LBRR frame when the corresponding LBRR flags
indicate the side channel is coded.
</t>
<t>
When the flag is present, the decoder reads a single value using the PDF in
<xref target="silk_mid_only_pdf"/>, as implemented in
silk_stereo_decode_mid_only() (decode_stereo_pred.c).
If the flag is set, then there is no corresponding SILK frame for the side
channel, the entire decoding process for the side channel is skipped, and
zeros are fed to the stereo unmixing process (see
<xref target="silk_stereo_unmixing"/>) instead.
As stated above, LBRR frames still include this flag when the LBRR flag
indicates that the side channel is not coded.
In that case, if this flag is zero (indicating that there should be a side
channel), then Packet Loss Concealment (PLC, see
<xref target="Packet Loss Concealment"/>) SHOULD be invoked to recover a
side channel signal.
</t>
<texttable anchor="silk_mid_only_pdf" title="Mid-only Flag PDF">
<ttcol align="left">PDF</ttcol>
<c>{192, 64}/256</c>
</texttable>
</section>
<section anchor="silk_frame_type" toc="include" title="Frame Type">
<t>
Each SILK frame contains a single "frame type" symbol that jointly codes the
signal type and quantization offset type of the corresponding frame.
If the current frame is a regular SILK frame whose VAD bit was not set (an
"inactive" frame), then the frame type symbol takes on a value of either 0 or
1 and is decoded using the first PDF in <xref target="silk_frame_type_pdfs"/>.
If the frame is an LBRR frame or a regular SILK frame whose VAD flag was set
(an "active" frame), then the value of the symbol may range from 2 to 5,
inclusive, and is decoded using the second PDF in
<xref target="silk_frame_type_pdfs"/>.
<xref target="silk_frame_type_table"/> translates between the value of the
frame type symbol and the corresponding signal type and quantization offset
type.
</t>
<texttable anchor="silk_frame_type_pdfs" title="Frame Type PDFs">
<ttcol>VAD Flag</ttcol>
<ttcol>PDF</ttcol>
<c>Inactive</c> <c>{26, 230, 0, 0, 0, 0}/256</c>
<c>Active</c> <c>{0, 0, 24, 74, 148, 10}/256</c>
</texttable>
<texttable anchor="silk_frame_type_table"
title="Signal Type and Quantization Offset Type from Frame Type">
<ttcol>Frame Type</ttcol>
<ttcol>Signal Type</ttcol>
<ttcol align="right">Quantization Offset Type</ttcol>
<c>0</c> <c>Inactive</c> <c>Low</c>
<c>1</c> <c>Inactive</c> <c>High</c>
<c>2</c> <c>Unvoiced</c> <c>Low</c>
<c>3</c> <c>Unvoiced</c> <c>High</c>
<c>4</c> <c>Voiced</c> <c>Low</c>
<c>5</c> <c>Voiced</c> <c>High</c>
</texttable>
</section>
<section anchor="silk_gains" toc="include" title="Subframe Gains">
<t>
A separate quantization gain is coded for each 5 ms subframe.
These gains control the step size between quantization levels of the excitation
signal and, therefore, the quality of the reconstruction.
They are independent of the pitch gains coded for voiced frames.
The quantization gains are themselves uniformly quantized to 6 bits on a
log scale, giving them a resolution of approximately 1.369 dB and a range
of approximately 1.94 dB to 88.21 dB.
</t>
<t>
The subframe gains are either coded independently, or relative to the gain from
the most recent coded subframe in the same channel.
Independent coding is used if and only if
<list style="symbols">
<t>
This is the first subframe in the current SILK frame, and
</t>
<t>Either
<list style="symbols">
<t>
This is the first SILK frame of its type (LBRR or regular) for this channel in
the current Opus frame, or
</t>
<t>
The previous SILK frame of the same type (LBRR or regular) for this channel in
the same Opus frame was not coded.
</t>
</list>
</t>
</list>
</t>
<t>
In an independently coded subframe gain, the 3 most significant bits of the
quantization gain are decoded using a PDF selected from
<xref target="silk_independent_gain_msb_pdfs"/> based on the decoded signal
type (see <xref target="silk_frame_type"/>).
</t>
<texttable anchor="silk_independent_gain_msb_pdfs"
title="PDFs for Independent Quantization Gain MSB Coding">
<ttcol align="left">Signal Type</ttcol>
<ttcol align="left">PDF</ttcol>
<c>Inactive</c> <c>{32, 112, 68, 29, 12, 1, 1, 1}/256</c>
<c>Unvoiced</c> <c>{2, 17, 45, 60, 62, 47, 19, 4}/256</c>
<c>Voiced</c> <c>{1, 3, 26, 71, 94, 50, 9, 2}/256</c>
</texttable>
<t>
The 3 least significant bits are decoded using a uniform PDF:
</t>
<texttable anchor="silk_independent_gain_lsb_pdf"
title="PDF for Independent Quantization Gain LSB Coding">
<ttcol align="left">PDF</ttcol>
<c>{32, 32, 32, 32, 32, 32, 32, 32}/256</c>
</texttable>
<t>
These 6 bits are combined to form a gain index between 0 and 63.
When the gain for the previous subframe is available, then the current gain is
limited as follows:
<figure align="center">
<artwork align="center"><![CDATA[
log_gain = max(gain_index, previous_log_gain - 16) .
]]></artwork>
</figure>
This may help some implementations limit the change in precision of their
internal LTP history.
The indices which this clamp applies to cannot simply be removed from the
codebook, because the previous gain index will not be available after packet
loss.
This step is skipped after a decoder reset, and in the side channel if the
previous frame in the side channel was not coded, since there is no previous
gain index.
It MAY also be skipped after packet loss.
</t>
<t>
For subframes which do not have an independent gain (including the first
subframe of frames not listed as using independent coding above), the
quantization gain is coded relative to the gain from the previous subframe (in
the same channel).
The PDF in <xref target="silk_delta_gain_pdf"/> yields a delta gain index
between 0 and 40, inclusive.
</t>
<texttable anchor="silk_delta_gain_pdf"
title="PDF for Delta Quantization Gain Coding">
<ttcol align="left">PDF</ttcol>
<c>{6, 5, 11, 31, 132, 21, 8, 4,
3, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
</texttable>
<t>
The following formula translates this index into a quantization gain for the
current subframe using the gain from the previous subframe:
<figure align="center">
<artwork align="center"><![CDATA[
log_gain = clamp(0, max(2*gain_index - 16,
previous_log_gain + gain_index - 4), 63) .
]]></artwork>
</figure>
</t>
<t>
silk_gains_dequant() (gain_quant.c) dequantizes log_gain for the k'th subframe
and converts it into a linear Q16 scale factor via
<figure align="center">
<artwork align="center"><![CDATA[
gain_Q16[k] = silk_log2lin((0x1D1C71*log_gain>>16) + 2090)
]]></artwork>
</figure>
</t>
<t>
The function silk_log2lin() (log2lin.c) computes an approximation of
2**(inLog_Q7/128.0), where inLog_Q7 is its Q7 input.
Let i = inLog_Q7>>7 be the integer part of inLogQ7 and
f = inLog_Q7&127 be the fractional part.
Then
<figure align="center">
<artwork align="center"><![CDATA[
(1<<i) + ((-174*f*(128-f)>>16)+f)*((1<<i)>>7)
]]></artwork>
</figure>
yields the approximate exponential.
The final Q16 gain values lies between 81920 and 1686110208, inclusive
(representing scale factors of 1.25 to 25728, respectively).
</t>
</section>
<section anchor="silk_nlsfs" toc="include" title="Normalized Line Spectral
Frequency (LSF) and Linear Predictive Coding (LPC) Coefficients">
<t>
A set of normalized Line Spectral Frequency (LSF) coefficients follow the
quantization gains in the bitstream, and represent the Linear Predictive
Coding (LPC) coefficients for the current SILK frame.
Once decoded, the normalized LSFs form an increasing list of Q15 values between
0 and 1.
These represent the interleaved zeros on the unit circle between 0 and pi
(hence "normalized") in the standard decomposition of the LPC filter into a
symmetric part and an anti-symmetric part (P and Q in
<xref target="silk_nlsf2lpc"/>).
Because of non-linear effects in the decoding process, an implementation SHOULD
match the fixed-point arithmetic described in this section exactly.
An encoder SHOULD also use the same process.
</t>
<t>
The normalized LSFs are coded using a two-stage vector quantizer (VQ)
(<xref target="silk_nlsf_stage1"/> and <xref target="silk_nlsf_stage2"/>).
NB and MB frames use an order-10 predictor, while WB frames use an order-16
predictor, and thus have different sets of tables.
After reconstructing the normalized LSFs
(<xref target="silk_nlsf_reconstruction"/>), the decoder runs them through a
stabilization process (<xref target="silk_nlsf_stabilization"/>), interpolates
them between frames (<xref target="silk_nlsf_interpolation"/>), converts them
back into LPC coefficients (<xref target="silk_nlsf2lpc"/>), and then runs
them through further processes to limit the range of the coefficients
(<xref target="silk_lpc_range_limit"/>) and the gain of the filter
(<xref target="silk_lpc_gain_limit"/>).
All of this is necessary to ensure the reconstruction process is stable.
</t>
<section anchor="silk_nlsf_stage1" title="Stage 1 Normalized LSF Decoding">
<t>
The first VQ stage uses a 32-element codebook, coded with one of the PDFs in
<xref target="silk_nlsf_stage1_pdfs"/>, depending on the audio bandwidth and
the signal type of the current SILK frame.
This yields a single index, I1, for the entire frame.
This indexes an element in a coarse codebook, selects the PDFs for the
second stage of the VQ, and selects the prediction weights used to remove
intra-frame redundancy from the second stage.
The actual codebook elements are listed in
<xref target="silk_nlsf_nbmb_codebook"/> and
<xref target="silk_nlsf_wb_codebook"/>, but they are not needed until the last
stages of reconstructing the LSF coefficients.
</t>
<texttable anchor="silk_nlsf_stage1_pdfs"
title="PDFs for Normalized LSF Index Stage-1 Decoding">
<ttcol align="left">Audio Bandwidth</ttcol>
<ttcol align="left">Signal Type</ttcol>
<ttcol align="left">PDF</ttcol>
<c>NB or MB</c> <c>Inactive or unvoiced</c>
<c>
{44, 34, 30, 19, 21, 12, 11, 3,
3, 2, 16, 2, 2, 1, 5, 2,
1, 3, 3, 1, 1, 2, 2, 2,
3, 1, 9, 9, 2, 7, 2, 1}/256
</c>
<c>NB or MB</c> <c>Voiced</c>
<c>
{1, 10, 1, 8, 3, 8, 8, 14,
13, 14, 1, 14, 12, 13, 11, 11,
12, 11, 10, 10, 11, 8, 9, 8,
7, 8, 1, 1, 6, 1, 6, 5}/256
</c>
<c>WB</c> <c>Inactive or unvoiced</c>
<c>
{31, 21, 3, 17, 1, 8, 17, 4,
1, 18, 16, 4, 2, 3, 1, 10,
1, 3, 16, 11, 16, 2, 2, 3,
2, 11, 1, 4, 9, 8, 7, 3}/256
</c>
<c>WB</c> <c>Voiced</c>
<c>
{1, 4, 16, 5, 18, 11, 5, 14,
15, 1, 3, 12, 13, 14, 14, 6,
14, 12, 2, 6, 1, 12, 12, 11,
10, 3, 10, 5, 1, 1, 1, 3}/256
</c>
</texttable>
</section>
<section anchor="silk_nlsf_stage2" title="Stage 2 Normalized LSF Decoding">
<t>
A total of 16 PDFs are available for the LSF residual in the second stage: the
8 (a...h) for NB and MB frames given in
<xref target="silk_nlsf_stage2_nbmb_pdfs"/>, and the 8 (i...p) for WB frames
given in <xref target="silk_nlsf_stage2_wb_pdfs"/>.
Which PDF is used for which coefficient is driven by the index, I1,
decoded in the first stage.
<xref target="silk_nlsf_nbmb_stage2_cb_sel"/> lists the letter of the
corresponding PDF for each normalized LSF coefficient for NB and MB, and
<xref target="silk_nlsf_wb_stage2_cb_sel"/> lists the same information for WB.
</t>
<texttable anchor="silk_nlsf_stage2_nbmb_pdfs"
title="PDFs for NB/MB Normalized LSF Index Stage-2 Decoding">
<ttcol align="left">Codebook</ttcol>
<ttcol align="left">PDF</ttcol>
<c>a</c> <c>{1, 1, 1, 15, 224, 11, 1, 1, 1}/256</c>
<c>b</c> <c>{1, 1, 2, 34, 183, 32, 1, 1, 1}/256</c>
<c>c</c> <c>{1, 1, 4, 42, 149, 55, 2, 1, 1}/256</c>
<c>d</c> <c>{1, 1, 8, 52, 123, 61, 8, 1, 1}/256</c>
<c>e</c> <c>{1, 3, 16, 53, 101, 74, 6, 1, 1}/256</c>
<c>f</c> <c>{1, 3, 17, 55, 90, 73, 15, 1, 1}/256</c>
<c>g</c> <c>{1, 7, 24, 53, 74, 67, 26, 3, 1}/256</c>
<c>h</c> <c>{1, 1, 18, 63, 78, 58, 30, 6, 1}/256</c>
</texttable>
<texttable anchor="silk_nlsf_stage2_wb_pdfs"
title="PDFs for WB Normalized LSF Index Stage-2 Decoding">
<ttcol align="left">Codebook</ttcol>
<ttcol align="left">PDF</ttcol>
<c>i</c> <c>{1, 1, 1, 9, 232, 9, 1, 1, 1}/256</c>
<c>j</c> <c>{1, 1, 2, 28, 186, 35, 1, 1, 1}/256</c>
<c>k</c> <c>{1, 1, 3, 42, 152, 53, 2, 1, 1}/256</c>
<c>l</c> <c>{1, 1, 10, 49, 126, 65, 2, 1, 1}/256</c>
<c>m</c> <c>{1, 4, 19, 48, 100, 77, 5, 1, 1}/256</c>
<c>n</c> <c>{1, 1, 14, 54, 100, 72, 12, 1, 1}/256</c>
<c>o</c> <c>{1, 1, 15, 61, 87, 61, 25, 4, 1}/256</c>
<c>p</c> <c>{1, 7, 21, 50, 77, 81, 17, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_nlsf_nbmb_stage2_cb_sel"
title="Codebook Selection for NB/MB Normalized LSF Index Stage 2 Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8 9</spanx></c>
<c> 0</c>
<c><spanx style="vbare">a a a a a a a a a a</spanx></c>
<c> 1</c>
<c><spanx style="vbare">b d b c c b c b b b</spanx></c>
<c> 2</c>
<c><spanx style="vbare">c b b b b b b b b b</spanx></c>
<c> 3</c>
<c><spanx style="vbare">b c c c c b c b b b</spanx></c>
<c> 4</c>
<c><spanx style="vbare">c d d d d c c c c c</spanx></c>
<c> 5</c>
<c><spanx style="vbare">a f d d c c c c b b</spanx></c>
<c> g</c>
<c><spanx style="vbare">a c c c c c c c c b</spanx></c>
<c> 7</c>
<c><spanx style="vbare">c d g e e e f e f f</spanx></c>
<c> 8</c>
<c><spanx style="vbare">c e f f e f e g e e</spanx></c>
<c> 9</c>
<c><spanx style="vbare">c e e h e f e f f e</spanx></c>
<c>10</c>
<c><spanx style="vbare">e d d d c d c c c c</spanx></c>
<c>11</c>
<c><spanx style="vbare">b f f g e f e f f f</spanx></c>
<c>12</c>
<c><spanx style="vbare">c h e g f f f f f f</spanx></c>
<c>13</c>
<c><spanx style="vbare">c h f f f f f g f e</spanx></c>
<c>14</c>
<c><spanx style="vbare">d d f e e f e f e e</spanx></c>
<c>15</c>
<c><spanx style="vbare">c d d f f e e e e e</spanx></c>
<c>16</c>
<c><spanx style="vbare">c e e g e f e f f f</spanx></c>
<c>17</c>
<c><spanx style="vbare">c f e g f f f e f e</spanx></c>
<c>18</c>
<c><spanx style="vbare">c h e f e f e f f f</spanx></c>
<c>19</c>
<c><spanx style="vbare">c f e g h g f g f e</spanx></c>
<c>20</c>
<c><spanx style="vbare">d g h e g f f g e f</spanx></c>
<c>21</c>
<c><spanx style="vbare">c h g e e e f e f f</spanx></c>
<c>22</c>
<c><spanx style="vbare">e f f e g g f g f e</spanx></c>
<c>23</c>
<c><spanx style="vbare">c f f g f g e g e e</spanx></c>
<c>24</c>
<c><spanx style="vbare">e f f f d h e f f e</spanx></c>
<c>25</c>
<c><spanx style="vbare">c d e f f g e f f e</spanx></c>
<c>26</c>
<c><spanx style="vbare">c d c d d e c d d d</spanx></c>
<c>27</c>
<c><spanx style="vbare">b b c c c c c d c c</spanx></c>
<c>28</c>
<c><spanx style="vbare">e f f g g g f g e f</spanx></c>
<c>29</c>
<c><spanx style="vbare">d f f e e e e d d c</spanx></c>
<c>30</c>
<c><spanx style="vbare">c f d h f f e e f e</spanx></c>
<c>31</c>
<c><spanx style="vbare">e e f e f g f g f e</spanx></c>
</texttable>
<texttable anchor="silk_nlsf_wb_stage2_cb_sel"
title="Codebook Selection for WB Normalized LSF Index Stage 2 Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</spanx></c>
<c> 0</c>
<c><spanx style="vbare">i i i i i i i i i i i i i i i i</spanx></c>
<c> 1</c>
<c><spanx style="vbare">k l l l l l k k k k k j j j i l</spanx></c>
<c> 2</c>
<c><spanx style="vbare">k n n l p m m n k n m n n m l l</spanx></c>
<c> 3</c>
<c><spanx style="vbare">i k j k k j j j j j i i i i i j</spanx></c>
<c> 4</c>
<c><spanx style="vbare">i o n m o m p n m m m n n m m l</spanx></c>
<c> 5</c>
<c><spanx style="vbare">i l n n m l l n l l l l l l k m</spanx></c>
<c> 6</c>
<c><spanx style="vbare">i i i i i i i i i i i i i i i i</spanx></c>
<c> 7</c>
<c><spanx style="vbare">i k o l p k n l m n n m l l k l</spanx></c>
<c> 8</c>
<c><spanx style="vbare">i o k o o m n m o n m m n l l l</spanx></c>
<c> 9</c>
<c><spanx style="vbare">k j i i i i i i i i i i i i i i</spanx></c>
<c>10</c>
<c><spanx style="vbare">i j i i i i i i i i i i i i i j</spanx></c>
<c>11</c>
<c><spanx style="vbare">k k l m n l l l l l l l k k j l</spanx></c>
<c>12</c>
<c><spanx style="vbare">k k l l m l l l l l l l l k j l</spanx></c>
<c>13</c>
<c><spanx style="vbare">l m m m o m m n l n m m n m l m</spanx></c>
<c>14</c>
<c><spanx style="vbare">i o m n m p n k o n p m m l n l</spanx></c>
<c>15</c>
<c><spanx style="vbare">i j i j j j j j j j i i i i j i</spanx></c>
<c>16</c>
<c><spanx style="vbare">j o n p n m n l m n m m m l l m</spanx></c>
<c>17</c>
<c><spanx style="vbare">j l l m m l l n k l l n n n l m</spanx></c>
<c>18</c>
<c><spanx style="vbare">k l l k k k l k j k j k j j j m</spanx></c>
<c>19</c>
<c><spanx style="vbare">i k l n l l k k k j j i i i i i</spanx></c>
<c>20</c>
<c><spanx style="vbare">l m l n l l k k j j j j j k k m</spanx></c>
<c>21</c>
<c><spanx style="vbare">k o l p p m n m n l n l l k l l</spanx></c>
<c>22</c>
<c><spanx style="vbare">k l n o o l n l m m l l l l k m</spanx></c>
<c>23</c>
<c><spanx style="vbare">j l l m m m m l n n n l j j j j</spanx></c>
<c>24</c>
<c><spanx style="vbare">k n l o o m p m m n l m m l l l</spanx></c>
<c>25</c>
<c><spanx style="vbare">i o j j i i i i i i i i i i i i</spanx></c>
<c>26</c>
<c><spanx style="vbare">i o o l n k n n l m m p p m m m</spanx></c>
<c>27</c>
<c><spanx style="vbare">l l p l n m l l l k k l l l k l</spanx></c>
<c>28</c>
<c><spanx style="vbare">i i j i i i k j k j j k k k j j</spanx></c>
<c>29</c>
<c><spanx style="vbare">i l k n l l k l k j i i j i i j</spanx></c>
<c>30</c>
<c><spanx style="vbare">l n n m p n l l k l k k j i j i</spanx></c>
<c>31</c>
<c><spanx style="vbare">k l n l m l l l k j k o m i i i</spanx></c>
</texttable>
<t>
Decoding the second stage residual proceeds as follows.
For each coefficient, the decoder reads a symbol using the PDF corresponding to
I1 from either <xref target="silk_nlsf_nbmb_stage2_cb_sel"/> or
<xref target="silk_nlsf_wb_stage2_cb_sel"/>, and subtracts 4 from the result
to give an index in the range -4 to 4, inclusive.
If the index is either -4 or 4, it reads a second symbol using the PDF in
<xref target="silk_nlsf_ext_pdf"/>, and adds the value of this second symbol
to the index, using the same sign.
This gives the index, I2[k], a total range of -10 to 10, inclusive.
</t>
<texttable anchor="silk_nlsf_ext_pdf"
title="PDF for Normalized LSF Index Extension Decoding">
<ttcol align="left">PDF</ttcol>
<c>{156, 60, 24, 9, 4, 2, 1}/256</c>
</texttable>
<t>
The decoded indices from both stages are translated back into normalized LSF
coefficients in silk_NLSF_decode() (NLSF_decode.c).
The stage-2 indices represent residuals after both the first stage of the VQ
and a separate backwards-prediction step.
The backwards prediction process in the encoder subtracts a prediction from
each residual formed by a multiple of the coefficient that follows it.
The decoder must undo this process.
<xref target="silk_nlsf_pred_weights"/> contains lists of prediction weights
for each coefficient.
There are two lists for NB and MB, and another two lists for WB, giving two
possible prediction weights for each coefficient.
</t>
<texttable anchor="silk_nlsf_pred_weights"
title="Prediction Weights for Normalized LSF Decoding">
<ttcol align="left">Coefficient</ttcol>
<ttcol align="right">A</ttcol>
<ttcol align="right">B</ttcol>
<ttcol align="right">C</ttcol>
<ttcol align="right">D</ttcol>
<c>0</c> <c>179</c> <c>116</c> <c>175</c> <c>68</c>
<c>1</c> <c>138</c> <c>67</c> <c>148</c> <c>62</c>
<c>2</c> <c>140</c> <c>82</c> <c>160</c> <c>66</c>
<c>3</c> <c>148</c> <c>59</c> <c>176</c> <c>60</c>
<c>4</c> <c>151</c> <c>92</c> <c>178</c> <c>72</c>
<c>5</c> <c>149</c> <c>72</c> <c>173</c> <c>117</c>
<c>6</c> <c>153</c> <c>100</c> <c>174</c> <c>85</c>
<c>7</c> <c>151</c> <c>89</c> <c>164</c> <c>90</c>
<c>8</c> <c>163</c> <c>92</c> <c>177</c> <c>118</c>
<c>9</c> <c/> <c/> <c>174</c> <c>136</c>
<c>10</c> <c/> <c/> <c>196</c> <c>151</c>
<c>11</c> <c/> <c/> <c>182</c> <c>142</c>
<c>12</c> <c/> <c/> <c>198</c> <c>160</c>
<c>13</c> <c/> <c/> <c>192</c> <c>142</c>
<c>14</c> <c/> <c/> <c>182</c> <c>155</c>
</texttable>
<t>
The prediction is undone using the procedure implemented in
silk_NLSF_residual_dequant() (NLSF_decode.c), which is as follows.
Each coefficient selects its prediction weight from one of the two lists based
on the stage-1 index, I1.
<xref target="silk_nlsf_nbmb_weight_sel"/> gives the selections for each
coefficient for NB and MB, and <xref target="silk_nlsf_wb_weight_sel"/> gives
the selections for WB.
Let d_LPC be the order of the codebook, i.e., 10 for NB and MB, and 16 for WB,
and let pred_Q8[k] be the weight for the k'th coefficient selected by this
process for 0 <= k < d_LPC-1.
Then, the stage-2 residual for each coefficient is computed via
<figure align="center">
<artwork align="center"><![CDATA[
res_Q10[k] = (k+1 < d_LPC ? (res_Q10[k+1]*pred_Q8[k])>>8 : 0)
+ ((((I2[k]<<10) - sign(I2[k])*102)*qstep)>>16) ,
]]></artwork>
</figure>
where qstep is the Q16 quantization step size, which is 11796 for NB and MB
and 9830 for WB (representing step sizes of approximately 0.18 and 0.15,
respectively).
</t>
<texttable anchor="silk_nlsf_nbmb_weight_sel"
title="Prediction Weight Selection for NB/MB Normalized LSF Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8</spanx></c>
<c> 0</c>
<c><spanx style="vbare">A B A A A A A A A</spanx></c>
<c> 1</c>
<c><spanx style="vbare">B A A A A A A A A</spanx></c>
<c> 2</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c> 3</c>
<c><spanx style="vbare">B B B A A A A B A</spanx></c>
<c> 4</c>
<c><spanx style="vbare">A B A A A A A A A</spanx></c>
<c> 5</c>
<c><spanx style="vbare">A B A A A A A A A</spanx></c>
<c> 6</c>
<c><spanx style="vbare">B A B B A A A B A</spanx></c>
<c> 7</c>
<c><spanx style="vbare">A B B A A B B A A</spanx></c>
<c> 8</c>
<c><spanx style="vbare">A A B B A B A B B</spanx></c>
<c> 9</c>
<c><spanx style="vbare">A A B B A A B B B</spanx></c>
<c>10</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c>11</c>
<c><spanx style="vbare">A B A B B B B B A</spanx></c>
<c>12</c>
<c><spanx style="vbare">A B A B B B B B A</spanx></c>
<c>13</c>
<c><spanx style="vbare">A B B B B B B B A</spanx></c>
<c>14</c>
<c><spanx style="vbare">B A B B A B B B B</spanx></c>
<c>15</c>
<c><spanx style="vbare">A B B B B B A B A</spanx></c>
<c>16</c>
<c><spanx style="vbare">A A B B A B A B A</spanx></c>
<c>17</c>
<c><spanx style="vbare">A A B B B A B B B</spanx></c>
<c>18</c>
<c><spanx style="vbare">A B B A A B B B A</spanx></c>
<c>19</c>
<c><spanx style="vbare">A A A B B B A B A</spanx></c>
<c>20</c>
<c><spanx style="vbare">A B B A A B A B A</spanx></c>
<c>21</c>
<c><spanx style="vbare">A B B A A A B B A</spanx></c>
<c>22</c>
<c><spanx style="vbare">A A A A A B B B B</spanx></c>
<c>23</c>
<c><spanx style="vbare">A A B B A A A B B</spanx></c>
<c>24</c>
<c><spanx style="vbare">A A A B A B B B B</spanx></c>
<c>25</c>
<c><spanx style="vbare">A B B B B B B B A</spanx></c>
<c>26</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c>27</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c>28</c>
<c><spanx style="vbare">A A B A B B A B A</spanx></c>
<c>29</c>
<c><spanx style="vbare">B A A B A A A A A</spanx></c>
<c>30</c>
<c><spanx style="vbare">A A A B B A B A B</spanx></c>
<c>31</c>
<c><spanx style="vbare">B A B B A B B B B</spanx></c>
</texttable>
<texttable anchor="silk_nlsf_wb_weight_sel"
title="Prediction Weight Selection for WB Normalized LSF Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8 9 10 11 12 13 14</spanx></c>
<c> 0</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c> 1</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C C</spanx></c>
<c> 2</c>
<c><spanx style="vbare">C C D C C D D D C D D D D C C</spanx></c>
<c> 3</c>
<c><spanx style="vbare">C C C C C C C C C C C C D C C</spanx></c>
<c> 4</c>
<c><spanx style="vbare">C D D C D C D D C D D D D D C</spanx></c>
<c> 5</c>
<c><spanx style="vbare">C C D C C C C C C C C C C C C</spanx></c>
<c> 6</c>
<c><spanx style="vbare">D C C C C C C C C C C D C D C</spanx></c>
<c> 7</c>
<c><spanx style="vbare">C D D C C C D C D D D C D C D</spanx></c>
<c> 8</c>
<c><spanx style="vbare">C D C D D C D C D C D D D D D</spanx></c>
<c> 9</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>10</c>
<c><spanx style="vbare">C D C C C C C C C C C C C C C</spanx></c>
<c>11</c>
<c><spanx style="vbare">C C D C D D D D D D D C D C C</spanx></c>
<c>12</c>
<c><spanx style="vbare">C C D C C D C D C D C C D C C</spanx></c>
<c>13</c>
<c><spanx style="vbare">C C C C D D C D C D D D D C C</spanx></c>
<c>14</c>
<c><spanx style="vbare">C D C C C D D C D D D C D D D</spanx></c>
<c>15</c>
<c><spanx style="vbare">C C D D C C C C C C C C D D C</spanx></c>
<c>16</c>
<c><spanx style="vbare">C D D C D C D D D D D C D C C</spanx></c>
<c>17</c>
<c><spanx style="vbare">C C D C C C C D C C D D D C C</spanx></c>
<c>18</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>19</c>
<c><spanx style="vbare">C C C C C C C C C C C C D C C</spanx></c>
<c>20</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C C</spanx></c>
<c>21</c>
<c><spanx style="vbare">C D C D C D D C D C D C D D C</spanx></c>
<c>22</c>
<c><spanx style="vbare">C C D D D D C D D C C D D C C</spanx></c>
<c>23</c>
<c><spanx style="vbare">C D D C D C D C D C C C C D C</spanx></c>
<c>24</c>
<c><spanx style="vbare">C C C D D C D C D D D D D D D</spanx></c>
<c>25</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>26</c>
<c><spanx style="vbare">C D D C C C D D C C D D D D D</spanx></c>
<c>27</c>
<c><spanx style="vbare">C C C C C D C D D D D C D D D</spanx></c>
<c>28</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>29</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>30</c>
<c><spanx style="vbare">D C C C C C C C C C C D C C C</spanx></c>
<c>31</c>
<c><spanx style="vbare">C C D C C D D D C C D C C D C</spanx></c>
</texttable>
</section>
<section anchor="silk_nlsf_reconstruction"
title="Reconstructing the Normalized LSF Coefficients">
<t>
Once the stage-1 index I1 and the stage-2 residual res_Q10[] have been decoded,
the final normalized LSF coefficients can be reconstructed.
