summaryrefslogtreecommitdiff
path: root/ofproto/ofproto-dpif-upcall.c
blob: 54c10a0374526a145e74add91156b13a5611659c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.  */

#include <config.h>
#include "ofproto-dpif-upcall.h"

#include <errno.h>
#