</t>
<t>
The spectral distortion introduced by the quantization of each LSF coefficient
varies, so the stage-2 residual is weighted accordingly, using the
low-complexity Inverse Harmonic Mean Weighting (IHMW) function proposed in
<xref target="laroia-icassp"/>.
The weights are derived directly from the stage-1 codebook vector.
Let cb1_Q8[k] be the k'th entry of the stage-1 codebook vector from
<xref target="silk_nlsf_nbmb_codebook"/> or
<xref target="silk_nlsf_wb_codebook"/>.
Then for 0 <= k < d_LPC the following expression
computes the square of the weight as a Q18 value:
<figure align="center">
<artwork align="center">
<![CDATA[
w2_Q18[k] = (1024/(cb1_Q8[k] - cb1_Q8[k-1])
+ 1024/(cb1_Q8[k+1] - cb1_Q8[k])) << 16 ,
]]>
</artwork>
</figure>
where cb1_Q8[-1] = 0 and cb1_Q8[d_LPC] = 256, and the
division is exact integer division.
This is reduced to an unsquared, Q9 value using the following square-root
approximation:
<figure align="center">
<artwork align="center"><![CDATA[
i = ilog(w2_Q18[k])
f = (w2_Q18[k]>>(i-8)) & 127
y = ((i&1) ? 32768 : 46214) >> ((32-i)>>1)
w_Q9[k] = y + ((213*f*y)>>16)
]]></artwork>
</figure>
The cb1_Q8[] vector completely determines these weights, and they may be
tabulated and stored as 13-bit unsigned values (with a range of 1819 to 5227,
inclusive) to avoid computing them when decoding.
The reference implementation already requires code to compute these weights on
unquantized coefficients in the encoder, in silk_NLSF_VQ_weights_laroia()
(NLSF_VQ_weights_laroia.c) and its callers, so it reuses that code in the
decoder instead of using a pre-computed table to reduce the amount of ROM
required.
</t>
<texttable anchor="silk_nlsf_nbmb_codebook"
title="Codebook Vectors for NB/MB Normalized LSF Stage 1 Decoding">
<ttcol>I1</ttcol>
<ttcol>Codebook (Q8)</ttcol>
<c/>
<c><spanx style="vbare"> 0 1 2 3 4 5 6 7 8 9</spanx></c>
<c>0</c>
<c><spanx style="vbare">12 35 60 83 108 132 157 180 206 228</spanx></c>
<c>1</c>
<c><spanx style="vbare">15 32 55 77 101 125 151 175 201 225</spanx></c>
<c>2</c>
<c><spanx style="vbare">19 42 66 89 114 137 162 184 209 230</spanx></c>
<c>3</c>
<c><spanx style="vbare">12 25 50 72 97 120 147 172 200 223</spanx></c>
<c>4</c>
<c><spanx style="vbare">26 44 69 90 114 135 159 180 205 225</spanx></c>
<c>5</c>
<c><spanx style="vbare">13 22 53 80 106 130 156 180 205 228</spanx></c>
<c>6</c>
<c><spanx style="vbare">15 25 44 64 90 115 142 168 196 222</spanx></c>
<c>7</c>
<c><spanx style="vbare">19 24 62 82 100 120 145 168 190 214</spanx></c>
<c>8</c>
<c><spanx style="vbare">22 31 50 79 103 120 151 170 203 227</spanx></c>
<c>9</c>
<c><spanx style="vbare">21 29 45 65 106 124 150 171 196 224</spanx></c>
<c>10</c>
<c><spanx style="vbare">30 49 75 97 121 142 165 186 209 229</spanx></c>
<c>11</c>
<c><spanx style="vbare">19 25 52 70 93 116 143 166 192 219</spanx></c>
<c>12</c>
<c><spanx style="vbare">26 34 62 75 97 118 145 167 194 217</spanx></c>
<c>13</c>
<c><spanx style="vbare">25 33 56 70 91 113 143 165 196 223</spanx></c>
<c>14</c>
<c><spanx style="vbare">21 34 51 72 97 117 145 171 196 222</spanx></c>
<c>15</c>
<c><spanx style="vbare">20 29 50 67 90 117 144 168 197 221</spanx></c>
<c>16</c>
<c><spanx style="vbare">22 31 48 66 95 117 146 168 196 222</spanx></c>
<c>17</c>
<c><spanx style="vbare">24 33 51 77 116 134 158 180 200 224</spanx></c>
<c>18</c>
<c><spanx style="vbare">21 28 70 87 106 124 149 170 194 217</spanx></c>
<c>19</c>
<c><spanx style="vbare">26 33 53 64 83 117 152 173 204 225</spanx></c>
<c>20</c>
<c><spanx style="vbare">27 34 65 95 108 129 155 174 210 225</spanx></c>
<c>21</c>
<c><spanx style="vbare">20 26 72 99 113 131 154 176 200 219</spanx></c>
<c>22</c>
<c><spanx style="vbare">34 43 61 78 93 114 155 177 205 229</spanx></c>
<c>23</c>
<c><spanx style="vbare">23 29 54 97 124 138 163 179 209 229</spanx></c>
<c>24</c>
<c><spanx style="vbare">30 38 56 89 118 129 158 178 200 231</spanx></c>
<c>25</c>
<c><spanx style="vbare">21 29 49 63 85 111 142 163 193 222</spanx></c>
<c>26</c>
<c><spanx style="vbare">27 48 77 103 133 158 179 196 215 232</spanx></c>
<c>27</c>
<c><spanx style="vbare">29 47 74 99 124 151 176 198 220 237</spanx></c>
<c>28</c>
<c><spanx style="vbare">33 42 61 76 93 121 155 174 207 225</spanx></c>
<c>29</c>
<c><spanx style="vbare">29 53 87 112 136 154 170 188 208 227</spanx></c>
<c>30</c>
<c><spanx style="vbare">24 30 52 84 131 150 166 186 203 229</spanx></c>
<c>31</c>
<c><spanx style="vbare">37 48 64 84 104 118 156 177 201 230</spanx></c>
</texttable>
<texttable anchor="silk_nlsf_wb_codebook"
title="Codebook Vectors for WB Normalized LSF Stage 1 Decoding">
<ttcol>I1</ttcol>
<ttcol>Codebook (Q8)</ttcol>
<c/>
<c><spanx style="vbare"> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</spanx></c>
<c>0</c>
<c><spanx style="vbare"> 7 23 38 54 69 85 100 116 131 147 162 178 193 208 223 239</spanx></c>
<c>1</c>
<c><spanx style="vbare">13 25 41 55 69 83 98 112 127 142 157 171 187 203 220 236</spanx></c>
<c>2</c>
<c><spanx style="vbare">15 21 34 51 61 78 92 106 126 136 152 167 185 205 225 240</spanx></c>
<c>3</c>
<c><spanx style="vbare">10 21 36 50 63 79 95 110 126 141 157 173 189 205 221 237</spanx></c>
<c>4</c>
<c><spanx style="vbare">17 20 37 51 59 78 89 107 123 134 150 164 184 205 224 240</spanx></c>
<c>5</c>
<c><spanx style="vbare">10 15 32 51 67 81 96 112 129 142 158 173 189 204 220 236</spanx></c>
<c>6</c>
<c><spanx style="vbare"> 8 21 37 51 65 79 98 113 126 138 155 168 179 192 209 218</spanx></c>
<c>7</c>
<c><spanx style="vbare">12 15 34 55 63 78 87 108 118 131 148 167 185 203 219 236</spanx></c>
<c>8</c>
<c><spanx style="vbare">16 19 32 36 56 79 91 108 118 136 154 171 186 204 220 237</spanx></c>
<c>9</c>
<c><spanx style="vbare">11 28 43 58 74 89 105 120 135 150 165 180 196 211 226 241</spanx></c>
<c>10</c>
<c><spanx style="vbare"> 6 16 33 46 60 75 92 107 123 137 156 169 185 199 214 225</spanx></c>
<c>11</c>
<c><spanx style="vbare">11 19 30 44 57 74 89 105 121 135 152 169 186 202 218 234</spanx></c>
<c>12</c>
<c><spanx style="vbare">12 19 29 46 57 71 88 100 120 132 148 165 182 199 216 233</spanx></c>
<c>13</c>
<c><spanx style="vbare">17 23 35 46 56 77 92 106 123 134 152 167 185 204 222 237</spanx></c>
<c>14</c>
<c><spanx style="vbare">14 17 45 53 63 75 89 107 115 132 151 171 188 206 221 240</spanx></c>
<c>15</c>
<c><spanx style="vbare"> 9 16 29 40 56 71 88 103 119 137 154 171 189 205 222 237</spanx></c>
<c>16</c>
<c><spanx style="vbare">16 19 36 48 57 76 87 105 118 132 150 167 185 202 218 236</spanx></c>
<c>17</c>
<c><spanx style="vbare">12 17 29 54 71 81 94 104 126 136 149 164 182 201 221 237</spanx></c>
<c>18</c>
<c><spanx style="vbare">15 28 47 62 79 97 115 129 142 155 168 180 194 208 223 238</spanx></c>
<c>19</c>
<c><spanx style="vbare"> 8 14 30 45 62 78 94 111 127 143 159 175 192 207 223 239</spanx></c>
<c>20</c>
<c><spanx style="vbare">17 30 49 62 79 92 107 119 132 145 160 174 190 204 220 235</spanx></c>
<c>21</c>
<c><spanx style="vbare">14 19 36 45 61 76 91 108 121 138 154 172 189 205 222 238</spanx></c>
<c>22</c>
<c><spanx style="vbare">12 18 31 45 60 76 91 107 123 138 154 171 187 204 221 236</spanx></c>
<c>23</c>
<c><spanx style="vbare">13 17 31 43 53 70 83 103 114 131 149 167 185 203 220 237</spanx></c>
<c>24</c>
<c><spanx style="vbare">17 22 35 42 58 78 93 110 125 139 155 170 188 206 224 240</spanx></c>
<c>25</c>
<c><spanx style="vbare"> 8 15 34 50 67 83 99 115 131 146 162 178 193 209 224 239</spanx></c>
<c>26</c>
<c><spanx style="vbare">13 16 41 66 73 86 95 111 128 137 150 163 183 206 225 241</spanx></c>
<c>27</c>
<c><spanx style="vbare">17 25 37 52 63 75 92 102 119 132 144 160 175 191 212 231</spanx></c>
<c>28</c>
<c><spanx style="vbare">19 31 49 65 83 100 117 133 147 161 174 187 200 213 227 242</spanx></c>
<c>29</c>
<c><spanx style="vbare">18 31 52 68 88 103 117 126 138 149 163 177 192 207 223 239</spanx></c>
<c>30</c>
<c><spanx style="vbare">16 29 47 61 76 90 106 119 133 147 161 176 193 209 224 240</spanx></c>
<c>31</c>
<c><spanx style="vbare">15 21 35 50 61 73 86 97 110 119 129 141 175 198 218 237</spanx></c>
</texttable>
<t>
Given the stage-1 codebook entry cb1_Q8[], the stage-2 residual res_Q10[], and
their corresponding weights, w_Q9[], the reconstructed normalized LSF
coefficients are
<figure align="center">
<artwork align="center"><![CDATA[
NLSF_Q15[k] = clamp(0,
(cb1_Q8[k]<<7) + (res_Q10[k]<<14)/w_Q9[k], 32767) ,
]]></artwork>
</figure>
where the division is exact integer division.
However, nothing in either the reconstruction process or the
quantization process in the encoder thus far guarantees that the coefficients
are monotonically increasing and separated well enough to ensure a stable
filter.
When using the reference encoder, roughly 2% of frames violate this constraint.
The next section describes a stabilization procedure used to make these
guarantees.
</t>
</section>
<section anchor="silk_nlsf_stabilization" title="Normalized LSF Stabilization">
<t>
The normalized LSF stabilization procedure is implemented in
silk_NLSF_stabilize() (NLSF_stabilize.c).
This process ensures that consecutive values of the normalized LSF
coefficients, NLSF_Q15[], are spaced some minimum distance apart
(predetermined to be the 0.01 percentile of a large training set).
<xref target="silk_nlsf_min_spacing"/> gives the minimum spacings for NB and MB
and those for WB, where row k is the minimum allowed value of
NLSF_Q[k]-NLSF_Q[k-1].
For the purposes of computing this spacing for the first and last coefficient,
NLSF_Q15[-1] is taken to be 0, and NLSF_Q15[d_LPC] is taken to be 32768.
</t>
<texttable anchor="silk_nlsf_min_spacing"
title="Minimum Spacing for Normalized LSF Coefficients">
<ttcol>Coefficient</ttcol>
<ttcol align="right">NB and MB</ttcol>
<ttcol align="right">WB</ttcol>
<c>0</c> <c>250</c> <c>100</c>
<c>1</c> <c>3</c> <c>3</c>
<c>2</c> <c>6</c> <c>40</c>
<c>3</c> <c>3</c> <c>3</c>
<c>4</c> <c>3</c> <c>3</c>
<c>5</c> <c>3</c> <c>3</c>
<c>6</c> <c>4</c> <c>5</c>
<c>7</c> <c>3</c> <c>14</c>
<c>8</c> <c>3</c> <c>14</c>
<c>9</c> <c>3</c> <c>10</c>
<c>10</c> <c>461</c> <c>11</c>
<c>11</c> <c/> <c>3</c>
<c>12</c> <c/> <c>8</c>
<c>13</c> <c/> <c>9</c>
<c>14</c> <c/> <c>7</c>
<c>15</c> <c/> <c>3</c>
<c>16</c> <c/> <c>347</c>
</texttable>
<t>
The procedure starts off by trying to make small adjustments which attempt to
minimize the amount of distortion introduced.
After 20 such adjustments, it falls back to a more direct method which
guarantees the constraints are enforced but may require large adjustments.
</t>
<t>
Let NDeltaMin_Q15[k] be the minimum required spacing for the current audio
bandwidth from <xref target="silk_nlsf_min_spacing"/>.
First, the procedure finds the index i where
NLSF_Q15[i] - NLSF_Q15[i-1] - NDeltaMin_Q15[i] is the
smallest, breaking ties by using the lower value of i.
If this value is non-negative, then the stabilization stops; the coefficients
satisfy all the constraints.
Otherwise, if i == 0, it sets NLSF_Q15[0] to NDeltaMin_Q15[0], and if
i == d_LPC, it sets NLSF_Q15[d_LPC-1] to
(32768 - NDeltaMin_Q15[d_LPC]).
For all other values of i, both NLSF_Q15[i-1] and NLSF_Q15[i] are updated as
follows:
<figure align="center">
<artwork align="center"><![CDATA[
i-1
__
min_center_Q15 = (NDeltaMin[i]>>1) + \ NDeltaMin[k]
/_
k=0
d_LPC
__
max_center_Q15 = 32768 - (NDeltaMin[i]>>1) - \ NDeltaMin[k]
/_
k=i+1
center_freq_Q15 = clamp(min_center_Q15[i],
(NLSF_Q15[i-1] + NLSF_Q15[i] + 1)>>1,
max_center_Q15[i])
NLSF_Q15[i-1] = center_freq_Q15 - (NDeltaMin_Q15[i]>>1)
NLSF_Q15[i] = NLSF_Q15[i-1] + NDeltaMin_Q15[i] .
]]></artwork>
</figure>
Then the procedure repeats again, until it has either executed 20 times or
has stopped because the coefficients satisfy all the constraints.
</t>
<t>
After the 20th repetition of the above procedure, the following fallback
procedure executes once.
First, the values of NLSF_Q15[k] for 0 <= k < d_LPC
are sorted in ascending order.
Then for each value of k from 0 to d_LPC-1, NLSF_Q15[k] is set to
<figure align="center">
<artwork align="center"><![CDATA[
max(NLSF_Q15[k], NLSF_Q15[k-1] + NDeltaMin_Q15[k]) .
]]></artwork>
</figure>
Next, for each value of k from d_LPC-1 down to 0, NLSF_Q15[k] is set to
<figure align="center">
<artwork align="center"><![CDATA[
min(NLSF_Q15[k], NLSF_Q15[k+1] - NDeltaMin_Q15[k+1]) .
]]></artwork>
</figure>
</t>
</section>
<section anchor="silk_nlsf_interpolation" title="Normalized LSF Interpolation">
<t>
For 20 ms SILK frames, the first half of the frame (i.e., the first two
subframes) may use normalized LSF coefficients that are interpolated between
the decoded LSFs for the most recent coded frame (in the same channel) and the
current frame.
A Q2 interpolation factor follows the LSF coefficient indices in the bitstream,
which is decoded using the PDF in <xref target="silk_nlsf_interp_pdf"/>.
This happens in silk_decode_indices() (decode_indices.c).
After either
<list style="symbols">
<t>An uncoded regular SILK frame in the side channel, or</t>
<t>A decoder reset (see <xref target="decoder-reset"/>),</t>
</list>
the decoder still decodes this factor, but ignores its value and always uses
4 instead.
For 10 ms SILK frames, this factor is not stored at all.
</t>
<texttable anchor="silk_nlsf_interp_pdf"
title="PDF for Normalized LSF Interpolation Index">
<ttcol>PDF</ttcol>
<c>{13, 22, 29, 11, 181}/256</c>
</texttable>
<t>
Let n2_Q15[k] be the normalized LSF coefficients decoded by the procedure in
<xref target="silk_nlsfs"/>, n0_Q15[k] be the LSF coefficients
decoded for the prior frame, and w_Q2 be the interpolation factor.
Then the normalized LSF coefficients used for the first half of a 20 ms
frame, n1_Q15[k], are
<figure align="center">
<artwork align="center"><![CDATA[
n1_Q15[k] = n0_Q15[k] + (w_Q2*(n2_Q15[k] - n0_Q15[k]) >> 2) .
]]></artwork>
</figure>
This interpolation is performed in silk_decode_parameters()
(decode_parameters.c).
</t>
</section>
<section anchor="silk_nlsf2lpc"
title="Converting Normalized LSFs to LPC Coefficients">
<t>
Any LPC filter A(z) can be split into a symmetric part P(z) and an
anti-symmetric part Q(z) such that
<figure align="center">
<artwork align="center"><![CDATA[
d_LPC
__ -k 1
A(z) = 1 - \ a[k] * z = - * (P(z) + Q(z))
/_ 2
k=1
]]></artwork>
</figure>
with
<figure align="center">
<artwork align="center"><![CDATA[
-d_LPC-1 -1
P(z) = A(z) + z * A(z )
-d_LPC-1 -1
Q(z) = A(z) - z * A(z ) .
]]></artwork>
</figure>
The even normalized LSF coefficients correspond to a pair of conjugate roots of
P(z), while the odd coefficients correspond to a pair of conjugate roots of
Q(z), all of which lie on the unit circle.
In addition, P(z) has a root at pi and Q(z) has a root at 0.
Thus, they may be reconstructed mathematically from a set of normalized LSF
coefficients, n[k], as
<figure align="center">
<artwork align="center"><![CDATA[
d_LPC/2-1
-1 ___ -1 -2
P(z) = (1 + z ) * | | (1 - 2*cos(pi*n[2*k])*z + z )
k=0
d_LPC/2-1
-1 ___ -1 -2
Q(z) = (1 - z ) * | | (1 - 2*cos(pi*n[2*k+1])*z + z )
k=0
]]></artwork>
</figure>
</t>
<t>
However, SILK performs this reconstruction using a fixed-point approximation so
that all decoders can reproduce it in a bit-exact manner to avoid prediction
drift.
The function silk_NLSF2A() (NLSF2A.c) implements this procedure.
</t>
<t>
To start, it approximates cos(pi*n[k]) using a table lookup with linear
interpolation.
The encoder SHOULD use the inverse of this piecewise linear approximation,
rather than the true inverse of the cosine function, when deriving the
normalized LSF coefficients.
These values are also re-ordered to improve numerical accuracy when
constructing the LPC polynomials.
</t>
<texttable anchor="silk_nlsf_orderings"
title="LSF Ordering for Polynomial Evaluation">
<ttcol>Coefficient</ttcol>
<ttcol align="right">NB and MB</ttcol>
<ttcol align="right">WB</ttcol>
<c>0</c> <c>0</c> <c>0</c>
<c>1</c> <c>9</c> <c>15</c>
<c>2</c> <c>6</c> <c>8</c>
<c>3</c> <c>3</c> <c>7</c>
<c>4</c> <c>4</c> <c>4</c>
<c>5</c> <c>5</c> <c>11</c>
<c>6</c> <c>8</c> <c>12</c>
<c>7</c> <c>1</c> <c>3</c>
<c>8</c> <c>2</c> <c>2</c>
<c>9</c> <c>7</c> <c>13</c>
<c>10</c> <c/> <c>10</c>
<c>11</c> <c/> <c>5</c>
<c>12</c> <c/> <c>6</c>
<c>13</c> <c/> <c>9</c>
<c>14</c> <c/> <c>14</c>
<c>15</c> <c/> <c>1</c>
</texttable>
<t>
The top 7 bits of each normalized LSF coefficient index a value in the table,
and the next 8 bits interpolate between it and the next value.
Let i = (n[k] >> 8) be the integer index and
f = (n[k] & 255) be the fractional part of a given
coefficient.
Then the re-ordered, approximated cosine, c_Q17[ordering[k]], is
<figure align="center">
<artwork align="center"><![CDATA[
c_Q17[ordering[k]] = (cos_Q12[i]*256
+ (cos_Q12[i+1]-cos_Q12[i])*f + 4) >> 3 ,
]]></artwork>
</figure>
where ordering[k] is the k'th entry of the column of
<xref target="silk_nlsf_orderings"/> corresponding to the current audio
bandwidth and cos_Q12[i] is the i'th entry of <xref target="silk_cos_table"/>.
</t>
<texttable anchor="silk_cos_table"
title="Q12 Cosine Table for LSF Conversion">
<ttcol align="right">i</ttcol>
<ttcol align="right">+0</ttcol>
<ttcol align="right">+1</ttcol>
<ttcol align="right">+2</ttcol>
<ttcol align="right">+3</ttcol>
<c>0</c>
<c>4096</c> <c>4095</c> <c>4091</c> <c>4085</c>
<c>4</c>
<c>4076</c> <c>4065</c> <c>4052</c> <c>4036</c>
<c>8</c>
<c>4017</c> <c>3997</c> <c>3973</c> <c>3948</c>
<c>12</c>
<c>3920</c> <c>3889</c> <c>3857</c> <c>3822</c>
<c>16</c>
<c>3784</c> <c>3745</c> <c>3703</c> <c>3659</c>
<c>20</c>
<c>3613</c> <c>3564</c> <c>3513</c> <c>3461</c>
<c>24</c>
<c>3406</c> <c>3349</c> <c>3290</c> <c>3229</c>
<c>28</c>
<c>3166</c> <c>3102</c> <c>3035</c> <c>2967</c>
<c>32</c>
<c>2896</c> <c>2824</c> <c>2751</c> <c>2676</c>
<c>36</c>
<c>2599</c> <c>2520</c> <c>2440</c> <c>2359</c>
<c>40</c>
<c>2276</c> <c>2191</c> <c>2106</c> <c>2019</c>
<c>44</c>
<c>1931</c> <c>1842</c> <c>1751</c> <c>1660</c>
<c>48</c>
<c>1568</c> <c>1474</c> <c>1380</c> <c>1285</c>
<c>52</c>
<c>1189</c> <c>1093</c> <c>995</c> <c>897</c>
<c>56</c>
<c>799</c> <c>700</c> <c>601</c> <c>501</c>
<c>60</c>
<c>401</c> <c>301</c> <c>201</c> <c>101</c>
<c>64</c>
<c>0</c> <c>-101</c> <c>-201</c> <c>-301</c>
<c>68</c>
<c>-401</c> <c>-501</c> <c>-601</c> <c>-700</c>
<c>72</c>
<c>-799</c> <c>-897</c> <c>-995</c> <c>-1093</c>
<c>76</c>
<c>-1189</c><c>-1285</c><c>-1380</c><c>-1474</c>
<c>80</c>
<c>-1568</c><c>-1660</c><c>-1751</c><c>-1842</c>
<c>84</c>
<c>-1931</c><c>-2019</c><c>-2106</c><c>-2191</c>
<c>88</c>
<c>-2276</c><c>-2359</c><c>-2440</c><c>-2520</c>
<c>92</c>
<c>-2599</c><c>-2676</c><c>-2751</c><c>-2824</c>
<c>96</c>
<c>-2896</c><c>-2967</c><c>-3035</c><c>-3102</c>
<c>100</c>
<c>-3166</c><c>-3229</c><c>-3290</c><c>-3349</c>
<c>104</c>
<c>-3406</c><c>-3461</c><c>-3513</c><c>-3564</c>
<c>108</c>
<c>-3613</c><c>-3659</c><c>-3703</c><c>-3745</c>
<c>112</c>
<c>-3784</c><c>-3822</c><c>-3857</c><c>-3889</c>
<c>116</c>
<c>-3920</c><c>-3948</c><c>-3973</c><c>-3997</c>
<c>120</c>
<c>-4017</c><c>-4036</c><c>-4052</c><c>-4065</c>
<c>124</c>
<c>-4076</c><c>-4085</c><c>-4091</c><c>-4095</c>
<c>128</c>
<c>-4096</c> <c/> <c/> <c/>
</texttable>
<t>
Given the list of cosine values, silk_NLSF2A_find_poly() (NLSF2A.c)
computes the coefficients of P and Q, described here via a simple recurrence.
Let p_Q16[k][j] and q_Q16[k][j] be the coefficients of the products of the
first (k+1) root pairs for P and Q, with j indexing the coefficient number.
Only the first (k+2) coefficients are needed, as the products are symmetric.
Let p_Q16[0][0] = q_Q16[0][0] = 1<<16,
p_Q16[0][1] = -c_Q17[0], q_Q16[0][1] = -c_Q17[1], and
d2 = d_LPC/2.
As boundary conditions, assume
p_Q16[k][j] = q_Q16[k][j] = 0 for all
j < 0.
Also, assume p_Q16[k][k+2] = p_Q16[k][k] and
q_Q16[k][k+2] = q_Q16[k][k] (because of the symmetry).
Then, for 0 < k < d2 and 0 <= j <= k+1,
<figure align="center">
<artwork align="center"><![CDATA[
p_Q16[k][j] = p_Q16[k-1][j] + p_Q16[k-1][j-2]
- ((c_Q17[2*k]*p_Q16[k-1][j-1] + 32768)>>16) ,
q_Q16[k][j] = q_Q16[k-1][j] + q_Q16[k-1][j-2]
- ((c_Q17[2*k+1]*q_Q16[k-1][j-1] + 32768)>>16) .
]]></artwork>
</figure>
The use of Q17 values for the cosine terms in an otherwise Q16 expression
implicitly scales them by a factor of 2.
The multiplications in this recurrence may require up to 48 bits of precision
in the result to avoid overflow.
In practice, each row of the recurrence only depends on the previous row, so an
implementation does not need to store all of them.
</t>
<t>
silk_NLSF2A() uses the values from the last row of this recurrence to
reconstruct a 32-bit version of the LPC filter (without the leading 1.0
coefficient), a32_Q17[k], 0 <= k < d2:
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q17[k] = -(q_Q16[d2-1][k+1] - q_Q16[d2-1][k])
- (p_Q16[d2-1][k+1] + p_Q16[d2-1][k])) ,
a32_Q17[d_LPC-k-1] = (q_Q16[d2-1][k+1] - q_Q16[d2-1][k])
- (p_Q16[d2-1][k+1] + p_Q16[d2-1][k])) .
]]></artwork>
</figure>
The sum and difference of two terms from each of the p_Q16 and q_Q16
coefficient lists reflect the (1 + z**-1) and
(1 - z**-1) factors of P and Q, respectively.
The promotion of the expression from Q16 to Q17 implicitly scales the result
by 1/2.
</t>
</section>
<section anchor="silk_lpc_range_limit"
title="Limiting the Range of the LPC Coefficients">
<t>
The a32_Q17[] coefficients are too large to fit in a 16-bit value, which
significantly increases the cost of applying this filter in fixed-point
decoders.
Reducing them to Q12 precision doesn't incur any significant quality loss,
but still does not guarantee they will fit.
silk_NLSF2A() applies up to 10 rounds of bandwidth expansion to limit
the dynamic range of these coefficients.
Even floating-point decoders SHOULD perform these steps, to avoid mismatch.
</t>
<t>
For each round, the process first finds the index k such that abs(a32_Q17[k])
is largest, breaking ties by choosing the lowest value of k.
Then, it computes the corresponding Q12 precision value, maxabs_Q12, subject to
an upper bound to avoid overflow in subsequent computations:
<figure align="center">
<artwork align="center"><![CDATA[
maxabs_Q12 = min((maxabs_Q17 + 16) >> 5, 163838) .
]]></artwork>
</figure>
If this is larger than 32767, the procedure derives the chirp factor,
sc_Q16[0], to use in the bandwidth expansion as
<figure align="center">
<artwork align="center"><![CDATA[
(maxabs_Q12 - 32767) << 14
sc_Q16[0] = 65470 - -------------------------- ,
(maxabs_Q12 * (k+1)) >> 2
]]></artwork>
</figure>
where the division here is exact integer division.
This is an approximation of the chirp factor needed to reduce the target
coefficient to 32767, though it is both less than 0.999 and, for
k > 0 when maxabs_Q12 is much greater than 32767, still slightly
too large.
</t>
<t>
silk_bwexpander_32() (bwexpander_32.c) performs the bandwidth expansion (again,
only when maxabs_Q12 is greater than 32767) using the following recurrence:
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q17[k] = (a32_Q17[k]*sc_Q16[k]) >> 16
sc_Q16[k+1] = (sc_Q16[0]*sc_Q16[k] + 32768) >> 16
]]></artwork>
</figure>
The first multiply may require up to 48 bits of precision in the result to
avoid overflow.
The second multiply must be unsigned to avoid overflow with only 32 bits of
precision.
The reference implementation uses a slightly more complex formulation that
avoids the 32-bit overflow using signed multiplication, but is otherwise
equivalent.
</t>
<t>
After 10 rounds of bandwidth expansion are performed, they are simply saturated
to 16 bits:
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q17[k] = clamp(-32768, (a32_Q17[k] + 16) >> 5, 32767) << 5 .
]]></artwork>
</figure>
Because this performs the actual saturation in the Q12 domain, but converts the
coefficients back to the Q17 domain for the purposes of prediction gain
limiting, this step must be performed after the 10th round of bandwidth
expansion, regardless of whether or not the Q12 version of any coefficient
still overflows a 16-bit integer.
This saturation is not performed if maxabs_Q12 drops to 32767 or less prior to
the 10th round.
</t>
</section>
<section anchor="silk_lpc_gain_limit"
title="Limiting the Prediction Gain of the LPC Filter">
<t>
The prediction gain of an LPC synthesis filter is the square-root of the output
energy when the filter is excited by a unit-energy impulse.
Even if the Q12 coefficients would fit, the resulting filter may still have a
significant gain (especially for voiced sounds), making the filter unstable.
silk_NLSF2A() applies up to 18 additional rounds of bandwidth expansion to
limit the prediction gain.
Instead of controlling the amount of bandwidth expansion using the prediction
gain itself (which may diverge to infinity for an unstable filter),
silk_NLSF2A() uses silk_LPC_inverse_pred_gain_QA() (LPC_inv_pred_gain.c) to
compute the reflection coefficients associated with the filter.
The filter is stable if and only if the magnitude of these coefficients is
sufficiently less than one.
The reflection coefficients, rc[k], can be computed using a simple Levinson
recurrence, initialized with the LPC coefficients
a[d_LPC-1][n] = a[n], and then updated via
<figure align="center">
<artwork align="center"><![CDATA[
rc[k] = -a[k][k] ,
a[k][n] - a[k][k-n-1]*rc[k]
a[k-1][n] = --------------------------- .
2
1 - rc[k]
]]></artwork>
</figure>
</t>
<t>
However, silk_LPC_inverse_pred_gain_QA() approximates this using fixed-point
arithmetic to guarantee reproducible results across platforms and
implementations.
Since small changes in the coefficients can make a stable filter unstable, it
takes the real Q12 coefficients that will be used during reconstruction as
input.
Thus, let
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q12[n] = (a32_Q17[n] + 16) >> 5
]]></artwork>
</figure>
be the Q12 version of the LPC coefficients that will eventually be used.
As a simple initial check, the decoder computes the DC response as
<figure align="center">
<artwork align="center"><![CDATA[
d_PLC-1
__
DC_resp = \ a32_Q12[n]
/_
n=0
]]></artwork>
</figure>
and if DC_resp > 4096, the filter is unstable.
</t>
<t>
Increasing the precision of these Q12 coefficients to Q24 for intermediate
computations allows more accurate computation of the reflection coefficients,
so the decoder initializes the recurrence via
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q24[d_LPC-1][n] = a32_Q12[n] << 12 .
]]></artwork>
</figure>
Then for each k from d_LPC-1 down to 0, if
abs(a32_Q24[k][k]) > 16773022, the filter is unstable and the
recurrence stops.
Otherwise, row k-1 of a32_Q24 is computed from row k as
<figure align="center">
<artwork align="center"><![CDATA[
rc_Q31[k] = -a32_Q24[k][k] << 7 ,
div_Q30[k] = (1<<30) - (rc_Q31[k]*rc_Q31[k] >> 32) ,
b1[k] = ilog(div_Q30[k]) ,
b2[k] = b1[k] - 16 ,
(1<<29) - 1
inv_Qb2[k] = ----------------------- ,
div_Q30[k] >> (b2[k]+1)
err_Q29[k] = (1<<29)
- ((div_Q30[k]<<(15-b2[k]))*inv_Qb2[k] >> 16) ,
gain_Qb1[k] = ((inv_Qb2[k] << 16)
+ (err_Q29[k]*inv_Qb2[k] >> 13)) ,
num_Q24[k-1][n] = a32_Q24[k][n]
- ((a32_Q24[k][k-n-1]*rc_Q31[k] + (1<<30)) >> 31) ,
a32_Q24[k-1][n] = (num_Q24[k-1][n]*gain_Qb1[k]
+ (1<<(b1[k]-1))) >> b1[k] ,
]]></artwork>
</figure>
where 0 <= n < k.
Here, rc_Q30[k] are the reflection coefficients.
div_Q30[k] is the denominator for each iteration, and gain_Qb1[k] is its
multiplicative inverse (with b1[k] fractional bits, where b1[k] ranges from
20 to 31).
inv_Qb2[k], which ranges from 16384 to 32767, is a low-precision version of
that inverse (with b2[k] fractional bits).
err_Q29[k] is the residual error, ranging from -32763 to 32392, which is used
to improve the accuracy.
The values t_Q24[k-1][n] for each n are the numerators for the next row of
coefficients in the recursion, and a32_Q24[k-1][n] is the final version of
that row.
Every multiply in this procedure except the one used to compute gain_Qb1[k]
requires more than 32 bits of precision, but otherwise all intermediate
results fit in 32 bits or less.
In practice, because each row only depends on the next one, an implementation
does not need to store them all.
</t>
<t>
If abs(a32_Q24[k][k]) <= 16773022 for
0 <= k < d_LPC, then the filter is considered stable.
However, the problem of determining stability is ill-conditioned when the
filter contains several reflection coefficients whose magnitude is very close
to one.
This fixed-point algorithm is not mathematically guaranteed to correctly
classify filters as stable or unstable in this case, though it does very well
in practice.
</t>
<t>
On round i, 1 <= i <= 18, if the filter passes these
stability checks, then this procedure stops, and the final LPC coefficients to
use for reconstruction in <xref target="silk_lpc_synthesis"/> are
<figure align="center">
<artwork align="center"><![CDATA[
a_Q12[k] = (a32_Q17[k] + 16) >> 5 .
]]></artwork>
</figure>
Otherwise, a round of bandwidth expansion is applied using the same procedure
as in <xref target="silk_lpc_range_limit"/>, with
<figure align="center">
<artwork align="center"><![CDATA[
sc_Q16[0] = 65536 - i*(i+9) .
]]></artwork>
</figure>
If, after the 18th round, the filter still fails these stability checks, then
a_Q12[k] is set to 0 for all k.
</t>
</section>
</section>
<section anchor="silk_ltp_params" toc="include"
title="Long-Term Prediction (LTP) Parameters">
<t>
After the normalized LSF indices and, for 20 ms frames, the LSF
interpolation index, voiced frames (see <xref target="silk_frame_type"/>)
include additional LTP parameters.
There is one primary lag index for each SILK frame, but this is refined to
produce a separate lag index per subframe using a vector quantizer.
Each subframe also gets its own prediction gain coefficient.
</t>
<section anchor="silk_ltp_lags" title="Pitch Lags">
<t>
The primary lag index is coded either relative to the primary lag of the prior
frame in the same channel, or as an absolute index.
Absolute coding is used if and only if
<list style="symbols">
<t>
This is the first SILK frame of its type (LBRR or regular) for this channel in
the current Opus frame,
</t>
<t>
The previous SILK frame of the same type (LBRR or regular) for this channel in
the same Opus frame was not coded, or
</t>
<t>
That previous SILK frame was coded, but was not voiced (see
<xref target="silk_frame_type"/>).
</t>
</list>
</t>
<t>
With absolute coding, the primary pitch lag may range from 2 ms
(inclusive) up to 18 ms (exclusive), corresponding to pitches from
500 Hz down to 55.6 Hz, respectively.
It is comprised of a high part and a low part, where the decoder reads the high
part using the 32-entry codebook in <xref target="silk_abs_pitch_high_pdf"/>
and the low part using the codebook corresponding to the current audio
bandwidth from <xref target="silk_abs_pitch_low_pdf"/>.
The final primary pitch lag is then
<figure align="center">
<artwork align="center"><![CDATA[
lag = lag_high*lag_scale + lag_low + lag_min
]]></artwork>
</figure>
where lag_high is the high part, lag_low is the low part, and lag_scale
and lag_min are the values from the "Scale" and "Minimum Lag" columns of
<xref target="silk_abs_pitch_low_pdf"/>, respectively.
</t>
<texttable anchor="silk_abs_pitch_high_pdf"
title="PDF for High Part of Primary Pitch Lag">
<ttcol align="left">PDF</ttcol>
<c>{3, 3, 6, 11, 21, 30, 32, 19,
11, 10, 12, 13, 13, 12, 11, 9,
8, 7, 6, 4, 2, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_abs_pitch_low_pdf"
title="PDF for Low Part of Primary Pitch Lag">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>PDF</ttcol>
<ttcol>Scale</ttcol>
<ttcol>Minimum Lag</ttcol>
<ttcol>Maximum Lag</ttcol>
<c>NB</c> <c>{64, 64, 64, 64}/256</c> <c>4</c> <c>16</c> <c>144</c>
<c>MB</c> <c>{43, 42, 43, 43, 42, 43}/256</c> <c>6</c> <c>24</c> <c>216</c>
<c>WB</c> <c>{32, 32, 32, 32, 32, 32, 32, 32}/256</c> <c>8</c> <c>32</c> <c>288</c>
</texttable>
<t>
All frames that do not use absolute coding for the primary lag index use
relative coding instead.
The decoder reads a single delta value using the 21-entry PDF in
<xref target="silk_rel_pitch_pdf"/>.
If the resulting value is zero, it falls back to the absolute coding procedure
from the prior paragraph.
Otherwise, the final primary pitch lag is then
<figure align="center">
<artwork align="center"><![CDATA[
lag = previous_lag + (delta_lag_index - 9)
]]></artwork>
</figure>
where previous_lag is the primary pitch lag from the most recent frame in the
same channel and delta_lag_index is the value just decoded.
This allows a per-frame change in the pitch lag of -8 to +11 samples.
The decoder does no clamping at this point, so this value can fall outside the
range of 2 ms to 18 ms, and the decoder must use this unclamped
value when using relative coding in the next SILK frame (if any).
However, because an Opus frame can use relative coding for at most two
consecutive SILK frames, integer overflow should not be an issue.
</t>
<texttable anchor="silk_rel_pitch_pdf"
title="PDF for Primary Pitch Lag Change">
<ttcol align="left">PDF</ttcol>
<c>{46, 2, 2, 3, 4, 6, 10, 15,
26, 38, 30, 22, 15, 10, 7, 6,
4, 4, 2, 2, 2}/256</c>
</texttable>
<t>
After the primary pitch lag, a "pitch contour", stored as a single entry from
one of four small VQ codebooks, gives lag offsets for each subframe in the
current SILK frame.
The codebook index is decoded using one of the PDFs in
<xref target="silk_pitch_contour_pdfs"/> depending on the current frame size
and audio bandwidth.
Tables <xref format="counter" target="silk_pitch_contour_cb_nb10ms"/>
through <xref format="counter" target="silk_pitch_contour_cb_mbwb20ms"/>
give the corresponding offsets to apply to the primary pitch lag for each
subframe given the decoded codebook index.
</t>
<texttable anchor="silk_pitch_contour_pdfs"
title="PDFs for Subframe Pitch Contour">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>SILK Frame Size</ttcol>
<ttcol align="right">Codebook Size</ttcol>
<ttcol>PDF</ttcol>
<c>NB</c> <c>10 ms</c> <c>3</c>
<c>{143, 50, 63}/256</c>
<c>NB</c> <c>20 ms</c> <c>11</c>
<c>{68, 12, 21, 17, 19, 22, 30, 24,
17, 16, 10}/256</c>
<c>MB or WB</c> <c>10 ms</c> <c>12</c>
<c>{91, 46, 39, 19, 14, 12, 8, 7,
6, 5, 5, 4}/256</c>
<c>MB or WB</c> <c>20 ms</c> <c>34</c>
<c>{33, 22, 18, 16, 15, 14, 14, 13,
13, 10, 9, 9, 8, 6, 6, 6,
5, 4, 4, 4, 3, 3, 3, 2,
2, 2, 2, 2, 2, 2, 1, 1,
1, 1}/256</c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_nb10ms"
title="Codebook Vectors for Subframe Pitch Contour: NB, 10 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 1 0</spanx></c>
<c>2</c> <c><spanx style="vbare"> 0 1</spanx></c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_nb20ms"
title="Codebook Vectors for Subframe Pitch Contour: NB, 20 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 2 1 0 -1</spanx></c>
<c>2</c> <c><spanx style="vbare">-1 0 1 2</spanx></c>
<c>3</c> <c><spanx style="vbare">-1 0 0 1</spanx></c>
<c>4</c> <c><spanx style="vbare">-1 0 0 0</spanx></c>
<c>5</c> <c><spanx style="vbare"> 0 0 0 1</spanx></c>
<c>6</c> <c><spanx style="vbare"> 0 0 1 1</spanx></c>
<c>7</c> <c><spanx style="vbare"> 1 1 0 0</spanx></c>
<c>8</c> <c><spanx style="vbare"> 1 0 0 0</spanx></c>
<c>9</c> <c><spanx style="vbare"> 0 0 0 -1</spanx></c>
<c>10</c> <c><spanx style="vbare"> 1 0 0 -1</spanx></c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_mbwb10ms"
title="Codebook Vectors for Subframe Pitch Contour: MB or WB, 10 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 0 1</spanx></c>
<c>2</c> <c><spanx style="vbare"> 1 0</spanx></c>
<c>3</c> <c><spanx style="vbare">-1 1</spanx></c>
<c>4</c> <c><spanx style="vbare"> 1 -1</spanx></c>
<c>5</c> <c><spanx style="vbare">-1 2</spanx></c>
<c>6</c> <c><spanx style="vbare"> 2 -1</spanx></c>
<c>7</c> <c><spanx style="vbare">-2 2</spanx></c>
<c>8</c> <c><spanx style="vbare"> 2 -2</spanx></c>
<c>9</c> <c><spanx style="vbare">-2 3</spanx></c>
<c>10</c> <c><spanx style="vbare"> 3 -2</spanx></c>
<c>11</c> <c><spanx style="vbare">-3 3</spanx></c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_mbwb20ms"
title="Codebook Vectors for Subframe Pitch Contour: MB or WB, 20 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 0 0 1 1</spanx></c>
<c>2</c> <c><spanx style="vbare"> 1 1 0 0</spanx></c>
<c>3</c> <c><spanx style="vbare">-1 0 0 0</spanx></c>
<c>4</c> <c><spanx style="vbare"> 0 0 0 1</spanx></c>
<c>5</c> <c><spanx style="vbare"> 1 0 0 0</spanx></c>
<c>6</c> <c><spanx style="vbare">-1 0 0 1</spanx></c>
<c>7</c> <c><spanx style="vbare"> 0 0 0 -1</spanx></c>
<c>8</c> <c><spanx style="vbare">-1 0 1 2</spanx></c>
<c>9</c> <c><spanx style="vbare"> 1 0 0 -1</spanx></c>
<c>10</c> <c><spanx style="vbare">-2 -1 1 2</spanx></c>
<c>11</c> <c><spanx style="vbare"> 2 1 0 -1</spanx></c>
<c>12</c> <c><spanx style="vbare">-2 0 0 2</spanx></c>
<c>13</c> <c><spanx style="vbare">-2 0 1 3</spanx></c>
<c>14</c> <c><spanx style="vbare"> 2 1 -1 -2</spanx></c>
<c>15</c> <c><spanx style="vbare">-3 -1 1 3</spanx></c>
<c>16</c> <c><spanx style="vbare"> 2 0 0 -2</spanx></c>
<c>17</c> <c><spanx style="vbare"> 3 1 0 -2</spanx></c>
<c>18</c> <c><spanx style="vbare">-3 -1 2 4</spanx></c>
<c>19</c> <c><spanx style="vbare">-4 -1 1 4</spanx></c>
<c>20</c> <c><spanx style="vbare"> 3 1 -1 -3</spanx></c>
<c>21</c> <c><spanx style="vbare">-4 -1 2 5</spanx></c>
<c>22</c> <c><spanx style="vbare"> 4 2 -1 -3</spanx></c>
<c>23</c> <c><spanx style="vbare"> 4 1 -1 -4</spanx></c>
<c>24</c> <c><spanx style="vbare">-5 -1 2 6</spanx></c>
<c>25</c> <c><spanx style="vbare"> 5 2 -1 -4</spanx></c>
<c>26</c> <c><spanx style="vbare">-6 -2 2 6</spanx></c>
<c>27</c> <c><spanx style="vbare">-5 -2 2 5</spanx></c>
<c>28</c> <c><spanx style="vbare"> 6 2 -1 -5</spanx></c>
<c>29</c> <c><spanx style="vbare">-7 -2 3 8</spanx></c>
<c>30</c> <c><spanx style="vbare"> 6 2 -2 -6</spanx></c>
<c>31</c> <c><spanx style="vbare"> 5 2 -2 -5</spanx></c>
<c>32</c> <c><spanx style="vbare"> 8 3 -2 -7</spanx></c>
<c>33</c> <c><spanx style="vbare">-9 -3 3 9</spanx></c>
</texttable>
<t>
The final pitch lag for each subframe is assembled in silk_decode_pitch()
(decode_pitch.c).
Let lag be the primary pitch lag for the current SILK frame, contour_index be
index of the VQ codebook, and lag_cb[contour_index][k] be the corresponding
entry of the codebook from the appropriate table given above for the k'th
subframe.
Then the final pitch lag for that subframe is
<figure align="center">
<artwork align="center"><![CDATA[
pitch_lags[k] = clamp(lag_min, lag + lag_cb[contour_index][k],
lag_max)
]]></artwork>
</figure>
where lag_min and lag_max are the values from the "Minimum Lag" and
"Maximum Lag" columns of <xref target="silk_abs_pitch_low_pdf"/>,
respectively.
</t>
</section>
<section anchor="silk_ltp_filter" title="LTP Filter Coefficients">
<t>
SILK uses a separate 5-tap pitch filter for each subframe, selected from one
of three codebooks.
The three codebooks each represent different rate-distortion trade-offs, with
average rates of 1.61 bits/subframe, 3.68 bits/subframe, and
4.85 bits/subframe, respectively.
</t>
<t>
The importance of the filter coefficients generally depends on two factors: the
periodicity of the signal and relative energy between the current subframe and
the signal from one period earlier.
Greater periodicity and decaying energy both lead to more important filter
coefficients, and thus should be coded with lower distortion and higher rate.
These properties are relatively stable over the duration of a single SILK
frame, hence all of the subframes in a SILK frame choose their filter from the
same codebook.
This is signaled with an explicitly-coded "periodicity index".
This immediately follows the subframe pitch lags, and is coded using the
3-entry PDF from <xref target="silk_perindex_pdf"/>.
</t>
<texttable anchor="silk_perindex_pdf" title="Periodicity Index PDF">
<ttcol>PDF</ttcol>
<c>{77, 80, 99}/256</c>
</texttable>
<t>
The indices of the filters for each subframe follow.
They are all coded using the PDF from <xref target="silk_ltp_filter_pdfs"/>
corresponding to the periodicity index.
Tables <xref format="counter" target="silk_ltp_filter_coeffs0"/>
through <xref format="counter" target="silk_ltp_filter_coeffs2"/>
contain the corresponding filter taps as signed Q7 integers.
</t>
<texttable anchor="silk_ltp_filter_pdfs" title="LTP Filter PDFs">
<ttcol>Periodicity Index</ttcol>
<ttcol align="right">Codebook Size</ttcol>
<ttcol>PDF</ttcol>
<c>0</c> <c>8</c> <c>{185, 15, 13, 13, 9, 9, 6, 6}/256</c>
<c>1</c> <c>16</c> <c>{57, 34, 21, 20, 15, 13, 12, 13,
10, 10, 9, 10, 9, 8, 7, 8}/256</c>
<c>2</c> <c>32</c> <c>{15, 16, 14, 12, 12, 12, 11, 11,
11, 10, 9, 9, 9, 9, 8, 8,
8, 8, 7, 7, 6, 6, 5, 4,
5, 4, 4, 4, 3, 4, 3, 2}/256</c>
</texttable>
<texttable anchor="silk_ltp_filter_coeffs0"
title="Codebook Vectors for LTP Filter, Periodicity Index 0">
<ttcol>Index</ttcol>
<ttcol align="right">Filter Taps (Q7)</ttcol>
<c>0</c>
<c><spanx style="vbare"> 4 6 24 7 5</spanx></c>
<c>1</c>
<c><spanx style="vbare"> 0 0 2 0 0</spanx></c>
<c>2</c>
<c><spanx style="vbare"> 12 28 41 13 -4</spanx></c>
<c>3</c>
<c><spanx style="vbare"> -9 15 42 25 14</spanx></c>
<c>4</c>
<c><spanx style="vbare"> 1 -2 62 41 -9</spanx></c>
<c>5</c>
<c><spanx style="vbare">-10 37 65 -4 3</spanx></c>
<c>6</c>
<c><spanx style="vbare"> -6 4 66 7 -8</spanx></c>
<c>7</c>
<c><spanx style="vbare"> 16 14 38 -3 33</spanx></c>
</texttable>
<texttable anchor="silk_ltp_filter_coeffs1"
title="Codebook Vectors for LTP Filter, Periodicity Index 1">
<ttcol>Index</ttcol>
<ttcol align="right">Filter Taps (Q7)</ttcol>
<c>0</c>
<c><spanx style="vbare"> 13 22 39 23 12</spanx></c>
<c>1</c>
<c><spanx style="vbare"> -1 36 64 27 -6</spanx></c>
<c>2</c>
<c><spanx style="vbare"> -7 10 55 43 17</spanx></c>
<c>3</c>
<c><spanx style="vbare"> 1 1 8 1 1</spanx></c>
<c>4</c>
<c><spanx style="vbare"> 6 -11 74 53 -9</spanx></c>
<c>5</c>
<c><spanx style="vbare">-12 55 76 -12 8</spanx></c>
<c>6</c>
<c><spanx style="vbare"> -3 3 93 27 -4</spanx></c>
<c>7</c>
<c><spanx style="vbare"> 26 39 59 3 -8</spanx></c>
<c>8</c>
<c><spanx style="vbare"> 2 0 77 11 9</spanx></c>
<c>9</c>
<c><spanx style="vbare"> -8 22 44 -6 7</spanx></c>
<c>10</c>
<c><spanx style="vbare"> 40 9 26 3 9</spanx></c>
<c>11</c>
<c><spanx style="vbare"> -7 20 101 -7 4</spanx></c>
<c>12</c>
<c><spanx style="vbare"> 3 -8 42 26 0</spanx></c>
<c>13</c>
<c><spanx style="vbare">-15 33 68 2 23</spanx></c>
<c>14</c>
<c><spanx style="vbare"> -2 55 46 -2 15</spanx></c>
<c>15</c>
<c><spanx style="vbare"> 3 -1 21 16 41</spanx></c>
</texttable>
<texttable anchor="silk_ltp_filter_coeffs2"
title="Codebook Vectors for LTP Filter, Periodicity Index 2">
<ttcol>Index</ttcol>
<ttcol align="right">Filter Taps (Q7)</ttcol>
<c>0</c>
<c><spanx style="vbare"> -6 27 61 39 5</spanx></c>
<c>1</c>
<c><spanx style="vbare">-11 42 88 4 1</spanx></c>
<c>2</c>
<c><spanx style="vbare"> -2 60 65 6 -4</spanx></c>
<c>3</c>
<c><spanx style="vbare"> -1 -5 73 56 1</spanx></c>
<c>4</c>
<c><spanx style="vbare"> -9 19 94 29 -9</spanx></c>
<c>5</c>
<c><spanx style="vbare"> 0 12 99 6 4</spanx></c>
<c>6</c>
<c><spanx style="vbare"> 8 -19 102 46 -13</spanx></c>
<c>7</c>
<c><spanx style="vbare"> 3 2 13 3 2</spanx></c>
<c>8</c>
<c><spanx style="vbare"> 9 -21 84 72 -18</spanx></c>
<c>9</c>
<c><spanx style="vbare">-11 46 104 -22 8</spanx></c>
<c>10</c>
<c><spanx style="vbare"> 18 38 48 23 0</spanx></c>
<c>11</c>
<c><spanx style="vbare">-16 70 83 -21 11</spanx></c>
<c>12</c>
<c><spanx style="vbare"> 5 -11 117 22 -8</spanx></c>
<c>13</c>
<c><spanx style="vbare"> -6 23 117 -12 3</spanx></c>
<c>14</c>
<c><spanx style="vbare"> 3 -8 95 28 4</spanx></c>
<c>15</c>
<c><spanx style="vbare">-10 15 77 60 -15</spanx></c>
<c>16</c>
<c><spanx style="vbare"> -1 4 124 2 -4</spanx></c>
<c>17</c>
<c><spanx style="vbare"> 3 38 84 24 -25</spanx></c>
<c>18</c>
<c><spanx style="vbare"> 2 13 42 13 31</spanx></c>
<c>19</c>
<c><spanx style="vbare"> 21 -4 56 46 -1</spanx></c>
<c>20</c>
<c><spanx style="vbare"> -1 35 79 -13 19</spanx></c>
<c>21</c>
<c><spanx style="vbare"> -7 65 88 -9 -14</spanx></c>
<c>22</c>
<c><spanx style="vbare"> 20 4 81 49 -29</spanx></c>
<c>23</c>
<c><spanx style="vbare"> 20 0 75 3 -17</spanx></c>
<c>24</c>
<c><spanx style="vbare"> 5 -9 44 92 -8</spanx></c>
<c>25</c>
<c><spanx style="vbare"> 1 -3 22 69 31</spanx></c>
<c>26</c>
<c><spanx style="vbare"> -6 95 41 -12 5</spanx></c>
<c>27</c>
<c><spanx style="vbare"> 39 67 16 -4 1</spanx></c>
<c>28</c>
<c><spanx style="vbare"> 0 -6 120 55 -36</spanx></c>
<c>29</c>
<c><spanx style="vbare">-13 44 122 4 -24</spanx></c>
<c>30</c>
<c><spanx style="vbare"> 81 5 11 3 7</spanx></c>
<c>31</c>
<c><spanx style="vbare"> 2 0 9 10 88</spanx></c>
</texttable>
</section>
<section anchor="silk_ltp_scaling" title="LTP Scaling Parameter">
<t>
An LTP scaling parameter appears after the LTP filter coefficients if and only
if
<list style="symbols">
<t>This is a voiced frame (see <xref target="silk_frame_type"/>), and</t>
<t>Either
<list style="symbols">
<t>
This SILK frame corresponds to the first time interval of the
current Opus frame for its type (LBRR or regular), or
</t>
<t>
This is an LBRR frame where the LBRR flags (see
<xref target="silk_lbrr_flags"/>) indicate the previous LBRR frame in the same
channel is not coded.
</t>
</list>
</t>
</list>
This allows the encoder to trade off the prediction gain between
packets against the recovery time after packet loss.
Unlike absolute-coding for pitch lags, regular SILK frames that are not at the
start of an Opus frame (i.e., that do not correspond to the first 20 ms
time interval in Opus frames of 40 or 60 ms) do not include this
field, even if the prior frame was not voiced, or (in the case of the side
channel) not even coded.
After an uncoded frame in the side channel, the LTP buffer (see
<xref target="silk_ltp_synthesis"/>) is cleared to zero, and is thus in a
known state.
In contrast, LBRR frames do include this field when the prior frame was not
coded, since the LTP buffer contains the output of the PLC, which is
non-normative.
</t>
<t>
If present, the decoder reads a value using the 3-entry PDF in
<xref target="silk_ltp_scaling_pdf"/>.
The three possible values represent Q14 scale factors of 15565, 12288, and
8192, respectively (corresponding to approximately 0.95, 0.75, and 0.5).
Frames that do not code the scaling parameter use the default factor of 15565
(approximately 0.95).
</t>
<texttable anchor="silk_ltp_scaling_pdf"
title="PDF for LTP Scaling Parameter">
<ttcol align="left">PDF</ttcol>
<c>{128, 64, 64}/256</c>
</texttable>
</section>
</section>
<section anchor="silk_seed" toc="include"
title="Linear Congruential Generator (LCG) Seed">
<t>
As described in <xref target="silk_excitation_reconstruction"/>, SILK uses a
linear congruential generator (LCG) to inject pseudorandom noise into the
quantized excitation.
To ensure synchronization of this process between the encoder and decoder, each
SILK frame stores a 2-bit seed after the LTP parameters (if any).
The encoder may consider the choice of seed during quantization, and the
flexibility of this choice lets it reduce distortion, helping to pay for the
bit cost required to signal it.
The decoder reads the seed using the uniform 4-entry PDF in
<xref target="silk_seed_pdf"/>, yielding a value between 0 and 3, inclusive.
</t>
<texttable anchor="silk_seed_pdf"
title="PDF for LCG Seed">
<ttcol align="left">PDF</ttcol>
<c>{64, 64, 64, 64}/256</c>
</texttable>
</section>
<section anchor="silk_excitation" toc="include" title="Excitation">
<t>
SILK codes the excitation using a modified version of the Pyramid Vector
Quantization (PVQ) codebook <xref target="PVQ"/>.
The PVQ codebook is designed for Laplace-distributed values and consists of all
sums of K signed, unit pulses in a vector of dimension N, where two pulses at
the same position are required to have the same sign.
Thus the codebook includes all integer codevectors y of dimension N that
satisfy
<figure align="center">
<artwork align="center"><![CDATA[
N-1
__
\ abs(y[j]) = K .
/_
j=0
]]></artwork>
</figure>
Unlike regular PVQ, SILK uses a variable-length, rather than fixed-length,
encoding.
This encoding is better suited to the more Gaussian-like distribution of the
coefficient magnitudes and the non-uniform distribution of their signs (caused
by the quantization offset described below).
SILK also handles large codebooks by coding the least significant bits (LSBs)
of each coefficient directly.
This adds a small coding efficiency loss, but greatly reduces the computation
time and ROM size required for decoding, as implemented in
silk_decode_pulses() (decode_pulses.c).
</t>
<t>
SILK fixes the dimension of the codebook to N = 16.
The excitation is made up of a number of "shell blocks", each 16 samples in
size.
<xref target="silk_shell_block_table"/> lists the number of shell blocks
required for a SILK frame for each possible audio bandwidth and frame size.
10 ms MB frames nominally contain 120 samples (10 ms at
12 kHz), which is not a multiple of 16.
This is handled by coding 8 shell blocks (128 samples) and discarding the final
8 samples of the last block.
The decoder contains no special case that prevents an encoder from placing
pulses in these samples, and they must be correctly parsed from the bitstream
if present, but they are otherwise ignored.
</t>
<texttable anchor="silk_shell_block_table"
title="Number of Shell Blocks Per SILK Frame">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>Frame Size</ttcol>
<ttcol align="right">Number of Shell Blocks</ttcol>
<c>NB</c> <c>10 ms</c> <c>5</c>
<c>MB</c> <c>10 ms</c> <c>8</c>
<c>WB</c> <c>10 ms</c> <c>10</c>
<c>NB</c> <c>20 ms</c> <c>10</c>
<c>MB</c> <c>20 ms</c> <c>15</c>
<c>WB</c> <c>20 ms</c> <c>20</c>
</texttable>
<section anchor="silk_rate_level" title="Rate Level">
<t>
The first symbol in the excitation is a "rate level", which is an index from 0
to 8, inclusive, coded using the PDF in <xref target="silk_rate_level_pdfs"/>
corresponding to the signal type of the current frame (from
<xref target="silk_frame_type"/>).
The rate level selects the PDF used to decode the number of pulses in
the individual shell blocks.
It does not directly convey any information about the bitrate or the number of
pulses itself, but merely changes the probability of the symbols in
<xref target="silk_pulse_counts"/>.
Level 0 provides a more efficient encoding at low rates generally, and
level 8 provides a more efficient encoding at high rates generally,
though the most efficient level for a particular SILK frame may depend on the
exact distribution of the coded symbols.
An encoder should, but is not required to, use the most efficient rate level.
</t>
<texttable anchor="silk_rate_level_pdfs"
title="PDFs for the Rate Level">
<ttcol>Signal Type</ttcol>
<ttcol>PDF</ttcol>
<c>Inactive or Unvoiced</c>
<c>{15, 51, 12, 46, 45, 13, 33, 27, 14}/256</c>
<c>Voiced</c>
<c>{33, 30, 36, 17, 34, 49, 18, 21, 18}/256</c>
</texttable>
</section>
<section anchor="silk_pulse_counts" title="Pulses Per Shell Block">
<t>
The total number of pulses in each of the shell blocks follows the rate level.
The pulse counts for all of the shell blocks are coded consecutively, before
the content of any of the blocks.
Each block may have anywhere from 0 to 16 pulses, inclusive, coded using the
18-entry PDF in <xref target="silk_pulse_count_pdfs"/> corresponding to the
rate level from <xref target="silk_rate_level"/>.
The special value 17 indicates that this block has one or more additional
LSBs to decode for each coefficient.
If the decoder encounters this value, it decodes another value for the actual
pulse count of the block, but uses the PDF corresponding to the special rate
level 9 instead of the normal rate level.
This process repeats until the decoder reads a value less than 17, and it then
sets the number of extra LSBs used to the number of 17's decoded for that
block.
If it reads the value 17 ten times, then the next iteration uses the special
rate level 10 instead of 9.
The probability of decoding a 17 when using the PDF for rate level 10 is
zero, ensuring that the number of LSBs for a block will not exceed 10.
The cumulative distribution for rate level 10 is just a shifted version of
that for 9 and thus does not require any additional storage.
</t>
<texttable anchor="silk_pulse_count_pdfs"
title="PDFs for the Pulse Count">
<ttcol>Rate Level</ttcol>
<ttcol>PDF</ttcol>
<c>0</c>
<c>{131, 74, 25, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
<c>1</c>
<c>{58, 93, 60, 23, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
<c>2</c>
<c>{43, 51, 46, 33, 24, 16, 11, 8, 6, 3, 3, 3, 2, 1, 1, 2, 1, 2}/256</c>
<c>3</c>
<c>{17, 52, 71, 57, 31, 12, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
<c>4</c>
<c>{6, 21, 41, 53, 49, 35, 21, 11, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1}/256</c>
<c>5</c>
<c>{7, 14, 22, 28, 29, 28, 25, 20, 17, 13, 11, 9, 7, 5, 4, 4, 3, 10}/256</c>
<c>6</c>
<c>{2, 5, 14, 29, 42, 46, 41, 31, 19, 11, 6, 3, 2, 1, 1, 1, 1, 1}/256</c>
<c>7</c>
<c>{1, 2, 4, 10, 19, 29, 35, 37, 34, 28, 20, 14, 8, 5, 4, 2, 2, 2}/256</c>
<c>8</c>
<c>{1, 2, 2, 5, 9, 14, 20, 24, 27, 28, 26, 23, 20, 15, 11, 8, 6, 15}/256</c>
<c>9</c>
<c>{1, 1, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1, 1, 2}/256</c>
<c>10</c>
<c>{2, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1, 1, 2, 0}/256</c>
</texttable>
</section>
<section anchor="silk_pulse_locations" title="Pulse Location Decoding">
<t>
The locations of the pulses in each shell block follow the pulse counts,
as decoded by silk_shell_decoder() (shell_coder.c).
As with the pulse counts, these locations are coded for all the shell blocks
before any of the remaining information for each block.
Unlike many other codecs, SILK places no restriction on the distribution of
pulses within a shell block.
All of the pulses may be placed in a single location, or each one in a unique
location, or anything in between.
</t>
<t>
The location of pulses is coded by recursively partitioning each block into
halves, and coding how many pulses fall on the left side of the split.
All remaining pulses must fall on the right side of the split.
The process then recurses into the left half, and after that returns, the
right half (preorder traversal).
The PDF to use is chosen by the size of the current partition (16, 8, 4, or 2)
and the number of pulses in the partition (1 to 16, inclusive).
Tables <xref format="counter" target="silk_shell_code3_pdfs"/>
through <xref format="counter" target="silk_shell_code0_pdfs"/> list the
PDFs used for each partition size and pulse count.
This process skips partitions without any pulses, i.e., where the initial pulse
count from <xref target="silk_pulse_counts"/> was zero, or where the split in
the prior level indicated that all of the pulses fell on the other side.
These partitions have nothing to code, so they require no PDF.
</t>
<texttable anchor="silk_shell_code3_pdfs"
title="PDFs for Pulse Count Split, 16 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{126, 130}/256</c>
<c>2</c> <c>{56, 142, 58}/256</c>
<c>3</c> <c>{25, 101, 104, 26}/256</c>
<c>4</c> <c>{12, 60, 108, 64, 12}/256</c>
<c>5</c> <c>{7, 35, 84, 87, 37, 6}/256</c>
<c>6</c> <c>{4, 20, 59, 86, 63, 21, 3}/256</c>
<c>7</c> <c>{3, 12, 38, 72, 75, 42, 12, 2}/256</c>
<c>8</c> <c>{2, 8, 25, 54, 73, 59, 27, 7, 1}/256</c>
<c>9</c> <c>{2, 5, 17, 39, 63, 65, 42, 18, 4, 1}/256</c>
<c>10</c> <c>{1, 4, 12, 28, 49, 63, 54, 30, 11, 3, 1}/256</c>
<c>11</c> <c>{1, 4, 8, 20, 37, 55, 57, 41, 22, 8, 2, 1}/256</c>
<c>12</c> <c>{1, 3, 7, 15, 28, 44, 53, 48, 33, 16, 6, 1, 1}/256</c>
<c>13</c> <c>{1, 2, 6, 12, 21, 35, 47, 48, 40, 25, 12, 5, 1, 1}/256</c>
<c>14</c> <c>{1, 1, 4, 10, 17, 27, 37, 47, 43, 33, 21, 9, 4, 1, 1}/256</c>
<c>15</c> <c>{1, 1, 1, 8, 14, 22, 33, 40, 43, 38, 28, 16, 8, 1, 1, 1}/256</c>
<c>16</c> <c>{1, 1, 1, 1, 13, 18, 27, 36, 41, 41, 34, 24, 14, 1, 1, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_shell_code2_pdfs"
title="PDFs for Pulse Count Split, 8 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{127, 129}/256</c>
<c>2</c> <c>{53, 149, 54}/256</c>
<c>3</c> <c>{22, 105, 106, 23}/256</c>
<c>4</c> <c>{11, 61, 111, 63, 10}/256</c>
<c>5</c> <c>{6, 35, 86, 88, 36, 5}/256</c>
<c>6</c> <c>{4, 20, 59, 87, 62, 21, 3}/256</c>
<c>7</c> <c>{3, 13, 40, 71, 73, 41, 13, 2}/256</c>
<c>8</c> <c>{3, 9, 27, 53, 70, 56, 28, 9, 1}/256</c>
<c>9</c> <c>{3, 8, 19, 37, 57, 61, 44, 20, 6, 1}/256</c>
<c>10</c> <c>{3, 7, 15, 28, 44, 54, 49, 33, 17, 5, 1}/256</c>
<c>11</c> <c>{1, 7, 13, 22, 34, 46, 48, 38, 28, 14, 4, 1}/256</c>
<c>12</c> <c>{1, 1, 11, 22, 27, 35, 42, 47, 33, 25, 10, 1, 1}/256</c>
<c>13</c> <c>{1, 1, 6, 14, 26, 37, 43, 43, 37, 26, 14, 6, 1, 1}/256</c>
<c>14</c> <c>{1, 1, 4, 10, 20, 31, 40, 42, 40, 31, 20, 10, 4, 1, 1}/256</c>
<c>15</c> <c>{1, 1, 3, 8, 16, 26, 35, 38, 38, 35, 26, 16, 8, 3, 1, 1}/256</c>
<c>16</c> <c>{1, 1, 2, 6, 12, 21, 30, 36, 38, 36, 30, 21, 12, 6, 2, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_shell_code1_pdfs"
title="PDFs for Pulse Count Split, 4 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{127, 129}/256</c>
<c>2</c> <c>{49, 157, 50}/256</c>
<c>3</c> <c>{20, 107, 109, 20}/256</c>
<c>4</c> <c>{11, 60, 113, 62, 10}/256</c>
<c>5</c> <c>{7, 36, 84, 87, 36, 6}/256</c>
<c>6</c> <c>{6, 24, 57, 82, 60, 23, 4}/256</c>
<c>7</c> <c>{5, 18, 39, 64, 68, 42, 16, 4}/256</c>
<c>8</c> <c>{6, 14, 29, 47, 61, 52, 30, 14, 3}/256</c>
<c>9</c> <c>{1, 15, 23, 35, 51, 50, 40, 30, 10, 1}/256</c>
<c>10</c> <c>{1, 1, 21, 32, 42, 52, 46, 41, 18, 1, 1}/256</c>
<c>11</c> <c>{1, 6, 16, 27, 36, 42, 42, 36, 27, 16, 6, 1}/256</c>
<c>12</c> <c>{1, 5, 12, 21, 31, 38, 40, 38, 31, 21, 12, 5, 1}/256</c>
<c>13</c> <c>{1, 3, 9, 17, 26, 34, 38, 38, 34, 26, 17, 9, 3, 1}/256</c>
<c>14</c> <c>{1, 3, 7, 14, 22, 29, 34, 36, 34, 29, 22, 14, 7, 3, 1}/256</c>
<c>15</c> <c>{1, 2, 5, 11, 18, 25, 31, 35, 35, 31, 25, 18, 11, 5, 2, 1}/256</c>
<c>16</c> <c>{1, 1, 4, 9, 15, 21, 28, 32, 34, 32, 28, 21, 15, 9, 4, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_shell_code0_pdfs"
title="PDFs for Pulse Count Split, 2 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{128, 128}/256</c>
<c>2</c> <c>{42, 172, 42}/256</c>
<c>3</c> <c>{21, 107, 107, 21}/256</c>
<c>4</c> <c>{12, 60, 112, 61, 11}/256</c>
<c>5</c> <c>{8, 34, 86, 86, 35, 7}/256</c>
<c>6</c> <c>{8, 23, 55, 90, 55, 20, 5}/256</c>
<c>7</c> <c>{5, 15, 38, 72, 72, 36, 15, 3}/256</c>
<c>8</c> <c>{6, 12, 27, 52, 77, 47, 20, 10, 5}/256</c>
<c>9</c> <c>{6, 19, 28, 35, 40, 40, 35, 28, 19, 6}/256</c>
<c>10</c> <c>{4, 14, 22, 31, 37, 40, 37, 31, 22, 14, 4}/256</c>
<c>11</c> <c>{3, 10, 18, 26, 33, 38, 38, 33, 26, 18, 10, 3}/256</c>
<c>12</c> <c>{2, 8, 13, 21, 29, 36, 38, 36, 29, 21, 13, 8, 2}/256</c>
<c>13</c> <c>{1, 5, 10, 17, 25, 32, 38, 38, 32, 25, 17, 10, 5, 1}/256</c>
<c>14</c> <c>{1, 4, 7, 13, 21, 29, 35, 36, 35, 29, 21, 13, 7, 4, 1}/256</c>
<c>15</c> <c>{1, 2, 5, 10, 17, 25, 32, 36, 36, 32, 25, 17, 10, 5, 2, 1}/256</c>
<c>16</c> <c>{1, 2, 4, 7, 13, 21, 28, 34, 36, 34, 28, 21, 13, 7, 4, 2, 1}/256</c>
</texttable>
</section>
<section anchor="silk_shell_lsb" title="LSB Decoding">
<t>
After the decoder reads the pulse locations for all blocks, it reads the LSBs
(if any) for each block in turn.
Inside each block, it reads all the LSBs for each coefficient in turn, even
those where no pulses were allocated, before proceeding to the next one.
For 10 ms MB frames, it reads LSBs even for the extra 8 samples in
the last block.
The LSBs are coded from most significant to least significant, and they all use
the PDF in <xref target="silk_shell_lsb_pdf"/>.
</t>
<texttable anchor="silk_shell_lsb_pdf" title="PDF for Excitation LSBs">
<ttcol>PDF</ttcol>
<c>{136, 120}/256</c>
</texttable>
<t>
The number of LSBs read for each coefficient in a block is determined in
<xref target="silk_pulse_counts"/>.
The magnitude of the coefficient is initially equal to the number of pulses
placed at that location in <xref target="silk_pulse_locations"/>.
As each LSB is decoded, the magnitude is doubled, and then the value of the LSB
added to it, to obtain an updated magnitude.
</t>
</section>
<section anchor="silk_signs" title="Sign Decoding">
<t>
After decoding the pulse locations and the LSBs, the decoder knows the
magnitude of each coefficient in the excitation.
It then decodes a sign for all coefficients with a non-zero magnitude, using
one of the PDFs from <xref target="silk_sign_pdfs"/>.
If the value decoded is 0, then the coefficient magnitude is negated.
Otherwise, it remains positive.
</t>
<t>
The decoder chooses the PDF for the sign based on the signal type and
quantization offset type (from <xref target="silk_frame_type"/>) and the
number of pulses in the block (from <xref target="silk_pulse_counts"/>).
The number of pulses in the block does not take into account any LSBs.
Most PDFs are skewed towards negative signs because of the quantization offset,
but the PDFs for zero pulses are highly skewed towards positive signs.
If a block contains many positive coefficients, it is sometimes beneficial to
code it solely using LSBs (i.e., with zero pulses), since the encoder may be
able to save enough bits on the signs to justify the less efficient
coefficient magnitude encoding.
</t>
<texttable anchor="silk_sign_pdfs"
title="PDFs for Excitation Signs">
<ttcol>Signal Type</ttcol>
<ttcol>Quantization Offset Type</ttcol>
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>Inactive</c> <c>Low</c> <c>0</c> <c>{2, 254}/256</c>
<c>Inactive</c> <c>Low</c> <c>1</c> <c>{207, 49}/256</c>
<c>Inactive</c> <c>Low</c> <c>2</c> <c>{189, 67}/256</c>
<c>Inactive</c> <c>Low</c> <c>3</c> <c>{179, 77}/256</c>
<c>Inactive</c> <c>Low</c> <c>4</c> <c>{174, 82}/256</c>
<c>Inactive</c> <c>Low</c> <c>5</c> <c>{163, 93}/256</c>
<c>Inactive</c> <c>Low</c> <c>6 or more</c> <c>{157, 99}/256</c>
<c>Inactive</c> <c>High</c> <c>0</c> <c>{58, 198}/256</c>
<c>Inactive</c> <c>High</c> <c>1</c> <c>{245, 11}/256</c>
<c>Inactive</c> <c>High</c> <c>2</c> <c>{238, 18}/256</c>
<c>Inactive</c> <c>High</c> <c>3</c> <c>{232, 24}/256</c>
<c>Inactive</c> <c>High</c> <c>4</c> <c>{225, 31}/256</c>
<c>Inactive</c> <c>High</c> <c>5</c> <c>{220, 36}/256</c>
<c>Inactive</c> <c>High</c> <c>6 or more</c> <c>{211, 45}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>0</c> <c>{1, 255}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>1</c> <c>{210, 46}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>2</c> <c>{190, 66}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>3</c> <c>{178, 78}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>4</c> <c>{169, 87}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>5</c> <c>{162, 94}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>6 or more</c> <c>{152, 104}/256</c>
<c>Unvoiced</c> <c>High</c> <c>0</c> <c>{48, 208}/256</c>
<c>Unvoiced</c> <c>High</c> <c>1</c> <c>{242, 14}/256</c>
<c>Unvoiced</c> <c>High</c> <c>2</c> <c>{235, 21}/256</c>
<c>Unvoiced</c> <c>High</c> <c>3</c> <c>{224, 32}/256</c>
<c>Unvoiced</c> <c>High</c> <c>4</c> <c>{214, 42}/256</c>
<c>Unvoiced</c> <c>High</c> <c>5</c> <c>{205, 51}/256</c>
<c>Unvoiced</c> <c>High</c> <c>6 or more</c> <c>{190, 66}/256</c>
<c>Voiced</c> <c>Low</c> <c>0</c> <c>{1, 255}/256</c>
<c>Voiced</c> <c>Low</c> <c>1</c> <c>{162, 94}/256</c>
<c>Voiced</c> <c>Low</c> <c>2</c> <c>{152, 104}/256</c>
<c>Voiced</c> <c>Low</c> <c>3</c> <c>{147, 109}/256</c>
<c>Voiced</c> <c>Low</c> <c>4</c> <c>{144, 112}/256</c>
<c>Voiced</c> <c>Low</c> <c>5</c> <c>{141, 115}/256</c>
<c>Voiced</c> <c>Low</c> <c>6 or more</c> <c>{138, 118}/256</c>
<c>Voiced</c> <c>High</c> <c>0</c> <c>{8, 248}/256</c>
<c>Voiced</c> <c>High</c> <c>1</c> <c>{203, 53}/256</c>
<c>Voiced</c> <c>High</c> <c>2</c> <c>{187, 69}/256</c>
<c>Voiced</c> <c>High</c> <c>3</c> <c>{176, 80}/256</c>
<c>Voiced</c> <c>High</c> <c>4</c> <c>{168, 88}/256</c>
<c>Voiced</c> <c>High</c> <c>5</c> <c>{161, 95}/256</c>
<c>Voiced</c> <c>High</c> <c>6 or more</c> <c>{154, 102}/256</c>
</texttable>
</section>
<section anchor="silk_excitation_reconstruction"
title="Reconstructing the Excitation">
<t>
After the signs have been read, there is enough information to reconstruct the
complete excitation signal.
This requires adding a constant quantization offset to each non-zero sample,
and then pseudorandomly inverting and offsetting every sample.
The constant quantization offset varies depending on the signal type and
quantization offset type (see <xref target="silk_frame_type"/>).
</t>
<texttable anchor="silk_quantization_offsets"
title="Excitation Quantization Offsets">
<ttcol align="left">Signal Type</ttcol>
<ttcol align="left">Quantization Offset Type</ttcol>
<ttcol align="right">Quantization Offset (Q23)</ttcol>
<c>Inactive</c> <c>Low</c> <c>25</c>
<c>Inactive</c> <c>High</c> <c>60</c>
<c>Unvoiced</c> <c>Low</c> <c>25</c>
<c>Unvoiced</c> <c>High</c> <c>60</c>
<c>Voiced</c> <c>Low</c> <c>8</c>
<c>Voiced</c> <c>High</c> <c>25</c>
</texttable>
<t>
Let e_raw[i] be the raw excitation value at position i, with a magnitude
composed of the pulses at that location (see
<xref target="silk_pulse_locations"/>) combined with any additional LSBs (see
<xref target="silk_shell_lsb"/>), and with the corresponding sign decoded in
<xref target="silk_signs"/>.
Additionally, let seed be the current pseudorandom seed, which is initialized
to the value decoded from <xref target="silk_seed"/> for the first sample in
the current SILK frame, and updated for each subsequent sample according to
the procedure below.
Finally, let offset_Q23 be the quantization offset from
<xref target="silk_quantization_offsets"/>.
Then the following procedure produces the final reconstructed excitation value,
e_Q23[i]:
<figure align="center">
<artwork align="center"><![CDATA[
e_Q23[i] = (e_raw[i] << 8) - sign(e_raw[i])*20 + offset_Q23;
seed = (196314165*seed + 907633515) & 0xFFFFFFFF;
e_Q23[i] = (seed & 0x80000000) ? -e_Q23[i] : e_Q23[i];
seed = (seed + e_raw[i]) & 0xFFFFFFFF;
]]></artwork>
</figure>
When e_raw[i] is zero, sign() returns 0 by the definition in
<xref target="sign"/>, so the factor of 20 does not get added.
The final e_Q23[i] value may require more than 16 bits per sample, but will not
require more than 23, including the sign.
</t>
</section>
</section>
<section anchor="silk_frame_reconstruction" toc="include"
title="SILK Frame Reconstruction">
<t>
The remainder of the reconstruction process for the frame does not need to be
bit-exact, as small errors should only introduce proportionally small
distortions.
Although the reference implementation only includes a fixed-point version of
the remaining steps, this section describes them in terms of a floating-point
version for simplicity.
This produces a signal with a nominal range of -1.0 to 1.0.
</t>
<t>
silk_decode_core() (decode_core.c) contains the code for the main
reconstruction process.
It proceeds subframe-by-subframe, since quantization gains, LTP parameters, and
(in 20 ms SILK frames) LPC coefficients can vary from one to the
next.
</t>
<t>
Let a_Q12[k] be the LPC coefficients for the current subframe.
If this is the first or second subframe of a 20 ms SILK frame and the LSF
interpolation factor, w_Q2 (see <xref target="silk_nlsf_interpolation"/>), is
less than 4, then these correspond to the final LPC coefficients produced by
<xref target="silk_lpc_gain_limit"/> from the interpolated LSF coefficients,
n1_Q15[k] (computed in <xref target="silk_nlsf_interpolation"/>).
Otherwise, they correspond to the final LPC coefficients produced from the
uninterpolated LSF coefficients for the current frame, n2_Q15[k].
</t>
<t>
Also, let n be the number of samples in a subframe (40 for NB, 60 for MB, and
80 for WB), s be the index of the current subframe in this SILK frame (0 or 1
for 10 ms frames, or 0 to 3 for 20 ms frames), and j be the index of
the first sample in the residual corresponding to the current subframe.
</t>
<section anchor="silk_ltp_synthesis" title="LTP Synthesis">
<t>
Voiced SILK frames (see <xref target="silk_frame_type"/>) pass the excitation
through an LTP filter using the parameters decoded in
<xref target="silk_ltp_params"/> to produce an LPC residual.
The LTP filter requires LPC residual values from before the current subframe as
input.
However, since the LPCs may have changed, it obtains this residual by
"rewhitening" the corresponding output signal using the LPCs from the current
subframe.
Let out[i] for
(j - pitch_lags[s] - d_LPC - 2) <= i < j
be the fully reconstructed output signal from the last
(pitch_lags[s] + d_LPC + 2) samples of previous subframes
(see <xref target="silk_lpc_synthesis"/>), where pitch_lags[s] is the pitch
lag for the current subframe from <xref target="silk_ltp_lags"/>.
During reconstruction of the first subframe for this channel after either
<list style="symbols">
<t>An uncoded regular SILK frame (if this is the side channel), or</t>
<t>A decoder reset (see <xref target="decoder-reset"/>),</t>
</list>
out[] is rewhitened into an LPC residual,
res[i], via
<figure align="center">
<artwork align="center"><![CDATA[
4.0*LTP_scale_Q14
res[i] = ----------------- * clamp(-1.0,
gain_Q16[s]
d_LPC-1
__ a_Q12[k]
out[i] - \ out[i-k-1] * --------, 1.0) .
/_ 4096.0
k=0
]]></artwork>
</figure>
This requires storage to buffer up to 306 values of out[i] from previous
subframes.
This corresponds to WB with a maximum pitch lag of
18 ms * 16 kHz samples, plus 16 samples for d_LPC, plus 2
samples for the width of the LTP filter.
</t>
<t>
Let e_Q23[i] for j <= i < (j + n) be the
excitation for the current subframe, and b_Q7[k] for
0 <= k < 5 be the coefficients of the LTP filter
taken from the codebook entry in one of
Tables <xref format="counter" target="silk_ltp_filter_coeffs0"/>
through <xref format="counter" target="silk_ltp_filter_coeffs2"/>
corresponding to the index decoded for the current subframe in
<xref target="silk_ltp_filter"/>.
Then for i such that j <= i < (j + n),
the LPC residual is
<figure align="center">
<artwork align="center"><![CDATA[
4
e_Q23[i] __ b_Q7[k]
res[i] = --------- + \ res[i - pitch_lags[s] + 2 - k] * ------- .
8388608.0 /_ 128.0
k=0
]]></artwork>
</figure>
</t>
<t>
For unvoiced frames, the LPC residual for
j <= i < (j + n) is simply a normalized
copy of the excitation signal, i.e.,
<figure align="center">
<artwork align="center"><![CDATA[
e_Q23[i]
res[i] = ---------
8388608.0
]]></artwork>
</figure>
</t>
</section>
<section anchor="silk_lpc_synthesis" title="LPC Synthesis">
<t>
LPC synthesis uses the short-term LPC filter to predict the next output
coefficient.
For i such that (j - d_LPC) <= i < j, let
lpc[i] be the result of LPC synthesis from the last d_LPC samples of the
previous subframe, or zeros in the first subframe for this channel after
either
<list style="symbols">
<t>An uncoded regular SILK frame (if this is the side channel), or</t>
<t>A decoder reset (see <xref target="decoder-reset"/>).</t>
</list>
Then for i such that j <= i < (j + n), the
result of LPC synthesis for the current subframe is
<figure align="center">
<artwork align="center"><![CDATA[
d_LPC-1
gain_Q16[i] __ a_Q12[k]
lpc[i] = ----------- * res[i] + \ lpc[i-k-1] * -------- .
65536.0 /_ 4096.0
k=0
]]></artwork>
</figure>
The decoder saves the final d_LPC values, i.e., lpc[i] such that
(j + n - d_LPC) <= i < (j + n),
to feed into the LPC synthesis of the next subframe.
This requires storage for up to 16 values of lpc[i] (for WB frames).
</t>
<t>
Then, the signal is clamped into the final nominal range:
<figure align="center">
<artwork align="center"><![CDATA[
out[i] = clamp(-1.0, lpc[i], 1.0) .
]]></artwork>
</figure>
This clamping occurs entirely after the LPC synthesis filter has run.
The decoder saves the unclamped values, lpc[i], to feed into the LPC filter for
the next subframe, but saves the clamped values, out[i], for rewhitening in
voiced frames.
</t>
</section>
</section>
</section>
<section anchor="silk_stereo_unmixing" title="Stereo Unmixing">
<t>
For stereo streams, after decoding a frame from each channel, the decoder must
convert the mid-side (MS) representation into a left-right (LR)
representation.
The function silk_stereo_MS_to_LR (stereo_MS_to_LR.c) implements this process.
In it, the decoder predicts the side channel using a) a simple low-passed
version of the mid channel, and b) the unfiltered mid channel, using the
prediction weights decoded in <xref target="silk_stereo_pred"/>.
This simple low-pass filter imposes a one-sample delay, and the unfiltered
mid channel is also delayed by one sample.
In order to allow seamless switching between stereo and mono, mono streams must
also impose the same one-sample delay.
The encoder requires an additional one-sample delay for both mono and stereo
streams, though an encoder may omit the delay for mono if it knows it will
never switch to stereo.
</t>
<t>
The unmixing process operates in two phases.
The first phase lasts for 8 ms, during which it interpolates the
prediction weights from the previous frame, prev_w0_Q13 and prev_w1_Q13, to
the values for the current frame, w0_Q13 and w1_Q13.
The second phase simply uses these weights for the remainder of the frame.
</t>
<t>
Let mid[i] and side[i] be the contents of out[i] (from
<xref target="silk_lpc_synthesis"/>) for the current mid and side channels,
respectively, and let left[i] and right[i] be the corresponding stereo output
channels.
If the side channel is not coded (see <xref target="silk_mid_only_flag"/>),
then side[i] is set to zero.
Also let j be defined as in <xref target="silk_frame_reconstruction"/>, n1 be
the number of samples in phase 1 (64 for NB, 96 for MB, and 128 for WB),
and n2 be the total number of samples in the frame.
Then for i such that j <= i < (j + n2),
the left and right channel output is
<figure align="center">
<artwork align="center"><![CDATA[
prev_w0_Q13 (w0_Q13 - prev_w0_Q13)
w0 = ----------- + min(i - j, n1)*---------------------- ,
8192.0 8192.0*n1
prev_w1_Q13 (w1_Q13 - prev_w1_Q13)
w1 = ----------- + min(i - j, n1)*---------------------- ,
8192.0 8192.0*n1
mid[i-2] + 2*mid[i-1] + mid[i]
p0 = ------------------------------ ,
4.0
left[i] = clamp(-1.0, (1 + w1)*mid[i-1] + side[i-1] + w0*p0, 1.0) ,
right[i] = clamp(-1.0, (1 - w1)*mid[i-1] - side[i-1] - w0*p0, 1.0) .
]]></artwork>
</figure>
These formulas require two samples prior to index j, the start of the
frame, for the mid channel, and one prior sample for the side channel.
For the first frame after a decoder reset, zeros are used instead.
</t>
</section>
<section title="Resampling">
<t>
After stereo unmixing (if any), the decoder applies resampling to convert the
decoded SILK output to the sample rate desired by the application.
This is necessary when decoding a Hybrid frame at SWB or FB sample rates, or
whenever the decoder wants the output at a different sample rate than the
internal SILK sampling rate (e.g., to allow a constant sample rate when the
audio bandwidth changes, or to allow mixing with audio from other
applications).
The resampler itself is non-normative, and a decoder can use any method it
wants to perform the resampling.
</t>
<t>
However, a minimum amount of delay is imposed to allow the resampler to
operate, and this delay is normative, so that the corresponding delay can be
applied to the MDCT layer in the encoder.
A decoder is always free to use a resampler which requires more delay than
allowed for here (e.g., to improve quality), but it must then delay the output
of the MDCT layer by this extra amount.
Keeping as much delay as possible on the encoder side allows an encoder which
knows it will never use any of the SILK or Hybrid modes to skip this delay.
By contrast, if it were all applied by the decoder, then a decoder which
processes audio in fixed-size blocks would be forced to delay the output of
CELT frames just in case of a later switch to a SILK or Hybrid mode.
</t>
<t>
<xref target="silk_resampler_delay_alloc"/> gives the maximum resampler delay
in samples at 48 kHz for each SILK audio bandwidth.
Because the actual output rate may not be 48 kHz, it may not be possible
to achieve exactly these delays while using a whole number of input or output
samples.
The reference implementation is able to resample to any of the supported
output sampling rates (8, 12, 16, 24, or 48 kHz) within or near this
delay constraint.
Some resampling filters (including those used by the reference implementation)
may add a delay that is not an exact integer, or is not linear-phase, and so
cannot be represented by a single delay at all frequencies.
However, such deviations are unlikely to be perceptible, and the comparison
tool described in <xref target="conformance"/> is designed to be relatively
insensitive to them.
The delays listed here are the ones that should be targeted by the encoder.
</t>
<texttable anchor="silk_resampler_delay_alloc"
title="SILK Resampler Delay Allocations">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>Delay in millisecond</ttcol>
<c>NB</c> <c>0.538</c>
<c>MB</c> <c>0.692</c>
<c>WB</c> <c>0.706</c>
</texttable>
<t>
NB is given a smaller decoder delay allocation than MB and WB to allow a
higher-order filter when resampling to 8 kHz in both the encoder and
decoder.
This implies that the audio content of two SILK frames operating at different
bandwidths are not perfectly aligned in time.
This is not an issue for any transitions described in
<xref target="switching"/>, because they all involve a SILK decoder reset.
When the decoder is reset, any samples remaining in the resampling buffer
are discarded, and the resampler is re-initialized with silence.
</t>
</section>
</section>
<section title="CELT Decoder">
<t>
An overview of the decoder is given in <xref target="celt-decoder-overview"/>.
</t>
<figure anchor="celt-decoder-overview" title="Structure of the CELT decoder">
<artwork align="center"><![CDATA[
+---------+
| Coarse |
+->| decoder |----+
| +---------+ |
| |
| +---------+ v
| | Fine | +---+
+->| decoder |->| + |
| +---------+ +---+
| ^ |
+---------+ | | |
| Range | | +----------+ v
| Decoder |-+ | Bit | +------+
+---------+ | |Allocation| | 2**x |
| +----------+ +------+
| | |
| v v +--------+
| +---------+ +---+ +-------+ | pitch |
+->| PVQ |->| * |->| IMDCT |->| post- |--->
| | decoder | +---+ +-------+ | filter |
| +---------+ +--------+
| ^
+--------------------------------------+
]]></artwork>
</figure>
<t>
The decoder is based on the following symbols and sets of symbols:
</t>
<texttable anchor="celt_symbols"
title="Order of the symbols in the CELT section of the bitstream">
<ttcol align="center">Symbol(s)</ttcol>
<ttcol align="center">PDF</ttcol>
<ttcol align="center">Condition</ttcol>
<c>silence</c> <c>{32767, 1}/32768</c> <c></c>
<c>post-filter</c> <c>{1, 1}/2</c> <c></c>
<c>octave</c> <c>uniform (6)</c><c>post-filter</c>
<c>period</c> <c>raw bits (4+octave)</c><c>post-filter</c>
<c>gain</c> <c>raw bits (3)</c><c>post-filter</c>
<c>tapset</c> <c>{2, 1, 1}/4</c><c>post-filter</c>
<c>transient</c> <c>{7, 1}/8</c><c></c>
<c>intra</c> <c>{7, 1}/8</c><c></c>
<c>coarse energy</c><c><xref target="energy-decoding"/></c><c></c>
<c>tf_change</c> <c><xref target="transient-decoding"/></c><c></c>
<c>tf_select</c> <c>{1, 1}/2</c><c><xref target="transient-decoding"/></c>
<c>spread</c> <c>{7, 2, 21, 2}/32</c><c></c>
<c>dyn. alloc.</c> <c><xref target="allocation"/></c><c></c>
<c>alloc. trim</c> <c>{2, 2, 5, 10, 22, 46, 22, 10, 5, 2, 2}/128</c><c></c>
<c>skip</c> <c>{1, 1}/2</c><c><xref target="allocation"/></c>
<c>intensity</c> <c>uniform</c><c><xref target="allocation"/></c>
<c>dual</c> <c>{1, 1}/2</c><c></c>
<c>fine energy</c> <c><xref target="energy-decoding"/></c><c></c>
<c>residual</c> <c><xref target="PVQ-decoder"/></c><c></c>
<c>anti-collapse</c><c>{1, 1}/2</c><c><xref target="anti-collapse"/></c>
<c>finalize</c> <c><xref target="energy-decoding"/></c><c></c>
</texttable>
<t>
The decoder extracts information from the range-coded bitstream in the order
described in the figure above. In some circumstances, it is
possible for a decoded value to be out of range due to a very small amount of redundancy
in the encoding of large integers by the range coder.
In that case, the decoder should assume there has been an error in the coding,
decoding, or transmission and SHOULD take measures to conceal the error and/or report
to the application that a problem has occurred.
</t>
<section anchor="transient-decoding" title="Transient Decoding">
<t>
The "transient" flag encoded in the bitstream has a probability of 1/8.
When it is set, then the MDCT coefficients represent multiple
short MDCTs in the frame. When not set, the coefficients represent a single
long MDCT for the frame. In addition to the global transient flag is a per-band
binary flag to change the time-frequency (tf) resolution independently in each band. The
change in tf resolution is defined in tf_select_table[][] in celt.c and depends
on the frame size, whether the transient flag is set, and the value of tf_select.
The tf_select flag uses a 1/2 probability, but is only decoded
if it can have an impact on the result knowing the value of all per-band
tf_change flags.
</t>
</section>
<section anchor="energy-decoding" title="Energy Envelope Decoding">
<t>
It is important to quantize the energy with sufficient resolution because
any energy quantization error cannot be compensated for at a later
stage. Regardless of the resolution used for encoding the shape of a band,
it is perceptually important to preserve the energy in each band. CELT uses a
three-step coarse-fine-fine strategy for encoding the energy in the base-2 log
domain, as implemented in quant_bands.c</t>
<section anchor="coarse-energy-decoding" title="Coarse energy decoding">
<t>
Coarse quantization of the energy uses a fixed resolution of 6 dB
(integer part of base-2 log). To minimize the bitrate, prediction is applied
both in time (using the previous frame) and in frequency (using the previous
bands). The part of the prediction that is based on the
previous frame can be disabled, creating an "intra" frame where the energy
is coded without reference to prior frames. The decoder first reads the intra flag
to determine what prediction is used.
The 2-D z-transform of
the prediction filter is:
<figure align="center">
<artwork align="center"><![CDATA[
-1 -1
(1 - alpha*z_l )*(1 - z_b )
A(z_l, z_b) = -----------------------------
-1
1 - beta*z_b
]]></artwork>
</figure>
where b is the band index and l is the frame index. The prediction coefficients
applied depend on the frame size in use when not using intra energy and are alpha=0, beta=4915/32768
when using intra energy.
The time-domain prediction is based on the final fine quantization of the previous
frame, while the frequency domain (within the current frame) prediction is based
on coarse quantization only (because the fine quantization has not been computed
yet). The prediction is clamped internally so that fixed point implementations with
limited dynamic range do not suffer desynchronization.
We approximate the ideal
probability distribution of the prediction error using a Laplace distribution
with separate parameters for each frame size in intra- and inter-frame modes. The
coarse energy quantization is performed by unquant_coarse_energy() and
unquant_coarse_energy_impl() (quant_bands.c). The encoding of the Laplace-distributed values is
implemented in ec_laplace_decode() (laplace.c).
</t>
</section>
<section anchor="fine-energy-decoding" title="Fine energy quantization">
<t>
The number of bits assigned to fine energy quantization in each band is determined
by the bit allocation computation described in <xref target="allocation"></xref>.
Let B_i be the number of fine energy bits
for band i; the refinement is an integer f in the range [0,2**B_i-1]. The mapping between f
and the correction applied to the coarse energy is equal to (f+1/2)/2**B_i - 1/2. Fine
energy quantization is implemented in quant_fine_energy() (quant_bands.c).
</t>
<t>
When some bits are left "unused" after all other flags have been decoded, these bits
are assigned to a "final" step of fine allocation. In effect, these bits are used
to add one extra fine energy bit per band per channel. The allocation process
determines two "priorities" for the final fine bits.
Any remaining bits are first assigned only to bands of priority 0, starting
from band 0 and going up. If all bands of priority 0 have received one bit per
channel, then bands of priority 1 are assigned an extra bit per channel,
starting from band 0. If any bits are left after this, they are left unused.
This is implemented in unquant_energy_finalise() (quant_bands.c).
</t>
</section> <!-- fine energy -->
</section> <!-- Energy decode -->
<section anchor="allocation" title="Bit Allocation">
<t>Many codecs transmit significant amounts of side information for
the purpose of controlling bit allocation within a frame. Often this
side information controls bit usage indirectly and must be carefully
selected to achieve the desired rate constraints.</t>
<t>The band-energy normalized structure of Opus MDCT mode ensures that a
constant bit allocation for the shape content of a band will result in a
roughly constant tone to noise ratio, which provides for fairly consistent
perceptual performance. The effectiveness of this approach is the result of
two factors: that the band energy, which is understood to be perceptually
important on its own, is always preserved regardless of the shape precision, and because
the constant tone-to-noise ratio implies a constant intra-band noise to masking ratio.
Intra-band masking is the strongest of the perceptual masking effects. This structure
means that the ideal allocation is more consistent from frame to frame than
it is for other codecs without an equivalent structure.</t>
<t>Because the bit allocation drives the decoding of the range-coder
stream, it MUST be recovered exactly so that identical coding decisions are
made in the encoder and decoder. Any deviation from the reference's resulting
bit allocation will result in corrupted output, though implementers are
free to implement the procedure in any way which produces identical results.</t>
<t>Because all of the information required to decode a frame must be derived
from that frame alone in order to retain robustness to packet loss, the
overhead of explicitly signaling the allocation would be considerable,
especially for low-latency (small frame size) applications,
even though the allocation is relatively static.</t>
<t>For this reason, in the MDCT mode Opus uses a primarily implicit bit
allocation. The available bitstream capacity is known in advance to both
the encoder and decoder without additional signaling, ultimately from the
packet sizes expressed by a higher-level protocol. Using this information
the codec interpolates an allocation from a hard-coded table.</t>
<t>While the band-energy structure effectively models intra-band masking,
it ignores the weaker inter-band masking, band-temporal masking, and
other less significant perceptual effects. While these effects can
often be ignored, they can become significant for particular samples. One
mechanism available to encoders would be to simply increase the overall
rate for these frames, but this is not possible in a constant rate mode
and can be fairly inefficient. As a result three explicitly signaled
mechanisms are provided to alter the implicit allocation:</t>
<t>
<list style="symbols">
<t>Band boost</t>
<t>Allocation trim</t>
<t>Band skipping</t>
</list>
</t>
<t>The first of these mechanisms, band boost, allows an encoder to boost
the allocation in specific bands. The second, allocation trim, works by
biasing the overall allocation towards higher or lower frequency bands. The third, band
skipping, selects which low-precision high frequency bands
will be allocated no shape bits at all.</t>
<t>In stereo mode there are two additional parameters
potentially coded as part of the allocation procedure: a parameter to allow the
selective elimination of allocation for the 'side' in jointly coded bands,
and a flag to deactivate joint coding. These values are not signaled if
they would be meaningless in the overall context of the allocation.</t>
<t>Because every signaled adjustment increases overhead and implementation
complexity, none were included speculatively: the reference encoder makes use
of all of these mechanisms. While the decision logic in the reference was
found to be effective enough to justify the overhead and complexity, further
analysis techniques may be discovered which increase the effectiveness of these
parameters. As with other signaled parameters, an encoder is free to choose the
values in any manner, but unless a technique is known to deliver superior
perceptual results the methods used by the reference implementation should be
used.</t>
<t>The allocation process consists of the following steps: determining the per-band
maximum allocation vector, decoding the boosts, decoding the tilt, determining
the remaining capacity of the frame, searching the mode table for the
entry nearest but not exceeding the available space (subject to the tilt, boosts, band
maximums, and band minimums), linear interpolation, reallocation of
unused bits with concurrent skip decoding, determination of the
fine-energy vs. shape split, and final reallocation. This process results
in a per-band shape allocation (in 1/8th bit units), a per-band fine-energy
allocation (in 1 bit per channel units), a set of band priorities for
controlling the use of remaining bits at the end of the frame, and a
remaining balance of unallocated space, which is usually zero except
at very high rates.</t>
<t>The maximum allocation vector is an approximation of the maximum space
that can be used by each band for a given mode. The value is
approximate because the shape encoding is variable rate (due
to entropy coding of splitting parameters). Setting the maximum too low reduces the
maximum achievable quality in a band while setting it too high
may result in waste: bitstream capacity available at the end
of the frame which can not be put to any use. The maximums
specified by the codec reflect the average maximum. In the reference
the maximums are provided in partially computed form, in order to fit in less
memory as a static table (see cache_caps50[] in static_modes_float.h). Implementations are expected
to simply use the same table data, but the procedure for generating
this table is included in rate.c as part of compute_pulse_cache().</t>
<t>To convert the values in cache.caps into the actual maximums: first
set nbBands to the maximum number of bands for this mode, and stereo to
zero if stereo is not in use and one otherwise. For each band set N
to the number of MDCT bins covered by the band (for one channel), set LM
to the shift value for the frame size (e.g. 0 for 120, 1 for 240, 3 for 480),
then set i to nbBands*(2*LM+stereo). Then set the maximum for the band to
the i-th index of cache.caps + 64 and multiply by the number of channels
in the current frame (one or two) and by N, then divide the result by 4
using truncating integer division. The resulting vector will be called
cap[]. The elements fit in signed 16-bit integers but do not fit in 8 bits.
This procedure is implemented in the reference in the function init_caps() in celt.c.
</t>
<t>The band boosts are represented by a series of binary symbols which
are coded with very low probability. Each band can potentially be boosted
multiple times, subject to the frame actually having enough room to obey
the boost and having enough room to code the boost symbol. The default
coding cost for a boost starts out at six bits, but subsequent boosts
in a band cost only a single bit and every time a band is boosted the
initial cost is reduced (down to a minimum of two). Since the initial
cost of coding a boost is 6 bits, the coding cost of the boost symbols when
completely unused is 0.48 bits/frame for a 21 band mode (21*-log2(1-1/2**6)).</t>
<t>To decode the band boosts: First set 'dynalloc_logp' to 6, the initial
amount of storage required to signal a boost in bits, 'total_bits' to the
size of the frame in 8th bits, 'total_boost' to zero, and 'tell' to the total number
of 8th bits decoded
so far. For each band from the coding start (0 normally, but 17 in Hybrid mode)
to the coding end (which changes depending on the signaled bandwidth): set 'width'
to the number of MDCT bins in this band for all channels. Take the larger of width
and 64, then the minimum of that value and the width times eight and set 'quanta'
to the result. This represents a boost step size of six bits subject to limits
of 1/bit/sample and 1/8th bit/sample. Set 'boost' to zero and 'dynalloc_loop_logp'
to dynalloc_logp. While dynalloc_loop_log (the current worst case symbol cost) in
8th bits plus tell is less than total_bits plus total_boost and boost is less than cap[] for this
band: Decode a bit from the bitstream with a with dynalloc_loop_logp as the cost
of a one, update tell to reflect the current used capacity, if the decoded value
is zero break the loop otherwise add quanta to boost and total_boost, subtract quanta from
total_bits, and set dynalloc_loop_log to 1. When the while loop finishes
boost contains the boost for this band. If boost is non-zero and dynalloc_logp
is greater than 2, decrease dynalloc_logp. Once this process has been
executed on all bands, the band boosts have been decoded. This procedure
is implemented around line 2352 of celt.c.</t>
<t>At very low rates it is possible that there won't be enough available
space to execute the inner loop even once. In these cases band boost
is not possible but its overhead is completely eliminated. Because of the
high cost of band boost when activated, a reasonable encoder should not be
using it at very low rates. The reference implements its dynalloc decision
logic around line 1269 of celt.c.</t>
<t>The allocation trim is a integer value from 0-10. The default value of
5 indicates no trim. The trim parameter is entropy coded in order to
lower the coding cost of less extreme adjustments. Values lower than
5 bias the allocation towards lower frequencies and values above 5
bias it towards higher frequencies. Like other signaled parameters, signaling
of the trim is gated so that it is not included if there is insufficient space
available in the bitstream. To decode the trim, first set
the trim value to 5, then iff the count of decoded 8th bits so far (ec_tell_frac)
plus 48 (6 bits) is less than or equal to the total frame size in 8th
bits minus total_boost (a product of the above band boost procedure),
decode the trim value using the inverse CDF {127, 126, 124, 119, 109, 87, 41, 19, 9, 4, 2, 0}.</t>
<t>For 10 ms and 20 ms frames using short blocks and that have at least LM+2 bits left prior to
the allocation process, then one anti-collapse bit is reserved in the allocation process so it can
be decoded later. Following the the anti-collapse reservation, one bit is reserved for skip if available.</t>
<t>For stereo frames, bits are reserved for intensity stereo and for dual stereo. Intensity stereo
requires ilog2(end-start) bits. Those bits are reserved if there is enough bits left. Following this, one
bit is reserved for dual stereo if available.</t>
<t>The allocation computation begins by setting up some initial conditions.
'total' is set to the remaining available 8th bits, computed by taking the
size of the coded frame times 8 and subtracting ec_tell_frac(). From this value, one (8th bit)
is subtracted to ensure that the resulting allocation will be conservative. 'anti_collapse_rsv'
is set to 8 (8th bits) iff the frame is a transient, LM is greater than 1, and total is
greater than or equal to (LM+2) * 8. Total is then decremented by anti_collapse_rsv and clamped
to be equal to or greater than zero. 'skip_rsv' is set to 8 (8th bits) if total is greater than
8, otherwise it is zero. Total is then decremented by skip_rsv. This reserves space for the
final skipping flag.</t>
<t>If the current frame is stereo, intensity_rsv is set to the conservative log2 in 8th bits
of the number of coded bands for this frame (given by the table LOG2_FRAC_TABLE). If
intensity_rsv is greater than total then intensity_rsv is set to zero. Otherwise total is
decremented by intensity_rsv, and if total is still greater than 8, dual_stereo_rsv is
set to 8 and total is decremented by dual_stereo_rsv.</t>
<t>The allocation process then computes a vector representing the hard minimum amounts allocation
any band will receive for shape. This minimum is higher than the technical limit of the PVQ
process, but very low rate allocations produce an excessively sparse spectrum and these bands
are better served by having no allocation at all. For each coded band, set thresh[band] to
twenty-four times the number of MDCT bins in the band and divide by 16. If 8 times the number
of channels is greater, use that instead. This sets the minimum allocation to one bit per channel
or 48 128th bits per MDCT bin, whichever is greater. The band-size dependent part of this
value is not scaled by the channel count, because at the very low rates where this limit is
applicable there will usually be no bits allocated to the side.</t>
<t>The previously decoded allocation trim is used to derive a vector of per-band adjustments,
'trim_offsets[]'. For each coded band take the alloc_trim and subtract 5 and LM. Then multiply
the result by the number of channels, the number of MDCT bins in the shortest frame size for this mode,
the number of remaining bands, 2**LM, and 8. Then divide this value by 64. Finally, if the
number of MDCT bins in the band per channel is only one, 8 times the number of channels is subtracted
in order to diminish the allocation by one bit, because width 1 bands receive greater benefit
from the coarse energy coding.</t>
</section>
<section anchor="PVQ-decoder" title="Shape Decoding">
<t>
In each band, the normalized "shape" is encoded
using a vector quantization scheme called a "pyramid vector quantizer".
</t>
<t>In
the simplest case, the number of bits allocated in
<xref target="allocation"></xref> is converted to a number of pulses as described
by <xref target="bits-pulses"></xref>. Knowing the number of pulses and the
number of samples in the band, the decoder calculates the size of the codebook
as detailed in <xref target="cwrs-decoder"></xref>. The size is used to decode
an unsigned integer (uniform probability model), which is the codeword index.
This index is converted into the corresponding vector as explained in
<xref target="cwrs-decoder"></xref>. This vector is then scaled to unit norm.
</t>
<section anchor="bits-pulses" title="Bits to Pulses">
<t>
Although the allocation is performed in 1/8th bit units, the quantization requires
an integer number of pulses K. To do this, the encoder searches for the value
of K that produces the number of bits nearest to the allocated value
(rounding down if exactly halfway between two values), not to exceed
the total number of bits available. For efficiency reasons, the search is performed against a
precomputed allocation table which only permits some K values for each N. The number of
codebook entries can be computed as explained in <xref target="cwrs-decoder"></xref>. The difference
between the number of bits allocated and the number of bits used is accumulated to a
"balance" (initialized to zero) that helps adjust the
allocation for the next bands. One third of the balance is applied to the
bit allocation of each band to help achieve the target allocation. The only
exceptions are the band before the last and the last band, for which half the balance
and the whole balance are applied, respectively.
</t>
</section>
<section anchor="cwrs-decoder" title="PVQ Decoding">
<t>
Decoding of PVQ vectors is implemented in decode_pulses() (cwrs.c).
The unique codeword index is decoded as a uniformly-distributed integer value between 0 and
V(N,K)-1, where V(N,K) is the number of possible combinations of K pulses in
N samples. The index is then converted to a vector in the same way specified in
<xref target="PVQ"></xref>. The indexing is based on the calculation of V(N,K)
(denoted N(L,K) in <xref target="PVQ"></xref>).
</t>
<t>
The number of combinations can be computed recursively as
V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), with V(N,0) = 1 and V(0,K) = 0, K != 0.
There are many different ways to compute V(N,K), including precomputed tables and direct
use of the recursive formulation. The reference implementation applies the recursive
formulation one line (or column) at a time to save on memory use,
along with an alternate,
univariate recurrence to initialize an arbitrary line, and direct
polynomial solutions for small N. All of these methods are
equivalent, and have different trade-offs in speed, memory usage, and
code size. Implementations MAY use any methods they like, as long as
they are equivalent to the mathematical definition.
</t>
<t>
The decoded vector is normalized such that its
L2-norm equals one.
</t>
</section>
<section anchor="spreading" title="Spreading">
<t>
The normalized vector decoded in <xref target="cwrs-decoder"/> is then rotated
for the purpose of avoiding tonal artifacts. The rotation gain is equal to
<figure align="center">
<artwork align="center"><![CDATA[
g_r = N / (N + f_r*K)
]]></artwork>
</figure>
where N is the number of dimensions, K is the number of pulses, and f_r depends on
the value of the "spread" parameter in the bit-stream.
</t>
<texttable anchor="spread values" title="Spreading values">
<ttcol>Spread value</ttcol>
<ttcol>f_r</ttcol>
<c>0</c> <c>infinite (no rotation)</c>
<c>1</c> <c>15</c>
<c>2</c> <c>10</c>
<c>3</c> <c>5</c>
</texttable>
<t>
The rotation angle is then calculated as
<figure align="center">
<artwork align="center"><![CDATA[
2
pi * g_r
theta = ----------
4
]]></artwork>
</figure>
A 2-D rotation R(i,j) between points x_i and x_j is defined as:
<figure align="center">
<artwork align="center"><![CDATA[
x_i' = cos(theta)*x_i + sin(theta)*x_j
x_j' = -sin(theta)*x_i + cos(theta)*x_j
]]></artwork>
</figure>
An N-D rotation is then achieved by applying a series of 2-D rotations back and forth, in the
following order: R(x_1, x_2), R(x_2, x_3), ..., R(x_N-2, X_N-1), R(x_N-1, X_N),
R(x_N-2, X_N-1), ..., R(x_1, x_2).
</t>
<t>
If the decoded vector represents more
than one time block, then the following process is applied separately on each time block.
Also, if each block represents 8 samples or more, then another N-D rotation, by
(pi/2-theta), is applied <spanx style="emph">before</spanx> the rotation described above. This
extra rotation is applied in an interleaved manner with a stride equal to round(sqrt(N/nb_blocks))
</t>
</section>
<section anchor="split" title="Split decoding">
<t>
To avoid the need for multi-precision calculations when decoding PVQ codevectors,
the maximum size allowed for codebooks is 32 bits. When larger codebooks are
needed, the vector is instead split in two sub-vectors of size N/2.
A quantized gain parameter with precision
derived from the current allocation is entropy coded to represent the relative
gains of each side of the split, and the entire decoding process is recursively
applied. Multiple levels of splitting may be applied up to a frame size
dependent limit. The same recursive mechanism is applied for the joint coding
of stereo audio.
</t>
</section>
<section anchor="tf-change" title="Time-Frequency change">
<t>
The time-frequency (TF) parameters are used to control the time-frequency resolution tradeoff
in each coded band. For each band, there are two possible TF choices. For the first
band coded, the PDF is {3, 1}/4 for frames marked as transient and {15, 1}/16 for
the other frames. For subsequent bands, the TF choice is coded relative to the
previous TF choice with probability {15, 1}/15 for transient frames and {31, 1}/32
otherwise. The mapping between the decoded TF choices and the adjustment in TF
resolution is shown in the tables below.
</t>
<texttable anchor='tf_00'
title="TF adjustments for non-transient frames and tf_select=0">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>0</c> <c>-1</c>
<c>10</c> <c>0</c> <c>-2</c>
<c>20</c> <c>0</c> <c>-2</c>
</texttable>
<texttable anchor='tf_01'
title="TF adjustments for non-transient frames and tf_select=1">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>0</c> <c>-2</c>
<c>10</c> <c>0</c> <c>-3</c>
<c>20</c> <c>0</c> <c>-3</c>
</texttable>
<texttable anchor='tf_10'
title="TF adjustments for transient frames and tf_select=0">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>1</c> <c>0</c>
<c>10</c> <c>2</c> <c>0</c>
<c>20</c> <c>3</c> <c>0</c>
</texttable>
<texttable anchor='tf_11'
title="TF adjustments for transient frames and tf_select=1">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>1</c> <c>-1</c>
<c>10</c> <c>1</c> <c>-1</c>
<c>20</c> <c>1</c> <c>-1</c>
</texttable>
<t>
A negative TF adjustment means that the temporal resolution is increased,
while a positive TF adjustment means that the frequency resolution is increased.
Changes in TF resolution are implemented using the Hadamard transform <xref target="Hadamard"/>. To increase
the time resolution by N, N "levels" of the Hadamard transform are applied to the
decoded vector for each interleaved MDCT vector. To increase the frequency resolution
(assumes a transient frame), then N levels of the Hadamard transform are applied
<spanx style="emph">across</spanx> the interleaved MDCT vector. In the case of increased
time resolution the decoder uses the "sequency order" because the input vector
is sorted in time.
</t>
</section>
</section>
<section anchor="anti-collapse" title="Anti-Collapse Processing">
<t>
When the frame has the transient bit set, an anti-collapse bit is decoded.
When anti-collapse is set, the energy in each small MDCT is prevented
from collapsing to zero. For each band of each MDCT where a collapse is
detected, a pseudo-random signal is inserted with an energy corresponding
to the min energy over the two previous frames. A renormalization step is
then required to ensure that the anti-collapse step did not alter the
energy preservation property.
</t>
</section>
<section anchor="denormalization" title="Denormalization">
<t>
Just like each band was normalized in the encoder, the last step of the decoder before
the inverse MDCT is to denormalize the bands. Each decoded normalized band is
multiplied by the square root of the decoded energy. This is done by denormalise_bands()
(bands.c).
</t>
</section>
<section anchor="inverse-mdct" title="Inverse MDCT">
<t>The inverse MDCT implementation has no special characteristics. The
input is N frequency-domain samples and the output is 2*N time-domain
samples, while scaling by 1/2. A "low-overlap" window reduces the algorithmic delay.
It is derived from a basic (full overlap) 240-sample version of the window used by the Vorbis codec:
<figure align="center">
<artwork align="center"><![CDATA[
2
/ /pi /pi n + 1/2\ \ \
W(n) = |sin|-- * sin|-- * -------| | | .
\ \2 \2 L / / /
]]></artwork>
</figure>
The low-overlap window is created by zero-padding the basic window and inserting ones in the
middle, such that the resulting window still satisfies power complementarity. The IMDCT and
windowing are performed by mdct_backward (mdct.c).
</t>
<section anchor="post-filter" title="Post-filter">
<t>
The output of the inverse MDCT (after weighted overlap-add) is sent to the
post-filter. Although the post-filter is applied at the end, the post-filter
parameters are encoded at the beginning, just after the silence flag.
The post-filter can be switched on or off using one bit (logp=1).
If the post-filter is enabled, then the octave is decoded as an integer value
between 0 and 6 of uniform probability. Once the octave is known, the fine pitch
within the octave is decoded using 4+octave raw bits. The final pitch period
is equal to (16<<octave)+fine_pitch-1 so it is bounded between 15 and 1022,
inclusively. Next, the gain is decoded as three raw bits and is equal to
G=3*(int_gain+1)/32. The set of post-filter taps is decoded last, using
a pdf equal to {2, 1, 1}/4. Tapset zero corresponds to the filter coefficients
g0 = 0.3066406250, g1 = 0.2170410156, g2 = 0.1296386719. Tapset one
corresponds to the filter coefficients g0 = 0.4638671875, g1 = 0.2680664062,
g2 = 0, and tapset two uses filter coefficients g0 = 0.7998046875,
g1 = 0.1000976562, g2 = 0.
</t>
<t>
The post-filter response is thus computed as:
<figure align="center">
<artwork align="center">
<![CDATA[
y(n) = x(n) + G*(g0*y(n-T) + g1*(y(n-T+1)+y(n-T+1))
+ g2*(y(n-T+2)+y(n-T+2)))
]]>
</artwork>
</figure>
During a transition between different gains, a smooth transition is calculated
using the square of the MDCT window. It is important that values of y(n) be
interpolated one at a time such that the past value of y(n) used is interpolated.
</t>
</section>
<section anchor="deemphasis" title="De-emphasis">
<t>
After the post-filter,
the signal is de-emphasized using the inverse of the pre-emphasis filter
used in the encoder:
<figure align="center">
<artwork align="center"><![CDATA[
1 1
---- = --------------- ,
A(z) -1
1 - alpha_p*z
]]></artwork>
</figure>
where alpha_p=0.8500061035.
</t>
</section>
</section>
</section>
<section anchor="Packet Loss Concealment" title="Packet Loss Concealment (PLC)">
<t>
Packet loss concealment (PLC) is an optional decoder-side feature that
SHOULD be included when receiving from an unreliable channel. Because
PLC is not part of the bitstream, there are many acceptable ways to
implement PLC with different complexity/quality trade-offs.
</t>
<t>
The PLC in
the reference implementation depends on the mode of last packet received.
In CELT mode, the PLC finds a periodicity in the decoded
signal and repeats the windowed waveform using the pitch offset. The windowed
waveform is overlapped in such a way as to preserve the time-domain aliasing
cancellation with the previous frame and the next frame. This is implemented
in celt_decode_lost() (mdct.c). In SILK mode, the PLC uses LPC extrapolation
from the previous frame, implemented in silk_PLC() (PLC.c).
</t>
<section anchor="clock-drift" title="Clock Drift Compensation">
<t>
Clock drift refers to the gradual desynchronization of two endpoints
whose sample clocks run at different frequencies while they are streaming
live audio. Differences in clock frequencies are generally attributable to
manufacturing variation in the endpoints' clock hardware. For long-lived
streams, the time difference between sender and receiver can grow without
bound.
</t>
<t>
When the sender's clock runs slower than the receiver's, the effect is similar
to packet loss: too few packets are received. The receiver can distinguish
between drift and loss if the transport provides packet timestamps. A receiver
for live streams SHOULD conceal the effects of drift, and MAY do so by invoking
the PLC.
</t>
<t>
When the sender's clock runs faster than the receiver's, too many packets will
be received. The receiver MAY respond by skipping any packet (i.e. not
submitting the packet for decoding). This is likely to produce a less severe
artifact than if the frame were dropped after decoding.
</t>
<t>
A decoder MAY employ a more sophisticated drift compensation method. For
example, the
<xref target='Google-NetEQ'>NetEQ component</xref>
of the
<xref target='Google-WebRTC'>Google WebRTC codebase</xref>
compensates for drift by adding or removing
one period when the signal is highly periodic. The reference implementation of
Opus allows a caller to learn whether the current frame's signal is highly
periodic, and if so what the period is, using the OPUS_GET_PITCH() request.
</t>
</section>
</section>
<section anchor="switching" title="Configuration Switching">
<t>
Switching between the Opus coding modes, audio bandwidths, and channel counts
requires careful consideration to avoid audible glitches.
Switching between any two configurations of the CELT-only mode, any two
configurations of the Hybrid mode, or from WB SILK to Hybrid mode does not
require any special treatment in the decoder, as the MDCT overlap will smooth
the transition.
Switching from Hybrid mode to WB SILK requires adding in the final contents
of the CELT overlap buffer to the first SILK-only packet.
This can be done by decoding a 2.5 ms silence frame with the CELT decoder
using the channel count of the SILK-only packet (and any choice of audio
bandwidth), which will correctly handle the cases when the channel count
changes as well.
</t>
<t>
When changing the channel count for SILK-only or Hybrid packets, the encoder
can avoid glitches by smoothly varying the stereo width of the input signal
before or after the transition, and SHOULD do so.
However, other transitions between SILK-only packets or between NB or MB SILK
and Hybrid packets may cause glitches, because neither the LSF coefficients
nor the LTP, LPC, stereo unmixing, and resampler buffers are available at the
new sample rate.
These switches SHOULD be delayed by the encoder until quiet periods or
transients, where the inevitable glitches will be less audible. Additionally,
the bit-stream MAY include redundant side information ("redundancy"), in the
form of additional CELT frames embedded in each of the Opus frames around the
transition.
</t>
<t>
The other transitions that cannot be easily handled are those where the lower
frequencies switch between the SILK LP-based model and the CELT MDCT model.
However, an encoder may not have an opportunity to delay such a switch to a
convenient point.
For example, if the content switches from speech to music, and the encoder does
not have enough latency in its analysis to detect this in advance, there may
be no convenient silence period during which to make the transition for quite
some time.
To avoid or reduces glitches during these problematic mode transitions, and
also between audio bandwidth changes in the SILK-only modes, transitions MAY
include redundant side information ("redundancy"), in the form of an
additional CELT frame embedded in the Opus frame.
</t>
<t>
A transition between coding the lower frequencies with the LP model and the
MDCT model or a transition that involves changing the SILK bandwidth
is only normatively specified when it includes redundancy.
For those without redundancy, it is RECOMMENDED that the decoder use a
concealment technique (e.g., make use of a PLC algorithm) to "fill in" the
gap or discontinuity caused by the mode transition.
Therefore, PLC MUST NOT be applied during any normative transition, i.e., when
<list style="symbols">
<t>A packet includes redundancy for this transition (as described below),</t>
<t>The transition is between any WB SILK packet and any Hybrid packet, or vice
versa,</t>
<t>The transition is between any two Hybrid mode packets, or</t>
<t>The transition is between any two CELT mode packets,</t>
</list>
unless there is actual packet loss.
</t>
<section anchor="side-info" title="Transition Side Information (Redundancy)">
<t>
Transitions with side information include an extra 5 ms "redundant" CELT
frame within the Opus frame.
This frame is designed to fill in the gap or discontinuity in the different
layers without requiring the decoder to conceal it.
For transitions from CELT-only to SILK-only or Hybrid, the redundant frame is
inserted in the first Opus frame after the transition (i.e., the first
SILK-only or Hybrid frame).
For transitions from SILK-only or Hybrid to CELT-only, the redundant frame is
inserted in the last Opus frame before the transition (i.e., the last
SILK-only or Hybrid frame).
</t>
<section anchor="opus_redundancy_flag" title="Redundancy Flag">
<t>
The presence of redundancy is signaled in all SILK-only and Hybrid frames, not
just those involved in a mode transition.
This allows the frames to be decoded correctly even if an adjacent frame is
lost.
For for SILK-only frames, this signaling is implicit, based on the size of the
of the Opus frame and the number of bits consumed decoding the SILK portion of
it.
After decoding the SILK portion of the Opus frame, the decoder uses ec_tell()
(see <xref target="ec_tell"/>) to check if there are at least 17 bits
remaining.
If so, then the frame contains redundancy.
</t>
<t>
For Hybrid frames, this signaling is explicit.
After decoding the SILK portion of the Opus frame, the decoder uses ec_tell()
(see <xref target="ec_tell"/>) to ensure there are at least 37 bits remaining.
If so, it reads a symbol with the PDF in
<xref target="opus_redundancy_flag_pdf"/>, and if the value is 1, then the
frame contains redundancy.
Otherwise (if there were fewer than 37 bits left or the value was 0), the frame
does not contain redundancy.
</t>
<texttable anchor="opus_redundancy_flag_pdf" title="Redundancy Flag PDF">
<ttcol>PDF</ttcol>
<c>{4095, 1}/4096</c>
</texttable>
</section>
<section anchor="opus_redundancy_pos" title="Redundancy Position Flag">
<t>
Since the current frame is a SILK-only or a Hybrid frame, it must be at least
10 ms.
Therefore, it needs an additional flag to indicate whether the redundant
5 ms CELT frame should be mixed into the beginning of the current frame,
or the end.
After determining that a frame contains redundancy, the decoder reads a
1 bit symbol with a uniform PDF
(<xref target="opus_redundancy_pos_pdf"/>).
</t>
<texttable anchor="opus_redundancy_pos_pdf" title="Redundancy Position PDF">
<ttcol>PDF</ttcol>
<c>{1, 1}/2</c>
</texttable>
<t>
If the value is zero, this is the first frame in the transition, and the
redundancy belongs at the end.
If the value is one, this is the second frame in the transition, and the
redundancy belongs at the beginning.
There is no way to specify that an Opus frame contains separate redundant CELT
frames at both the beginning and the end.
</t>
</section>
<section anchor="opus_redundancy_size" title="Redundancy Size">
<t>
Unlike the CELT portion of a Hybrid frame, the redundant CELT frame does not
use the same entropy coder state as the rest of the Opus frame, because this
would break the CELT bit allocation mechanism in Hybrid frames.
Thus, a redundant CELT frame always starts and ends on a byte boundary, even in
SILK-only frames, where this is not strictly necessary.
</t>
<t>
For SILK-only frames, the number of bytes in the redundant CELT frame is simply
the number of whole bytes remaining, which must be at least 2, due to the
space check in <xref target="opus_redundancy_flag"/>.
For Hybrid frames, the number of bytes is equal to 2, plus a decoded unsigned
integer less than 256 (see <xref target="ec_dec_uint"/>).
This may be more than the number of whole bytes remaining in the Opus frame,
in which case the frame is invalid.
However, a decoder is not required to ignore the entire frame, as this may be
the result of a bit error that desynchronized the range coder.
There may still be useful data before the error, and a decoder MAY keep any
audio decoded so far instead of invoking the PLC, but it is RECOMMENDED that
the decoder stop decoding and discard the rest of the current Opus frame.
</t>
<t>
It would have been possible to avoid these invalid states in the design of Opus
by limiting the range of the explicit length decoded from Hybrid frames by the
actual number of whole bytes remaining.
However, this would require an encoder to determine the rate allocation for the
MDCT layer up front, before it began encoding that layer.
By allowing some invalid sizes, the encoder is able to defer that decision
until much later.
When encoding Hybrid frames which do not include redundancy, the encoder must
still decide up-front if it wishes to use the minimum 37 bits required to
trigger encoding of the redundancy flag, but this is a much looser
restriction.
</t>
<t>
After determining the size of the redundant CELT frame, the decoder reduces
the size of the buffer currently in use by the range coder by that amount.
The CELT layer read any raw bits from the end of this reduced buffer, and all
calculations of the number of bits remaining in the buffer must be done using
this new, reduced size, rather than the original size of the Opus frame.
</t>
</section>
<section anchor="opus_redundancy_decoding" title="Decoding the Redundancy">
<t>
The redundant frame is decoded like any other CELT-only frame, with the
exception that it does not contain a TOC byte.
The frame size is fixed at 5 ms, the channel count is set to that of the
current frame, and the audio bandwidth is also set to that of the current
frame, with the exception that for MB SILK frames, it is set to WB.
</t>
<t>
If the redundancy belongs at the beginning (in a CELT-only to SILK-only or
Hybrid transition), the final reconstructed output uses the first 2.5 ms
of audio output by the decoder for the redundant frame is as-is, discarding
the corresponding output from the SILK-only or Hybrid portion of the frame.
The remaining 2.5 ms is cross-lapped with the decoded SILK/Hybrid signal
using the CELT's power-complementary MDCT window to ensure a smooth
transition.
</t>
<t>
If the redundancy belongs at the end (in a SILK-only or Hybrid to CELT-only
transition), only the second half (2.5 ms) of the audio output by the
decoder for the redundant frame is used.
In that case, the second half of the redundant frame is cross-lapped with the
end of the SILK/Hybrid signal, again using CELT's power-complementary MDCT
window to ensure a smooth transition.
</t>
</section>
</section>
<section anchor="decoder-reset" title="State Reset">
<t>
When a transition occurs, the state of the SILK or the CELT decoder (or both)
may need to be reset before decoding a frame in the new mode.
This avoids reusing "out of date" memory, which may not have been updated in
some time or may not be in a well-defined state due to, e.g., PLC.
The SILK state is reset before every SILK-only or Hybrid frame where the
previous frame was CELT-only.
The CELT state is reset every time the operating mode changes and the new mode
is either Hybrid or CELT-only, except when the transition uses redundancy as
described above.
When switching from SILK-only or Hybrid to CELT-only with redundancy, the CELT
state is reset before decoding the redundant CELT frame embedded in the
SILK-only or Hybrid frame, but it is not reset before decoding the following
CELT-only frame.
When switching from CELT-only mode to SILK-only or Hybrid mode with redundancy,
the CELT decoder is not reset for decoding the redundant CELT frame.
</t>
</section>
<section title="Summary of Transitions">
<t>
<xref target="normative_transitions"/> illustrates all of the normative
transitions involving a mode change, an audio bandwidth change, or both.
Each one uses an S, H, or C to represent an Opus frame in the corresponding
mode.
In addition, an R indicates the presence of redundancy in the Opus frame it is
cross-lapped with.
Its location in the first or last 5 ms is assumed to correspond to whether
it is the frame before or after the transition.
Other uses of redundancy are non-normative.
Finally, a c indicates the contents of the CELT overlap buffer after the
previously decoded frame (i.e., as extracted by decoding a silence frame).
<figure align="center" anchor="normative_transitions"
title="Normative Transitions">
<artwork align="center"><![CDATA[
SILK to SILK with Redundancy: S -> S -> S
&
!R -> R
&
;S -> S -> S
NB or MB SILK to Hybrid with Redundancy: S -> S -> S
&
!R ->;H -> H -> H
WB SILK to Hybrid: S -> S -> S ->!H -> H -> H
SILK to CELT with Redundancy: S -> S -> S
&
!R -> C -> C -> C
Hybrid to NB or MB SILK with Redundancy: H -> H -> H
&
!R -> R
&
;S -> S -> S
Hybrid to WB SILK: H -> H -> H -> c
\ +
> S -> S -> S
Hybrid to CELT with Redundancy: H -> H -> H
&
!R -> C -> C -> C
CELT to SILK with Redundancy: C -> C -> C -> R
&
;S -> S -> S
CELT to Hybrid with Redundancy: C -> C -> C -> R
&
|H -> H -> H
Key:
S SILK-only frame ; SILK decoder reset
H Hybrid frame | CELT and SILK decoder resets
C CELT-only frame ! CELT decoder reset
c CELT overlap + Direct mixing
R Redundant CELT frame & Windowed cross-lap
]]></artwork>
</figure>
The first two and the last two Opus frames in each example are illustrative,
i.e., there is no requirement that a stream remain in the same configuration
for three consecutive frames before or after a switch.
</t>
<t>
The behavior of transitions without redundancy where PLC is allowed is non-normative.
An encoder might still wish to use these transitions if, for example, it
doesn't want to add the extra bitrate required for redundancy or if it makes
a decision to switch after it has already transmitted the frame that would
have had to contain the redundancy.
<xref target="nonnormative_transitions"/> illustrates the recommended
cross-lapping and decoder resets for these transitions.
<figure align="center" anchor="nonnormative_transitions"
title="Recommended Non-Normative Transitions">
<artwork align="center"><![CDATA[
SILK to SILK (audio bandwidth change): S -> S -> S ;S -> S -> S
NB or MB SILK to Hybrid: S -> S -> S |H -> H -> H
SILK to CELT without Redundancy: S -> S -> S -> P
&
!C -> C -> C
Hybrid to NB or MB SILK: H -> H -> H -> c
+
;S -> S -> S
Hybrid to CELT without Redundancy: H -> H -> H -> P
&
!C -> C -> C
CELT to SILK without Redundancy: C -> C -> C -> P
&
;S -> S -> S
CELT to Hybrid without Redundancy: C -> C -> C -> P
&
|H -> H -> H
Key:
S SILK-only frame ; SILK decoder reset
H Hybrid frame | CELT and SILK decoder resets
C CELT-only frame ! CELT decoder reset
c CELT overlap + Direct mixing
P Packet Loss Concealment & Windowed cross-lap
]]></artwork>
</figure>
Encoders SHOULD NOT use other transitions, e.g., those that involve redundancy
in ways not illustrated in <xref target="normative_transitions"/>.
</t>
</section>
</section>
</section>
<!-- ******************************************************************* -->
<!-- ************************** OPUS ENCODER *********************** -->
<!-- ******************************************************************* -->
<section title="Opus Encoder">
<t>
Just like the decoder, the Opus encoder also normally consists of two main blocks: the
SILK encoder and the CELT encoder. However, unlike the case of the decoder, a valid
(though potentially suboptimal) Opus encoder is not required to support all modes and
may thus only include a SILK encoder module or a CELT encoder module.
The output bit-stream of the Opus encoding contains bits from the SILK and CELT
encoders, though these are not separable due to the use of a range coder.
A block diagram of the encoder is illustrated below.
<figure align="center" anchor="opus-encoder-figure" title="Opus Encoder">
<artwork>
<![CDATA[
+------------+ +---------+
| Sample | | SILK |------+
+->| Rate |--->| Encoder | V
+-----------+ | | Conversion | | | +---------+
| Optional | | +------------+ +---------+ | Range |
->| High-pass |--+ | Encoder |---->
+ Filter + | +--------------+ +---------+ | | Bit-
+-----------+ | | Delay | | CELT | +---------+ stream
+->| Compensation |->| Encoder | ^
| | | |------+
+--------------+ +---------+
]]>
</artwork>
</figure>
</t>
<t>
For a normal encoder where both the SILK and the CELT modules are included, an optimal
encoder should select which coding mode to use at run-time depending on the conditions.
In the reference implementation, the frame size is selected by the application, but the
other configuration parameters (number of channels, bandwidth, mode) are automatically
selected (unless explicitly overridden by the application) depend on the following:
<list style="symbols">
<t>Requested bitrate</t>
<t>Input sampling rate</t>
<t>Type of signal (speech vs music)</t>
<t>Frame size in use</t>
</list>
The type of signal currently needs to be provided by the application (though it can be
changed in real-time). An Opus encoder implementation could also do automatic detection,
but since Opus is an interactive codec, such an implementation would likely have to either
delay the signal (for non-interactive applications) or delay the mode switching decisions (for
interactive applications).
</t>
<t>
When the encoder is configured for voice over IP applications, the input signal is
filtered by a high-pass filter to remove the lowest part of the spectrum
that contains little speech energy and may contain background noise. This is a second order
Auto Regressive Moving Average (ARMA) filter with a cut-off frequency around 50 Hz.
In the future, a music detector may also be used to lower the cut-off frequency when the
input signal is detected to be music rather than speech.
</t>
<section anchor="range-encoder" title="Range Encoder">
<t>
The range coder acts as the bit-packer for Opus.
It is used in three different ways: to encode
<list style="symbols">
<t>
Entropy-coded symbols with a fixed probability model using ec_encode()
(entenc.c),
</t>
<t>
Integers from 0 to (2**M - 1) using ec_enc_uint() or ec_enc_bits()
(entenc.c),</t>
<t>
Integers from 0 to (ft - 1) (where ft is not a power of two) using
ec_enc_uint() (entenc.c).
</t>
</list>
</t>
<t>
The range encoder maintains an internal state vector composed of the four-tuple
(val, rng, rem, ext) representing the low end of the current
range, the size of the current range, a single buffered output octet, and a
count of additional carry-propagating output octets.
Both val and rng are 32-bit unsigned integer values, rem is an octet value or
less than 255 or the special value -1, and ext is an unsigned integer with at
least 11 bits.
This state vector is initialized at the start of each each frame to the value
(0, 2**31, -1, 0).
After encoding a sequence of symbols, the value of rng in the encoder should
exactly match the value of rng in the decoder after decoding the same sequence
of symbols.
This is a powerful tool for detecting errors in either an encoder or decoder
implementation.
The value of val, on the other hand, represents different things in the encoder
and decoder, and is not expected to match.
</t>
<t>
The decoder has no analog for rem and ext.
These are used to perform carry propagation in the renormalization loop below.
Each iteration of this loop produces 9 bits of output, consisting of 8 data
bits and a carry flag.
The encoder cannot determine the final value of the output octets until it
propagates these carry flags.
Therefore the reference implementation buffers a single non-propagating output
octet (i.e., one less than 255) in rem and keeps a count of additional
propagating (i.e., 255) output octets in ext.
An implementation may choose to use any mathematically equivalent scheme to
perform carry propagation.
</t>
<section anchor="encoding-symbols" title="Encoding Symbols">
<t>
The main encoding function is ec_encode() (entenc.c), which encodes symbol k in
the current context using the same three-tuple (fl[k], fh[k], ft)
as the decoder to describe the range of the symbol (see
<xref target="range-decoder"/>).
</t>
<t>
ec_encode() updates the state of the encoder as follows.
If fl[k] is greater than zero, then
<figure align="center">
<artwork align="center"><![CDATA[
rng
val = val + rng - --- * (ft - fl) ,
ft
rng
rng = --- * (fh - fl) .
ft
]]></artwork>
</figure>
Otherwise, val is unchanged and
<figure align="center">
<artwork align="center"><![CDATA[
rng
rng = rng - --- * (fh - fl) .
ft
]]></artwork>
</figure>
The divisions here are exact integer division.
</t>
<section anchor="range-encoder-renorm" title="Renormalization">
<t>
After this update, the range is normalized using a procedure very similar to
that of <xref target="range-decoder-renorm"/>, implemented by
ec_enc_normalize() (entenc.c).
The following process is repeated until rng > 2**23.
First, the top 9 bits of val, (val>>23), are sent to the carry buffer,
described in <xref target="ec_enc_carry_out"/>.
Then, the encoder sets
<figure align="center">
<artwork align="center"><![CDATA[
val = (val<<8) & 0x7FFFFFFF ,
rng = rng<<8 .
]]></artwork>
</figure>
</t>
</section>
<section anchor="ec_enc_carry_out"
title="Carry Propagation and Output Buffering">
<t>
The function ec_enc_carry_out() (entenc.c) implements carry propagation and
output buffering.
It takes as input a 9-bit value, c, consisting of 8 data bits and an additional
carry bit.
If c is equal to the value 255, then ext is simply incremented, and no other
state updates are performed.
Otherwise, let b = (c>>8) be the carry bit.
Then,
<list style="symbols">
<t>
If the buffered octet rem contains a value other than -1, the encoder outputs
the octet (rem + b).
Otherwise, if rem is -1, no octet is output.
</t>
<t>
If ext is non-zero, then the encoder outputs ext octets---all with a value of 0
if b is set, or 255 if b is unset---and sets ext to 0.
</t>
<t>
rem is set to the 8 data bits:
<figure align="center">
<artwork align="center"><![CDATA[
rem = c & 255 .
]]></artwork>
</figure>
</t>
</list>
</t>
</section>
</section>
<section anchor="encoding-alternate" title="Alternate Encoding Methods">
<t>
The reference implementation uses three additional encoding methods that are
exactly equivalent to the above, but make assumptions and simplifications that
allow for a more efficient implementation.
</t>
<section anchor="ec_encode_bin" title="ec_encode_bin()">
<t>
The first is ec_encode_bin() (entenc.c), defined using the parameter ftb
instead of ft.
It is mathematically equivalent to calling ec_encode() with
ft = (1<<ftb), but avoids using division.
</t>
</section>
<section anchor="ec_enc_bit_logp" title="ec_enc_bit_logp()">
<t>
The next is ec_enc_bit_logp() (entenc.c), which encodes a single binary symbol.
The context is described by a single parameter, logp, which is the absolute
value of the base-2 logarithm of the probability of a "1".
It is mathematically equivalent to calling ec_encode() with the 3-tuple
(fl[k] = 0, fh[k] = (1<<logp) - 1,
ft = (1<<logp)) if k is 0 and with
(fl[k] = (1<<logp) - 1,
fh[k] = ft = (1<<logp)) if k is 1.
The implementation requires no multiplications or divisions.
</t>
</section>
<section anchor="ec_enc_icdf" title="ec_enc_icdf()">
<t>
The last is ec_enc_icdf() (entenc.c), which encodes a single binary symbol with
a table-based context of up to 8 bits.
This uses the same icdf table as ec_dec_icdf() from
<xref target="ec_dec_icdf"/>.
The function is mathematically equivalent to calling ec_encode() with
fl[k] = (1<<ftb) - icdf[k-1] (or 0 if
k == 0), fh[k] = (1<<ftb) - icdf[k], and
ft = (1<<ftb).
This only saves a few arithmetic operations over ec_encode_bin(), but allows
the encoder to use the same icdf tables as the decoder.
</t>
</section>
</section>
<section anchor="encoding-bits" title="Encoding Raw Bits">
<t>
The raw bits used by the CELT layer are packed at the end of the buffer using
ec_enc_bits() (entenc.c).
Because the raw bits may continue into the last byte output by the range coder
if there is room in the low-order bits, the encoder must be prepared to merge
these values into a single octet.
The procedure in <xref target="encoder-finalizing"/> does this in a way that
ensures both the range coded data and the raw bits can be decoded
successfully.
</t>
</section>
<section anchor="encoding-ints" title="Encoding Uniformly Distributed Integers">
<t>
The function ec_enc_uint() (entenc.c) encodes one of ft equiprobable symbols in
the range 0 to (ft - 1), inclusive, each with a frequency of 1,
where ft may be as large as (2**32 - 1).
Like the decoder (see <xref target="ec_dec_uint"/>), it splits it splits up the
value into a range coded symbol representing up to 8 of the high bits, and, if
necessary, raw bits representing the remainder of the value.
</t>
<t>
ec_enc_uint() takes a two-tuple (t, ft), where t is the value to be
encoded, 0 <= t < ft, and ft is not necessarily a
power of two.
Let ftb = ilog(ft - 1), i.e., the number of bits required
to store (ft - 1) in two's complement notation.
If ftb is 8 or less, then t is encoded directly using ec_encode() with the
three-tuple (t, t + 1, ft).
</t>
<t>
If ftb is greater than 8, then the top 8 bits of t are encoded using the
three-tuple (t>>(ftb - 8),
(t>>(ftb - 8)) + 1,
((ft - 1)>>(ftb - 8)) + 1), and the
remaining bits,
(t & ((1<<(ftb - 8)) - 1),
are encoded as raw bits with ec_enc_bits().
</t>
</section>
<section anchor="encoder-finalizing" title="Finalizing the Stream">
<t>
After all symbols are encoded, the stream must be finalized by outputting a
value inside the current range.
Let end be the integer in the interval [val, val + rng) with the
largest number of trailing zero bits, b, such that
(end + (1<<b) - 1) is also in the interval
[val, val + rng).
This choice of end allows the maximum number of trailing bits to be set to
arbitrary values while still ensuring the range coded part of the buffer can
be decoded correctly.
Then, while end is not zero, the top 9 bits of end, i.e., (end>>23), are
passed to the carry buffer in accordance with the procedure in
<xref target="ec_enc_carry_out"/>, and end is updated via
<figure align="center">
<artwork align="center"><![CDATA[
end = (end<<8) & 0x7FFFFFFF .
]]></artwork>
</figure>
Finally, if the buffered output octet, rem, is neither zero nor the special
value -1, or the carry count, ext, is greater than zero, then 9 zero bits are
sent to the carry buffer to flush it to the output buffer.
When outputting the final byte from the range coder, if it would overlap any
raw bits already packed into the end of the output buffer, they should be ORed
into the same byte.
The bit allocation routines in the CELT layer should ensure that this can be
done without corrupting the range coder data so long as end is chosen as
described above.
If there is any space between the end of the range coder data and the end of
the raw bits, it is padded with zero bits.
This entire process is implemented by ec_enc_done() (entenc.c).
</t>
</section>
<section anchor="encoder-tell" title="Current Bit Usage">
<t>
The bit allocation routines in Opus need to be able to determine a
conservative upper bound on the number of bits that have been used
to encode the current frame thus far. This drives allocation
decisions and ensures that the range coder and raw bits will not
overflow the output buffer. This is computed in the
reference implementation to whole-bit precision by
the function ec_tell() (entcode.h) and to fractional 1/8th bit
precision by the function ec_tell_frac() (entcode.c).
Like all operations in the range coder, it must be implemented in a
bit-exact manner, and must produce exactly the same value returned by
the same functions in the decoder after decoding the same symbols.
</t>
</section>
</section>
<section title='SILK Encoder'>
<t>
In many respects the SILK encoder mirrors the SILK decoder described
in <xref target='silk_decoder_outline'/>.
Details such as the quantization and range coder tables can be found
there, while this section describes the high-level design choices that
were made.
The diagram below shows the basic modules of the SILK encoder.
<figure align="center" anchor="silk_encoder_figure" title="SILK Encoder">
<artwork>
<![CDATA[
+----------+ +--------+ +---------+
| Sample | | Stereo | | SILK |
------>| Rate |--->| Mixing |--->| Core |---------->
Input |Conversion| | | | Encoder | Bitstream
+----------+ +--------+ +---------+
]]>
</artwork>
</figure>
</t>
<section title='Sample Rate Conversion'>
<t>
The input signal's sampling rate is adjusted by a sample rate conversion
module so that it matches the SILK internal sampling rate.
The input to the sample rate converter is delayed by a number of samples
depending on the sample rate ratio, such that the overall delay is constant
for all input and output sample rates.
</t>
</section>
<section title='Stereo Mixing'>
<t>
The stereo mixer is only used for stereo input signals.
It converts a stereo left/right signal into an adaptive
mid/side representation.
The first step is to compute non-adaptive mid/side signals
as half the sum and difference between left and right signals.
The side signal is then minimized in energy by subtracting a
prediction of it based on the mid signal.
This prediction works well when the left and right signals
exhibit linear dependency, for instance for an amplitude-panned
input signal.
Like in the decoder, the prediction coefficients are linearly
interpolated during the first 8 ms of the frame.
The mid signal is always encoded, whereas the residual
side signal is only encoded if it has sufficient
energy compared to the mid signal's energy.
If it has not,
the "mid_only_flag" is set without encoding the side signal.
</t>
<t>
The predictor coefficients are coded regardless of whether
the side signal is encoded.
For each frame, two predictor coefficients are computed, one
that predicts between low-passed mid and side channels, and
one that predicts between high-passed mid and side channels.
The low-pass filter is a simple three-tap filter
and creates a delay of one sample.
The high-pass filtered signal is the difference between
the mid signal delayed by one sample and the low-passed
signal. Instead of explicitly computing the high-passed
signal, it is computationally more efficient to transform
the prediction coefficients before applying them to the
filtered mid signal, as follows
<figure align="center">
<artwork align="center">
<![CDATA[
pred(n) = LP(n) * w0 + HP(n) * w1
= LP(n) * w0 + (mid(n-1) - LP(n)) * w1
= LP(n) * (w0 - w1) + mid(n-1) * w1
]]>
</artwork>
</figure>
where w0 and w1 are the low-pass and high-pass prediction
coefficients, mid(n-1) is the mid signal delayed by one sample,
LP(n) and HP(n) are the low-passed and high-passed
signals and pred(n) is the prediction signal that is subtracted
from the side signal.
</t>
</section>
<section title='SILK Core Encoder'>
<t>
What follows is a description of the core encoder and its components.
For simplicity, the core encoder is referred to simply as the encoder in
the remainder of this section. An overview of the encoder is given in
<xref target="encoder_figure" />.
</t>
<figure align="center" anchor="encoder_figure" title="SILK Core Encoder">
<artwork align="center">
<![CDATA[
+---+
+--------------------------------->| |
+---------+ | +---------+ | |
|Voice | | |LTP |12 | |
+-->|Activity |--+ +----->|Scaling |-----------+---->| |
| |Detector |3 | | |Control |<--+ | | |
| +---------+ | | +---------+ | | | |
| | | +---------+ | | | |
| | | |Gains | | | | |
| | | +-->|Processor|---|---+---|---->| R |
| | | | | |11 | | | | a |
| \/ | | +---------+ | | | | n |
| +---------+ | | +---------+ | | | | g |
| |Pitch | | | |LSF | | | | | e |
| +->|Analysis |---+ | |Quantizer|---|---|---|---->| |
| | | |4 | | | |8 | | | | E |-->
| | +---------+ | | +---------+ | | | | n | 2
| | | | 9/\ 10| | | | | c |
| | | | | \/ | | | | o |
| | +---------+ | | +----------+ | | | | d |
| | |Noise | +--|-->|Prediction|--+---|---|---->| e |
| +->|Shaping |---|--+ |Analysis |7 | | | | r |
| | |Analysis |5 | | | | | | | | |
| | +---------+ | | +----------+ | | | | |
| | | | /\ | | | | |
| | +----------|--|--------+ | | | | |
| | | \/ \/ \/ \/ \/ | |
| | | +---------+ +------------+ | |
| | | | | |Noise | | |
-+-------+-----+------>|Prefilter|--------->|Shaping |-->| |
1 | | 6 |Quantization|13 | |
+---------+ +------------+ +---+
1: Input speech signal
2: Range encoded bitstream
3: Voice activity estimate
4: Pitch lags (per 5 ms) and voicing decision (per 20 ms)
5: Noise shaping quantization coefficients
- Short term synthesis and analysis
noise shaping coefficients (per 5 ms)
- Long term synthesis and analysis noise
shaping coefficients (per 5 ms and for voiced speech only)
- Noise shaping tilt (per 5 ms)
- Quantizer gain/step size (per 5 ms)
6: Input signal filtered with analysis noise shaping filters
7: Short and long term prediction coefficients
LTP (per 5 ms) and LPC (per 20 ms)
8: LSF quantization indices
9: LSF coefficients
10: Quantized LSF coefficients
11: Processed gains, and synthesis noise shape coefficients
12: LTP state scaling coefficient. Controlling error propagation
/ prediction gain trade-off
13: Quantized signal
]]>
</artwork>
</figure>
<section title='Voice Activity Detection'>
<t>
The input signal is processed by a Voice Activity Detector (VAD) to produce
a measure of voice activity, spectral tilt, and signal-to-noise estimates for
each frame. The VAD uses a sequence of half-band filterbanks to split the
signal into four subbands: 0...Fs/16, Fs/16...Fs/8, Fs/8...Fs/4, and
Fs/4...Fs/2, where Fs is the sampling frequency (8, 12, 16, or 24 kHz).
The lowest subband, from 0 - Fs/16, is high-pass filtered with a first-order
moving average (MA) filter (with transfer function H(z) = 1-z**(-1)) to
reduce the energy at the lowest frequencies. For each frame, the signal
energy per subband is computed.
In each subband, a noise level estimator tracks the background noise level
and a Signal-to-Noise Ratio (SNR) value is computed as the logarithm of the
ratio of energy to noise level.
Using these intermediate variables, the following parameters are calculated
for use in other SILK modules:
<list style="symbols">
<t>
Average SNR. The average of the subband SNR values.
</t>
<t>
Smoothed subband SNRs. Temporally smoothed subband SNR values.
</t>
<t>
Speech activity level. Based on the average SNR and a weighted average of the
subband energies.
</t>
<t>
Spectral tilt. A weighted average of the subband SNRs, with positive weights
for the low subbands and negative weights for the high subbands.
</t>
</list>
</t>
</section>
<section title='Pitch Analysis' anchor='pitch_estimator_overview_section'>
<t>
The input signal is processed by the open loop pitch estimator shown in
<xref target='pitch_estimator_figure' />.
<figure align="center" anchor="pitch_estimator_figure"
title="Block diagram of the pitch estimator">
<artwork align="center">
<![CDATA[
+--------+ +----------+
|2 x Down| |Time- |
+->|sampling|->|Correlator| |
| | | | | |4
| +--------+ +----------+ \/
| | 2 +-------+
| | +-->|Speech |5
+---------+ +--------+ | \/ | |Type |->
|LPC | |Down | | +----------+ | |
+->|Analysis | +->|sample |-+------------->|Time- | +-------+
| | | | |to 8 kHz| |Correlator|----------->
| +---------+ | +--------+ |__________| 6
| | | |3
| \/ | \/
| +---------+ | +----------+
| |Whitening| | |Time- |
-+->|Filter |-+--------------------------->|Correlator|----------->
1 | | | | 7
+---------+ +----------+
1: Input signal
2: Lag candidates from stage 1
3: Lag candidates from stage 2
4: Correlation threshold
5: Voiced/unvoiced flag
6: Pitch correlation
7: Pitch lags
]]>
</artwork>
</figure>
The pitch analysis finds a binary voiced/unvoiced classification, and, for
frames classified as voiced, four pitch lags per frame - one for each
5 ms subframe - and a pitch correlation indicating the periodicity of
the signal.
The input is first whitened using a Linear Prediction (LP) whitening filter,
where the coefficients are computed through standard Linear Prediction Coding
(LPC) analysis. The order of the whitening filter is 16 for best results, but
is reduced to 12 for medium complexity and 8 for low complexity modes.
The whitened signal is analyzed to find pitch lags for which the time
correlation is high.
The analysis consists of three stages for reducing the complexity:
<list style="symbols">
<t>In the first stage, the whitened signal is downsampled to 4 kHz
(from 8 kHz) and the current frame is correlated to a signal delayed
by a range of lags, starting from a shortest lag corresponding to
500 Hz, to a longest lag corresponding to 56 Hz.</t>
<t>
The second stage operates on an 8 kHz signal (downsampled from 12, 16,
or 24 kHz) and measures time correlations only near the lags
corresponding to those that had sufficiently high correlations in the first
stage. The resulting correlations are adjusted for a small bias towards
short lags to avoid ending up with a multiple of the true pitch lag.
The highest adjusted correlation is compared to a threshold depending on:
<list style="symbols">
<t>
Whether the previous frame was classified as voiced
</t>
<t>
The speech activity level
</t>
<t>
The spectral tilt.
</t>
</list>
If the threshold is exceeded, the current frame is classified as voiced and
the lag with the highest adjusted correlation is stored for a final pitch
analysis of the highest precision in the third stage.
</t>
<t>
The last stage operates directly on the whitened input signal to compute time
correlations for each of the four subframes independently in a narrow range
around the lag with highest correlation from the second stage.
</t>
</list>
</t>
</section>
<section title='Noise Shaping Analysis' anchor='noise_shaping_analysis_overview_section'>
<t>
The noise shaping analysis finds gains and filter coefficients used in the
prefilter and noise shaping quantizer. These parameters are chosen such that
they will fulfill several requirements:
<list style="symbols">
<t>
Balancing quantization noise and bitrate.
The quantization gains determine the step size between reconstruction levels
of the excitation signal. Therefore, increasing the quantization gain
amplifies quantization noise, but also reduces the bitrate by lowering
the entropy of the quantization indices.
</t>
<t>
Spectral shaping of the quantization noise; the noise shaping quantizer is
capable of reducing quantization noise in some parts of the spectrum at the
cost of increased noise in other parts without substantially changing the
bitrate.
By shaping the noise such that it follows the signal spectrum, it becomes
less audible. In practice, best results are obtained by making the shape
of the noise spectrum slightly flatter than the signal spectrum.
</t>
<t>
De-emphasizing spectral valleys; by using different coefficients in the
analysis and synthesis part of the prefilter and noise shaping quantizer,
the levels of the spectral valleys can be decreased relative to the levels
of the spectral peaks such as speech formants and harmonics.
This reduces the entropy of the signal, which is the difference between the
coded signal and the quantization noise, thus lowering the bitrate.
</t>
<t>
Matching the levels of the decoded speech formants to the levels of the
original speech formants; an adjustment gain and a first order tilt
coefficient are computed to compensate for the effect of the noise
shaping quantization on the level and spectral tilt.
</t>
</list>
</t>
<t>
<figure align="center" anchor="noise_shape_analysis_spectra_figure"
title="Noise shaping and spectral de-emphasis illustration">
<artwork align="center">
<![CDATA[
/ \ ___
| // \\
| // \\ ____
|_// \\___// \\ ____
| / ___ \ / \\ // \\
P |/ / \ \_/ \\_____// \\
o | / \ ____ \ / \\
w | / \___/ \ \___/ ____ \\___ 1
e |/ \ / \ \
r | \_____/ \ \__ 2
| \
| \___ 3
|
+---------------------------------------->
Frequency
1: Input signal spectrum
2: De-emphasized and level matched spectrum
3: Quantization noise spectrum
]]>
</artwork>
</figure>
<xref target='noise_shape_analysis_spectra_figure' /> shows an example of an
input signal spectrum (1).
After de-emphasis and level matching, the spectrum has deeper valleys (2).
The quantization noise spectrum (3) more or less follows the input signal
spectrum, while having slightly less pronounced peaks.
The entropy, which provides a lower bound on the bitrate for encoding the
excitation signal, is proportional to the area between the de-emphasized
spectrum (2) and the quantization noise spectrum (3). Without de-emphasis,
the entropy is proportional to the area between input spectrum (1) and
quantization noise (3) - clearly higher.
</t>
<t>
The transformation from input signal to de-emphasized signal can be
described as a filtering operation with a filter
<figure align="center">
<artwork align="center">
<![CDATA[
-1 Wana(z)
H(z) = G * ( 1 - c_tilt * z ) * -------
Wsyn(z),
]]>
</artwork>
</figure>
having an adjustment gain G, a first order tilt adjustment filter with
tilt coefficient c_tilt, and where
<figure align="center">
<artwork align="center">
<![CDATA[
16 d
__ -k -L __ -k
Wana(z) = (1 - \ (a_ana(k) * z )*(1 - z * \ b_ana(k) * z ),
/_ /_
k=1 k=-d
]]>
</artwork>
</figure>
is the analysis part of the de-emphasis filter, consisting of the short-term
shaping filter with coefficients a_ana(k), and the long-term shaping filter
with coefficients b_ana(k) and pitch lag L.
The parameter d determines the number of long-term shaping filter taps.
</t>
<t>
Similarly, but without the tilt adjustment, the synthesis part can be written as
<figure align="center">
<artwork align="center">
<![CDATA[
16 d
__ -k -L __ -k
Wsyn(z) = (1 - \ (a_syn(k) * z )*(1 - z * \ b_syn(k) * z ).
/_ /_
k=1 k=-d
]]>
</artwork>
</figure>
</t>
<t>
All noise shaping parameters are computed and applied per subframe of 5 ms.
First, an LPC analysis is performed on a windowed signal block of 15 ms.
The signal block has a look-ahead of 5 ms relative to the current subframe,
and the window is an asymmetric sine window. The LPC analysis is done with the
autocorrelation method, with an order of between 8, in lowest-complexity mode,
and 16, for best quality.
</t>
<t>
Optionally the LPC analysis and noise shaping filters are warped by replacing
the delay elements by first-order allpass filters.
This increases the frequency resolution at low frequencies and reduces it at
high ones, which better matches the human auditory system and improves
quality.
The warped analysis and filtering comes at a cost in complexity
and is therefore only done in higher complexity modes.
</t>
<t>
The quantization gain is found by taking the square root of the residual energy
from the LPC analysis and multiplying it by a value inversely proportional
to the coding quality control parameter and the pitch correlation.
</t>
<t>
Next the two sets of short-term noise shaping coefficients a_ana(k) and
a_syn(k) are obtained by applying different amounts of bandwidth expansion to the
coefficients found in the LPC analysis.
This bandwidth expansion moves the roots of the LPC polynomial towards the
origin, using the formulas
<figure align="center">
<artwork align="center">
<![CDATA[
k
a_ana(k) = a(k)*g_ana , and
k
a_syn(k) = a(k)*g_syn ,
]]>
</artwork>
</figure>
where a(k) is the k'th LPC coefficient, and the bandwidth expansion factors
g_ana and g_syn are calculated as
<figure align="center">
<artwork align="center">
<![CDATA[
g_ana = 0.95 - 0.01*C, and
g_syn = 0.95 + 0.01*C,
]]>
</artwork>
</figure>
where C is the coding quality control parameter between 0 and 1.
Applying more bandwidth expansion to the analysis part than to the synthesis
part gives the desired de-emphasis of spectral valleys in between formants.
</t>
<t>
The long-term shaping is applied only during voiced frames.
It uses three filter taps, described by
<figure align="center">
<artwork align="center">
<![CDATA[
b_ana = F_ana * [0.25, 0.5, 0.25], and
b_syn = F_syn * [0.25, 0.5, 0.25].
]]>
</artwork>
</figure>
For unvoiced frames these coefficients are set to 0. The multiplication factors
F_ana and F_syn are chosen between 0 and 1, depending on the coding quality
control parameter, as well as the calculated pitch correlation and smoothed
subband SNR of the lowest subband. By having F_ana less than F_syn,
the pitch harmonics are emphasized relative to the valleys in between the
harmonics.
</t>
<t>
The tilt coefficient c_tilt is for unvoiced frames chosen as
<figure align="center">
<artwork align="center">
<![CDATA[
c_tilt = 0.25,
]]>
</artwork>
</figure>
and as
<figure align="center">
<artwork align="center">
<![CDATA[
c_tilt = 0.25 + 0.2625 * V
]]>
</artwork>
</figure>
for voiced frames, where V is the voice activity level between 0 and 1.
</t>
<t>
The adjustment gain G serves to correct any level mismatch between the original
and decoded signals that might arise from the noise shaping and de-emphasis.
This gain is computed as the ratio of the prediction gain of the short-term
analysis and synthesis filter coefficients. The prediction gain of an LPC
synthesis filter is the square root of the output energy when the filter is
excited by a unit-energy impulse on the input.
An efficient way to compute the prediction gain is by first computing the
reflection coefficients from the LPC coefficients through the step-down
algorithm, and extracting the prediction gain from the reflection coefficients
as
<figure align="center">
<artwork align="center">
<![CDATA[
K
___ 2 -0.5
predGain = ( | | 1 - (r_k) ) ,
k=1
]]>
</artwork>
</figure>
where r_k is the k'th reflection coefficient.
</t>
<t>
Initial values for the quantization gains are computed as the square-root of
the residual energy of the LPC analysis, adjusted by the coding quality control
parameter.
These quantization gains are later adjusted based on the results of the
prediction analysis.
</t>
</section>
<section title='Prediction Analysis' anchor='pred_ana_overview_section'>
<t>
The prediction analysis is performed in one of two ways depending on how
the pitch estimator classified the frame.
The processing for voiced and unvoiced speech is described in
<xref target='pred_ana_voiced_overview_section' /> and
<xref target='pred_ana_unvoiced_overview_section' />, respectively.
Inputs to this function include the pre-whitened signal from the
pitch estimator (see <xref target='pitch_estimator_overview_section'/>).
</t>
<section title='Voiced Speech' anchor='pred_ana_voiced_overview_section'>
<t>
For a frame of voiced speech the pitch pulses will remain dominant in the
pre-whitened input signal.
Further whitening is desirable as it leads to higher quality at the same
available bitrate.
To achieve this, a Long-Term Prediction (LTP) analysis is carried out to
estimate the coefficients of a fifth-order LTP filter for each of four
subframes.
The LTP coefficients are quantized using the method described in
<xref target='ltp_quantizer_overview_section'/>, and the quantized LTP
coefficients are used to compute the LTP residual signal.
This LTP residual signal is the input to an LPC analysis where the LPCs are
estimated using Burg's method, such that the residual energy is minimized.
The estimated LPCs are converted to a Line Spectral Frequency (LSF) vector
and quantized as described in <xref target='lsf_quantizer_overview_section'/>.
After quantization, the quantized LSF vector is converted back to LPC
coefficients using the full procedure in <xref target="silk_nlsfs"/>.
By using quantized LTP coefficients and LPC coefficients derived from the
quantized LSF coefficients, the encoder remains fully synchronized with the
decoder.
The quantized LPC and LTP coefficients are also used to filter the input
signal and measure residual energy for each of the four subframes.
</t>
</section>
<section title='Unvoiced Speech' anchor='pred_ana_unvoiced_overview_section'>
<t>
For a speech signal that has been classified as unvoiced, there is no need
for LTP filtering, as it has already been determined that the pre-whitened
input signal is not periodic enough within the allowed pitch period range
for LTP analysis to be worth the cost in terms of complexity and bitrate.
The pre-whitened input signal is therefore discarded, and instead the input
signal is used for LPC analysis using Burg's method.
The resulting LPC coefficients are converted to an LSF vector and quantized
as described in the following section.
They are then transformed back to obtain quantized LPC coefficients, which
are then used to filter the input signal and measure residual energy for
each of the four subframes.
</t>
<section title='Burgs method'>
<t>
The main purpose of LPC coding in SILK is to reduce the bitrate by
minimizing the residual energy.
At least at high bitrates, perceptual aspects are handled
independently by the noise shaping filter.
Burg's method is used because it provides higher prediction gain
than the autocorrelation method and, unlike the covariance method,
produces stable filters (assuming numerical errors don't spoil
that). SILK's implementation of Burg's method is also computationally
faster than the autocovariance method.
The implementation of Burg's method differs from traditional
implementations in two aspects.
The first difference is that it
operates on autocorrelations, similar to the Schur algorithm, but
with a simple update to the autocorrelations after finding each
reflection coefficient to make the result identical to Burg's method.
This brings down the complexity of Burg's method to near that of
the autocorrelation method.
The second difference is that the signal in each subframe is scaled
by the inverse of the residual quantization step size. Subframes with
a small quantization step size will on average spend more bits for a
given amount of residual energy than subframes with a large step size.
Without scaling, Burg's method minimizes the total residual energy in
all subframes, which doesn't necessarily minimize the total number of
bits needed for coding the quantized residual. The residual energy
of the scaled subframes is a better measure for that number of
bits.
</t>
</section>
</section>
</section>
<section title='LSF Quantization' anchor='lsf_quantizer_overview_section'>
<t>
Unlike many other speech codecs, SILK uses variable bitrate coding
for the LSFs.
This improves the average rate-distortion tradeoff and reduces outliers.
The variable bitrate coding minimizes a linear combination of the weighted
quantization errors and the bitrate.
The weights for the quantization errors are the Inverse
Harmonic Mean Weighting (IHMW) function proposed by Laroia et al.
(see <xref target="laroia-icassp" />).
These weights are referred to here as Laroia weights.
</t>
<t>
The LSF quantizer consists of two stages.
The first stage is an (unweighted) vector quantizer (VQ), with a
codebook size of 32 vectors.
The quantization errors for the codebook vector are sorted, and
for the N best vectors a second stage quantizer is run.
By varying the number N a tradeoff is made between R/D performance
and computational efficiency.
For each of the N codebook vectors the Laroia weights corresponding
to that vector (and not to the input vector) are calculated.
Then the residual between the input LSF vector and the codebook
vector is scaled by the square roots of these Laroia weights.
This scaling partially normalizes error sensitivity for the
residual vector, so that a uniform quantizer with fixed
step sizes can be used in the second stage without too much
performance loss.
And by scaling with Laroia weights determined from the first-stage
codebook vector, the process can be reversed in the decoder.
</t>
<t>
The second stage uses predictive delayed decision scalar
quantization.
The quantization error is weighted by Laroia weights determined
from the LSF input vector.
The predictor multiplies the previous quantized residual value
by a prediction coefficient that depends on the vector index from the
first stage VQ and on the location in the LSF vector.
The prediction is subtracted from the LSF residual value before
quantizing the result, and added back afterwards.
This subtraction can be interpreted as shifting the quantization levels
of the scalar quantizer, and as a result the quantization error of
each value depends on the quantization decision of the previous value.
This dependency is exploited by the delayed decision mechanism to
search for a quantization sequency with best R/D performance
with a Viterbi-like algorithm <xref target="Viterbi"/>.
The quantizer processes the residual LSF vector in reverse order
(i.e., it starts with the highest residual LSF value).
This is done because the prediction works slightly
better in the reverse direction.
</t>
<t>
The quantization index of the first stage is entropy coded.
The quantization sequence from the second stage is also entropy
coded, where for each element the probability table is chosen
depending on the vector index from the first stage and the location
of that element in the LSF vector.
</t>
<section title='LSF Stabilization' anchor='lsf_stabilizer_overview_section'>
<t>
If the input is stable, finding the best candidate usually results in a
quantized vector that is also stable. Because of the two-stage approach,
however, it is possible that the best quantization candidate is unstable.
The encoder applies the same stabilization procedure applied by the decoder
(see <xref target="silk_nlsf_stabilization"/> to ensure the LSF parameters
are within their valid range, increasingly sorted, and have minimum
distances between each other and the border values.
</t>
</section>
</section>
<section title='LTP Quantization' anchor='ltp_quantizer_overview_section'>
<t>
For voiced frames, the prediction analysis described in
<xref target='pred_ana_voiced_overview_section' /> resulted in four sets
(one set per subframe) of five LTP coefficients, plus four weighting matrices.
The LTP coefficients for each subframe are quantized using entropy constrained
vector quantization.
A total of three vector codebooks are available for quantization, with
different rate-distortion trade-offs. The three codebooks have 10, 20, and
40 vectors and average rates of about 3, 4, and 5 bits per vector, respectively.
Consequently, the first codebook has larger average quantization distortion at
a lower rate, whereas the last codebook has smaller average quantization
distortion at a higher rate.
Given the weighting matrix W_ltp and LTP vector b, the weighted rate-distortion
measure for a codebook vector cb_i with rate r_i is give by
<figure align="center">
<artwork align="center">
<![CDATA[
RD = u * (b - cb_i)' * W_ltp * (b - cb_i) + r_i,
]]>
</artwork>
</figure>
where u is a fixed, heuristically-determined parameter balancing the distortion
and rate.
Which codebook gives the best performance for a given LTP vector depends on the
weighting matrix for that LTP vector.
For example, for a low valued W_ltp, it is advantageous to use the codebook
with 10 vectors as it has a lower average rate.
For a large W_ltp, on the other hand, it is often better to use the codebook
with 40 vectors, as it is more likely to contain the best codebook vector.
The weighting matrix W_ltp depends mostly on two aspects of the input signal.
The first is the periodicity of the signal; the more periodic, the larger W_ltp.
The second is the change in signal energy in the current subframe, relative to
the signal one pitch lag earlier.
A decaying energy leads to a larger W_ltp than an increasing energy.
Both aspects fluctuate relatively slowly, which causes the W_ltp matrices for
different subframes of one frame often to be similar.
Because of this, one of the three codebooks typically gives good performance
for all subframes, and therefore the codebook search for the subframe LTP
vectors is constrained to only allow codebook vectors to be chosen from the
same codebook, resulting in a rate reduction.
</t>
<t>
To find the best codebook, each of the three vector codebooks is
used to quantize all subframe LTP vectors and produce a combined
weighted rate-distortion measure for each vector codebook.
The vector codebook with the lowest combined rate-distortion
over all subframes is chosen. The quantized LTP vectors are used
in the noise shaping quantizer, and the index of the codebook
plus the four indices for the four subframe codebook vectors
are passed on to the range encoder.
</t>
</section>
<section title='Prefilter'>
<t>
In the prefilter the input signal is filtered using the spectral valley
de-emphasis filter coefficients from the noise shaping analysis
(see <xref target='noise_shaping_analysis_overview_section'/>).
By applying only the noise shaping analysis filter to the input signal,
it provides the input to the noise shaping quantizer.
</t>
</section>
<section title='Noise Shaping Quantizer'>
<t>
The noise shaping quantizer independently shapes the signal and coding noise
spectra to obtain a perceptually higher quality at the same bitrate.
</t>
<t>
The prefilter output signal is multiplied with a compensation gain G computed
in the noise shaping analysis. Then the output of a synthesis shaping filter
is added, and the output of a prediction filter is subtracted to create a
residual signal.
The residual signal is multiplied by the inverse quantized quantization gain
from the noise shaping analysis, and input to a scalar quantizer.
The quantization indices of the scalar quantizer represent a signal of pulses
that is input to the pyramid range encoder.
The scalar quantizer also outputs a quantization signal, which is multiplied
by the quantized quantization gain from the noise shaping analysis to create
an excitation signal.
The output of the prediction filter is added to the excitation signal to form
the quantized output signal y(n).
The quantized output signal y(n) is input to the synthesis shaping and
prediction filters.
</t>
<t>
Optionally the noise shaping quantizer operates in a delayed decision
mode.
In this mode it uses a Viterbi algorithm to keep track of
multiple rounding choices in the quantizer and select the best
one after a delay of 32 samples. This improves the rate/distortion
performance of the quantizer.
</t>
</section>
<section title='Constant Bitrate Mode'>
<t>
SILK was designed to run in Variable Bitrate (VBR) mode. However
the reference implementation also has a Constant Bitrate (CBR) mode
for SILK. In CBR mode SILK will attempt to encode each packet with
no more than the allowed number of bits. The Opus wrapper code
then pads the bitstream if any unused bits are left in SILK mode, or
encodes the high band with the remaining number of bits in Hybrid mode.
The number of payload bits is adjusted by changing
the quantization gains and the rate/distortion tradeoff in the noise
shaping quantizer, in an iterative loop
around the noise shaping quantizer and entropy coding.
Compared to the SILK VBR mode, the CBR mode has lower
audio quality at a given average bitrate, and also has higher
computational complexity.
</t>
</section>
</section>
</section>
<section title="CELT Encoder">
<t>
Most of the aspects of the CELT encoder can be directly derived from the description
of the decoder. For example, the filters and rotations in the encoder are simply the
inverse of the operation performed by the decoder. Similarly, the quantizers generally
optimize for the mean square error (because noise shaping is part of the bit-stream itself),
so no special search is required. For this reason, only the less straightforward aspects of the
encoder are described here.
</t>
<section anchor="pitch-prefilter" title="Pitch Prefilter">
<t>The pitch prefilter is applied after the pre-emphasis. It is applied
in such a way as to be the inverse of the decoder's post-filter. The main non-obvious aspect of the
prefilter is the selection of the pitch period. The pitch search should be optimized for the
following criteria:
<list style="symbols">
<t>continuity: it is important that the pitch period
does not change abruptly between frames; and</t>
<t>avoidance of pitch multiples: when the period used is a multiple of the real period
(lower frequency fundamental), the post-filter loses most of its ability to reduce noise</t>
</list>
</t>
</section>
<section anchor="normalization" title="Bands and Normalization">
<t>
The MDCT output is divided into bands that are designed to match the ear's critical
bands for the smallest (2.5 ms) frame size. The larger frame sizes use integer
multiples of the 2.5 ms layout. For each band, the encoder
computes the energy that will later be encoded. Each band is then normalized by the
square root of the <spanx style="strong">unquantized</spanx> energy, such that each band now forms a unit vector X.
The energy and the normalization are computed by compute_band_energies()
and normalise_bands() (bands.c), respectively.
</t>
</section>
<section anchor="energy-quantization" title="Energy Envelope Quantization">
<t>
Energy quantization (both coarse and fine) can be easily understood from the decoding process.
For all useful bitrates, the coarse quantizer always chooses the quantized log energy value that
minimizes the error for each band. Only at very low rate does the encoder allow larger errors to
minimize the rate and avoid using more bits than are available. When the
available CPU requirements allow it, it is best to try encoding the coarse energy both with and without
inter-frame prediction such that the best prediction mode can be selected. The optimal mode depends on
the coding rate, the available bitrate, and the current rate of packet loss.
</t>
<t>The fine energy quantizer always chooses the quantized log energy value that
minimizes the error for each band because the rate of the fine quantization depends only
on the bit allocation and not on the values that are coded.
</t>
</section> <!-- Energy quant -->
<section title="Bit Allocation">
<t>The encoder must use exactly the same bit allocation process as used by the decoder
and described in <xref target="allocation"/>. The three mechanisms that can be used by the
encoder to adjust the bitrate on a frame-by-frame basis are band boost, allocation trim,
and band skipping.
</t>
<section title="Band Boost">
<t>The reference encoder makes a decision to boost a band when the energy of that band is significantly
higher than that of the neighboring bands. Let E_j be the log-energy of band j, we define
<list>
<t>D_j = 2*E_j - E_j-1 - E_j+1 </t>
</list>
The allocation of band j is boosted once if D_j > t1 and twice if D_j > t2. For LM>=1, t1=2 and t2=4,
while for LM<1, t1=3 and t2=5.
</t>
</section>
<section title="Allocation Trim">
<t>The allocation trim is a value between 0 and 10 (inclusively) that controls the allocation
balance between the low and high frequencies. The encoder starts with a safe "default" of 5
and deviates from that default in two different ways. First the trim can deviate by +/- 2
depending on the spectral tilt of the input signal. For signals with more low frequencies, the
trim is increased by up to 2, while for signals with more high frequencies, the trim is
decreased by up to 2.
For stereo inputs, the trim value can
be decreased by up to 4 when the inter-channel correlation at low frequency (first 8 bands)
is high. </t>
</section>
<section title="Band Skipping">
<t>The encoder uses band skipping to ensure that the shape of the bands is only coded
if there is at least 1/2 bit per sample available for the PVQ. If not, then no bit is allocated
and folding is used instead. To ensure continuity in the allocation, some amount of hysteresis is
added to the process, such that a band that received PVQ bits in the previous frame only needs 7/16
bit/sample to be coded for the current frame, while a band that did not receive PVQ bits in the
previous frames needs at least 9/16 bit/sample to be coded.</t>
</section>
</section>
<section title="Stereo Decisions">
<t>Because CELT applies mid-side stereo coupling in the normalized domain, it does not suffer from
important stereo image problems even when the two channels are completely uncorrelated. For this reason
it is always safe to use stereo coupling on any audio frame. That being said, there are some frames
for which dual (independent) stereo is still more efficient. This decision is made by comparing the estimated
entropy with and without coupling over the first 13 bands, taking into account the fact that all bands with
more than two MDCT bins require one extra degree of freedom when coded in mid-side. Let L1_ms and L1_lr
be the L1-norm of the mid-side vector and the L1-norm of the left-right vector, respectively. The decision
to use mid-side is made if and only if
<figure align="center">
<artwork align="center"><![CDATA[
L1_ms L1_lr
-------- < -----
bins + E bins
]]></artwork>
</figure>
where bins is the number of MDCT bins in the first 13 bands and extra is the number of extra degrees of
freedom for mid-side coding. For LM>1, E=13, otherwise E=5.
</t>
<t>The reference encoder decides on the intensity stereo threshold based on the bitrate alone. After
taking into account the frame size by subtracting 80 bits per frame for coarse energy, the first
band using intensity coding is as follows:
</t>
<texttable anchor="intensity-thresholds"
title="Thresholds for intensity stereo">
<ttcol align='center'>bitrate (kb/s)</ttcol>
<ttcol align='center'>start band</ttcol>
<c><35</c> <c>8</c>
<c>35-50</c> <c>12</c>
<c>50-68</c> <c>16</c>
<c>84-84</c> <c>18</c>
<c>84-102</c> <c>19</c>
<c>102-130</c> <c>20</c>
<c>>130</c> <c>disabled</c>
</texttable>
</section>
<section title="Time-Frequency Decision">
<t>
The choice of time-frequency resolution used in <xref target="tf-change"></xref> is based on
rate-distortion (RD) optimization. The distortion is the L1-norm (sum of absolute values) of each band
after each TF resolution under consideration. The L1 norm is used because it represents the entropy
for a Laplacian source. The number of bits required to code a change in TF resolution between
two bands is higher than the cost of having those two bands use the same resolution, which is
what requires the RD optimization. The optimal decision is computed using the Viterbi algorithm.
See tf_analysis() in celt/celt.c.
</t>
</section>
<section title="Spreading Values Decision">
<t>
The choice of the spreading value in <xref target="spread values"></xref> has an
impact on the nature of the coding noise introduced by CELT. The larger the f_r value, the
lower the impact of the rotation, and the more tonal the coding noise. The
more tonal the signal, the more tonal the noise should be, so the CELT encoder determines
the optimal value for f_r by estimating how tonal the signal is. The tonality estimate
is based on discrete pdf (4-bin histogram) of each band. Bands that have a large number of small
values are considered more tonal and a decision is made by combining all bands with more than
8 samples. See spreading_decision() in celt/bands.c.
</t>
</section>
<section anchor="pvq" title="Spherical Vector Quantization">
<t>CELT uses a Pyramid Vector Quantization (PVQ) <xref target="PVQ"></xref>
codebook for quantizing the details of the spectrum in each band that have not
been predicted by the pitch predictor. The PVQ codebook consists of all sums
of K signed pulses in a vector of N samples, where two pulses at the same position
are required to have the same sign. Thus the codebook includes
all integer codevectors y of N dimensions that satisfy sum(abs(y(j))) = K.
</t>
<t>
In bands where there are sufficient bits allocated PVQ is used to encode
the unit vector that results from the normalization in
<xref target="normalization"></xref> directly. Given a PVQ codevector y,
the unit vector X is obtained as X = y/||y||, where ||.|| denotes the
L2 norm.
</t>
<section anchor="pvq-search" title="PVQ Search">
<t>
The search for the best codevector y is performed by alg_quant()
(vq.c). There are several possible approaches to the
search, with a trade-off between quality and complexity. The method used in the reference
implementation computes an initial codeword y1 by projecting the normalized spectrum
X onto the codebook pyramid of K-1 pulses:
</t>
<t>
y0 = truncate_towards_zero( (K-1) * X / sum(abs(X)))
</t>
<t>
Depending on N, K and the input data, the initial codeword y0 may contain from
0 to K-1 non-zero values. All the remaining pulses, with the exception of the last one,
are found iteratively with a greedy search that minimizes the normalized correlation
between y and X:
<figure align="center">
<artwork align="center"><![CDATA[
T
J = -X * y / ||y||
]]></artwork>
</figure>
</t>
<t>
The search described above is considered to be a good trade-off between quality
and computational cost. However, there are other possible ways to search the PVQ
codebook and the implementers MAY use any other search methods. See alg_quant() in celt/vq.c.
</t>
</section>
</section>
</section>
</section>
<section anchor="conformance" title="Conformance">
<t>
It is our intention to allow the greatest possible choice of freedom in
implementing the specification. For this reason, outside of the exceptions
noted in this section, conformance is defined through the reference
implementation of the decoder provided in <xref target="ref-implementation"/>.
Although this document includes an English description of the codec, should
the description contradict the source code of the reference implementation,
the latter shall take precedence.
</t>
<t>
Compliance with this specification means that in addition to following the normative keywords in this document,
a decoder's output MUST also be
within the thresholds specified by the opus_compare.c tool (included
with the code) when compared to the reference implementation for each of the
test vectors provided (see <xref target="test-vectors"></xref>) and for each output
sampling rate and channel count supported. In addition, a compliant
decoder implementation MUST have the same final range decoder state as that of the
reference decoder. It is therefore RECOMMENDED that the
decoder implement the same functional behavior as the reference.
A decoder implementation is not required to support all output sampling
rates or all output channel counts.
</t>
<section title="Testing">
<t>
Using the reference code provided in <xref target="ref-implementation"></xref>,
a test vector can be decoded with
<list>
<t>opus_demo -d <rate> <channels> testvectorX.bit testX.out</t>
</list>
where <rate> is the sampling rate and can be 8000, 12000, 16000, 24000, or 48000, and
<channels> is 1 for mono or 2 for stereo.
</t>
<t>
If the range decoder state is incorrect for one of the frames, the decoder will exit with
"Error: Range coder state mismatch between encoder and decoder". If the decoder succeeds, then
the output can be compared with the "reference" output with
<list>
<t>opus_compare -s -r <rate> testvectorX.dec testX.out</t>
</list>
for stereo or
<list>
<t>opus_compare -r <rate> testvectorX.dec testX.out</t>
</list>
for mono.
</t>
<t>In addition to indicating whether the test vector comparison passes, the opus_compare tool
outputs an "Opus quality metric" that indicates how well the tested decoder matches the
reference implementation. A quality of 0 corresponds to the passing threshold, while
a quality of 100 means that the output of the tested decoder is identical to the reference
implementation. The passing threshold was calibrated in such a way that it corresponds to
additive white noise with a 48 dB SNR (similar to what can be obtained on a cassette deck).
It is still possible for an implementation to sound very good with such a low quality measure
(e.g. if the deviation is due to inaudible phase distortion), but unless this is verified by
listening tests, it is RECOMMENDED that implementations achive a quality above 90 for 48 kHz
decoding. For other sampling rates, it is normal for the quality metric to be lower
(typically as low as 50 even for a good implementation) because of harmless mismatch with
the delay and phase of the internal sampling rate conversion.
</t>
<t>
On POSIX environments, the run_vectors.sh script can be used to verify all test
vectors. This can be done with
<list>
<t>run_vectors.sh <exec path> <vector path> <rate></t>
</list>
where <exec path> is the directory where the opus_demo and opus_compare executables
are built and <vector path> is the directory containing the test vectors.
</t>
</section>
<section title="Opus Custom">
<t>
Opus Custom is an OPTIONAL part of the specification that is defined to
handle special sample rates and frame rates that are not supported by the
main Opus specification. Use of Opus Custom is discouraged for all but very
special applications for which a frame size different from 2.5, 5, 10, or 20 ms is
needed (for either complexity or latency reasons). Because Opus Custom is
optional, applications using that part of the specification may not be compatible
with other applications implementing Opus. In Opus Custom operation,
only the CELT layer is available, using the opus_custom_* function
calls in opus_custom.h.
</t>
</section>
</section>
<section anchor="security" title="Security Considerations">
<t>
Implementations of the Opus codec need to take appropriate security considerations
into account, as outlined in <xref target="DOS"/> and <xref target="SECGUIDE"/>.
It is extremely important for the decoder to be robust against malicious
payloads.
Malicious payloads must not cause the decoder to overrun its allocated memory
or to take an excessive amount of resources to decode.
Although problems
in encoders are typically rarer, the same applies to the encoder. Malicious
audio streams must not cause the encoder to misbehave because this would
allow an attacker to attack transcoding gateways.
</t>
<t>
The reference implementation contains no known buffer overflow or cases where
a specially crafted packet or audio segment could cause a significant increase
in CPU load.
However, on certain CPU architectures where denormalized floating-point
operations are much slower than normal floating-point operations, it is
possible for some audio content (e.g., silence or near-silence) to cause an
increase in CPU load.
Denormals can be introduced by reordering operations in the compiler and depend
on the target architecture, so it is difficult to guarantee that an implementation
avoids them.
For architectures on which denormals are problematic, adding very small
floating-point offsets to the affected signals to prevent significant numbers
of denormalized operations is RECOMMENDED.
Alternatively, it is often possible to configure the hardware to treat
denormals as zero (DAZ).
No such issue exists for the fixed-point reference implementation.
</t>
<t>The reference implementation was validated in the following conditions:
<list style="numbers">
<t>
Sending the decoder valid packets generated by the reference encoder and
verifying that the decoder's final range coder state matches that of the
encoder.
</t>
<t>
Sending the decoder packets generated by the reference encoder and then
subjected to random corruption.
</t>
<t>Sending the decoder random packets.</t>
<t>
Sending the decoder packets generated by a version of the reference encoder
modified to make random coding decisions (internal fuzzing), including mode
switching, and verifying that the range coder final states match.
</t>
</list>
In all of the conditions above, both the encoder and the decoder were run
inside the <xref target="Valgrind">Valgrind</xref> memory
debugger, which tracks reads and writes to invalid memory regions as well as
the use of uninitialized memory.
There were no errors reported on any of the tested conditions.
</t>
</section>
<section title="IANA Considerations">
<t>
This document has no actions for IANA.
</t>
</section>
<section anchor="Acknowledgements" title="Acknowledgements">
<t>
Thanks to all other developers, including Raymond Chen, Soeren Skak Jensen, Gregory Maxwell,
Christopher Montgomery, and Karsten Vandborg Soerensen. We would also
like to thank Igor Dyakonov, Jan Skoglund, and Christian Hoene for their help with subjective testing of the
Opus codec. Thanks to Ralph Giles, John Ridges, Ben Schwartz, Keith Yan, Christian Hoene, Kat Walsh, and many others on the Opus and CELT mailing lists
for their bug reports and feedback.
</t>
</section>
<section title="Copying Conditions">
<t>The authors agree to grant third parties the irrevocable right to copy, use and distribute
the work (excluding Code Components available under the simplified BSD license), with or
without modification, in any medium, without royalty, provided that, unless separate
permission is granted, redistributed modified works do not contain misleading author, version,
name of work, or endorsement information.</t>
</section>
</middle>
<back>
<references title="Normative References">
<reference anchor="rfc2119">
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels </title>
<author initials="S." surname="Bradner" fullname="Scott Bradner"></author>
</front>
<seriesInfo name="RFC" value="2119" />
</reference>
</references>
<references title="Informative References">
<reference anchor='requirements'>
<front>
<title>Requirements for an Internet Audio Codec</title>
<author initials='J.-M.' surname='Valin' fullname='J.-M. Valin'>
<organization /></author>
<author initials='K.' surname='Vos' fullname='K. Vos'>
<organization /></author>
<author>
<organization>IETF</organization></author>
<date year='2011' month='August' />
<abstract>
<t>This document provides specific requirements for an Internet audio
codec. These requirements address quality, sample rate, bitrate,
and packet-loss robustness, as well as other desirable properties.
</t></abstract></front>
<seriesInfo name='RFC' value='6366' />
<format type='TXT' target='http://tools.ietf.org/rfc/rfc6366.txt' />
</reference>
<reference anchor='SILK' target='http://developer.skype.com/silk'>
<front>
<title>SILK Speech Codec</title>
<author initials='K.' surname='Vos' fullname='K. Vos'>
<organization /></author>
<author initials='S.' surname='Jensen' fullname='S. Jensen'>
<organization /></author>
<author initials='K.' surname='Soerensen' fullname='K. Soerensen'>
<organization /></author>
<date year='2010' month='March' />
<abstract>
<t></t>
</abstract></front>
<seriesInfo name='Internet-Draft' value='draft-vos-silk-01' />
<format type='TXT' target='http://tools.ietf.org/html/draft-vos-silk-01' />
</reference>
<reference anchor="laroia-icassp">
<front>
<title abbrev="Robust and Efficient Quantization of Speech LSP">
Robust and Efficient Quantization of Speech LSP Parameters Using Structured Vector Quantization
</title>
<author initials="R.L." surname="Laroia" fullname="R.">
<organization/>
</author>
<author initials="N.P." surname="Phamdo" fullname="N.">
<organization/>
</author>
<author initials="N.F." surname="Farvardin" fullname="N.">
<organization/>
</author>
</front>
<seriesInfo name="ICASSP-1991, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 641-644, October" value="1991"/>
</reference>
<reference anchor='CELT' target='http://celt-codec.org/'>
<front>
<title>Constrained-Energy Lapped Transform (CELT) Codec</title>
<author initials='J-M.' surname='Valin' fullname='J-M. Valin'>
<organization /></author>
<author initials='T.B.' surname='Terriberry' fullname='Timothy B. Terriberry'>
<organization /></author>
<author initials='G.' surname='Maxwell' fullname='G. Maxwell'>
<organization /></author>
<author initials='C.' surname='Montgomery' fullname='C. Montgomery'>
<organization /></author>
<date year='2010' month='July' />
<abstract>
<t></t>
</abstract></front>
<seriesInfo name='Internet-Draft' value='draft-valin-celt-codec-02' />
<format type='TXT' target='http://tools.ietf.org/html/draft-valin-celt-codec-02' />
</reference>
<reference anchor='SRTP-VBR'>
<front>
<title>Guidelines for the use of Variable Bit Rate Audio with Secure RTP</title>
<author initials='C.' surname='Perkins' fullname='K. Vos'>
<organization /></author>
<author initials='J.M.' surname='Valin' fullname='J.M. Valin'>
<organization /></author>
<date year='2011' month='July' />
<abstract>
<t></t>
</abstract></front>
<seriesInfo name='RFC' value='6562' />
<format type='TXT' target='http://tools.ietf.org/html/rfc6562' />
</reference>
<reference anchor='DOS'>
<front>
<title>Internet Denial-of-Service Considerations</title>
<author initials='M.' surname='Handley' fullname='M. Handley'>
<organization /></author>
<author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
<organization /></author>
<author>
<organization>IAB</organization></author>
<date year='2006' month='December' />
<abstract>
<t>This document provides an overview of possible avenues for denial-of-service (DoS) attack on Internet systems. The aim is to encourage protocol designers and network engineers towards designs that are more robust. We discuss partial solutions that reduce the effectiveness of attacks, and how some solutions might inadvertently open up alternative vulnerabilities. This memo provides information for the Internet community.</t></abstract></front>
<seriesInfo name='RFC' value='4732' />
<format type='TXT' octets='91844' target='ftp://ftp.isi.edu/in-notes/rfc4732.txt' />
</reference>
<reference anchor='SECGUIDE'>
<front>
<title>Guidelines for Writing RFC Text on Security Considerations</title>
<author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
<organization /></author>
<author initials='B.' surname='Korver' fullname='B. Korver'>
<organization /></author>
<date year='2003' month='July' />
<abstract>
<t>All RFCs are required to have a Security Considerations section. Historically, such sections have been relatively weak. This document provides guidelines to RFC authors on how to write a good Security Considerations section. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t></abstract></front>
<seriesInfo name='BCP' value='72' />
<seriesInfo name='RFC' value='3552' />
<format type='TXT' octets='110393' target='ftp://ftp.isi.edu/in-notes/rfc3552.txt' />
</reference>
<reference anchor="range-coding">
<front>
<title>Range encoding: An algorithm for removing redundancy from a digitised message</title>
<author initials="G." surname="Nigel" fullname=""><organization/></author>
<author initials="N." surname="Martin" fullname=""><organization/></author>
<date year="1979" />
</front>
<seriesInfo name="Proc. Institution of Electronic and Radio Engineers International Conference on Video and Data Recording" value="" />
</reference>
<reference anchor="coding-thesis">
<front>
<title>Source coding algorithms for fast data compression</title>
<author initials="R." surname="Pasco" fullname=""><organization/></author>
<date month="May" year="1976" />
</front>
<seriesInfo name="Ph.D. thesis" value="Dept. of Electrical Engineering, Stanford University" />
</reference>
<reference anchor="PVQ">
<front>
<title>A Pyramid Vector Quantizer</title>
<author initials="T." surname="Fischer" fullname=""><organization/></author>
<date month="July" year="1986" />
</front>
<seriesInfo name="IEEE Trans. on Information Theory, Vol. 32" value="pp. 568-583" />
</reference>
<reference anchor="Valgrind" target="http://valgrind.org/">
<front>
<title>Valgrind website</title>
<author></author>
</front>
</reference>
<reference anchor="Google-NetEQ" target="http://code.google.com/p/webrtc/source/browse/trunk/src/modules/audio_coding/NetEQ/main/source/?r=583">
<front>
<title>Google NetEQ code</title>
<author></author>
</front>
</reference>
<reference anchor="Google-WebRTC" target="http://code.google.com/p/webrtc/">
<front>
<title>Google WebRTC code</title>
<author></author>
</front>
</reference>
<reference anchor="Opus-git" target="git://git.xiph.org/opus.git">
<front>
<title>Opus Git Repository</title>
<author></author>
</front>
</reference>
<reference anchor="Opus-website" target="http://opus-codec.org/">
<front>
<title>Opus website</title>
<author></author>
</front>
</reference>
<reference anchor="Vectors-website" target="http://opus-codec.org/testvectors/">
<front>
<title>Opus Testvectors (webside)</title>
<author></author>
</front>
</reference>
<reference anchor="Vectors-proc" target="http://www.ietf.org/proceedings/83/slides/slides-83-codec-0.gz">
<front>
<title>Opus Testvectors (proceedings)</title>
<author></author>
</front>
</reference>
<reference anchor="Hadamard" target="http://en.wikipedia.org/wiki/Hadamard_transform">
<front>
<title>Hadamard Transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="Viterbi" target="http://en.wikipedia.org/wiki/Viterbi_algorithm">
<front>
<title>Viterbi Algorithm</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="Whitening" target="http://en.wikipedia.org/wiki/White_noise">
<front>
<title>White Noise</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="LPC" target="http://en.wikipedia.org/wiki/Linear_prediction">
<front>
<title>Linear Prediction</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="MDCT" target="http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform">
<front>
<title>Modified Discrete Cosine Transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="FFT" target="http://en.wikipedia.org/wiki/Fast_Fourier_transform">
<front>
<title>Fast Fourier Transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
</references>
<section anchor="ref-implementation" title="Reference Implementation">
<t>This appendix contains the complete source code for the
reference implementation of the Opus codec written in C. By default,
this implementation relies on floating-point arithmetic, but it can be
compiled to use only fixed-point arithmetic by defining the FIXED_POINT
macro. Information on building and using the reference implementation is
available in the README file.
</t>
<t>The implementation can be compiled with either a C89 or a C99
compiler. It is reasonably optimized for most platforms such that
only architecture-specific optimizations are likely to be useful.
The FFT <xref target="FFT"/> used is a slightly modified version of the KISS-FFT library,
but it is easy to substitute any other FFT library.
</t>
<t>
While the reference implementation does not rely on any
<spanx style="emph">undefined behavior</spanx> as defined by C89 or C99,
it relies on common <spanx style="emph">implementation-defined behavior</spanx>
for two's complement architectures:
<list style="symbols">
<t>Right shifts of negative values are consistent with two's complement arithmetic, so that a>>b is equivalent to floor(a/(2**b)),</t>
<t>For conversion to a signed integer of N bits, the value is reduced modulo 2**N to be within range of the type,</t>
<t>The result of integer division of a negative value is truncated towards zero, and</t>
<t>The compiler provides a 64-bit integer type (a C99 requirement which is supported by most C89 compilers).</t>
</list>
</t>
<t>
In its current form, the reference implementation also requires the following
architectural characteristics to obtain acceptable performance:
<list style="symbols">
<t>Two's complement arithmetic,</t>
<t>At least a 16 bit by 16 bit integer multiplier (32-bit result), and</t>
<t>At least a 32-bit adder/accumulator.</t>
</list>
</t>
<section title="Extracting the source">
<t>
The complete source code can be extracted from this draft, by running the
following command line:
<list style="symbols">
<t><![CDATA[
cat draft-ietf-codec-opus.txt | grep '^\ \ \ ###' | sed -e 's/...###//' | base64 -d > opus_source.tar.gz
]]></t>
<t>
tar xzvf opus_source.tar.gz
</t>
<t>cd opus_source</t>
<t>make</t>
</list>
On systems where the provided Makefile does not work, the following command line may be used to compile
the source code:
<list style="symbols">
<t><![CDATA[
cc -O2 -g -o opus_demo src/opus_demo.c `cat *.mk | grep -v fixed | sed -e 's/.*=//' -e 's/\\\\//'` -DOPUS_BUILD -Iinclude -Icelt -Isilk -Isilk/float -Drestrict= -lm
]]></t></list>
</t>
<t>
On systems where the base64 utility is not present, the following commands can be used instead:
<list style="symbols">
<t><![CDATA[
cat draft-ietf-codec-opus.txt | grep '^\ \ \ ###' | sed -e 's/...###//' > opus.b64
]]></t>
<t>openssl base64 -d -in opus.b64 > opus_source.tar.gz</t>
</list>
</t>
</section>
<section title="Up-to-date Implementation">
<t>
As of the time of publication of this memo, up-to-date source code implementing
this standard is available in a
<xref target='Opus-git'>Git repository</xref>.
Releases and other resources are available at
<xref target='Opus-website'/>.
</t>
</section>
<section title="Base64-encoded Source Code">
<t>
<?rfc include="opus_source.base64"?>
</t>
</section>
<section anchor="test-vectors" title="Test Vectors">
<t>
Because of size constraints, the Opus test vectors are not distributed in this
draft. They are available in the proceedings of the 83th IETF meeting (Paris) <xref target="Vectors-proc"/> and from the Opus codec website at
<xref target="Vectors-website"/>. These test vectors were created specifically to exercise
all aspects of the decoder and therefore the audio quality of the decoded output is
significantly lower than what Opus can achieve in normal operation.
</t>
<t>
The SHA1 hash of the files in the test vector package are
<?rfc include="testvectors_sha1"?>
</t>
</section>
</section>
<section anchor="self-delimiting-framing" title="Self-Delimiting Framing">
<t>
To use the internal framing described in <xref target="modes"/>, the decoder
must know the total length of the Opus packet, in bytes.
This section describes a simple variation of that framing which can be used
when the total length of the packet is not known.
Nothing in the encoding of the packet itself allows a decoder to distinguish
between the regular, undelimited framing and the self-delimiting framing
described in this appendix.
Which one is used and where must be established by context at the transport
layer.
It is RECOMMENDED that a transport layer choose exactly one framing scheme,
rather than allowing an encoder to signal which one it wants to use.
</t>
<t>
For example, although a regular Opus stream does not support more than two
channels, a multi-channel Opus stream may be formed from several one- and
two-channel streams.
To pack an Opus packet from each of these streams together in a single packet
at the transport layer, one could use the self-delimiting framing for all but
the last stream, and then the regular, undelimited framing for the last one.
Reverting to the undelimited framing for the last stream saves overhead
(because the total size of the transport-layer packet will still be known),
and ensures that a "multi-channel" stream which only has a single Opus stream
uses the same framing as a regular Opus stream does.
This avoids the need for signaling to distinguish these two cases.
</t>
<t>
The self-delimiting framing is identical to the regular, undelimited framing
from <xref target="modes"/>, except that each Opus packet contains one extra
length field, encoded using the same one- or two-byte scheme from
<xref target="frame-length-coding"/>.
This extra length immediately precedes the compressed data of the first Opus
frame in the packet, and is interpreted in the various modes as follows:
<list style="symbols">
<t>
Code 0 packets: It is the length of the single Opus frame (see
<xref target="sd_code0_packet"/>).
</t>
<t>
Code 1 packets: It is the length used for both of the Opus frames (see
<xref target="sd_code1_packet"/>).
</t>
<t>
Code 2 packets: It is the length of the second Opus frame (see
<xref target="sd_code2_packet"/>).</t>
<t>
CBR Code 3 packets: It is the length used for all of the Opus frames (see
<xref target="sd_code3cbr_packet"/>).
</t>
<t>VBR Code 3 packets: It is the length of the last Opus frame (see
<xref target="sd_code3vbr_packet"/>).
</t>
</list>
</t>
<figure anchor="sd_code0_packet" title="A Self-Delimited Code 0 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|0|s| config | N1 (1-2 bytes): |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Compressed frame 1 (N1 bytes)... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code1_packet" title="A Self-Delimited Code 1 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|0|s| config | N1 (1-2 bytes): |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 2 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code2_packet" title="A Self-Delimited Code 2 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|1|s| config | N1 (1-2 bytes): N2 (1-2 bytes : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Compressed frame 2 (N2 bytes)... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code3cbr_packet" title="A Self-Delimited CBR Code 3 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|s| config | M |p|0| Pad len (Opt) : N1 (1-2 bytes):
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code3vbr_packet" title="A Self-Delimited VBR Code 3 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|s| config | M |p|1| Padding length (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: N1 (1-2 bytes): ... : N[M-1] | N[M] :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (N2 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M (N[M] bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
</back>
</rfc>
|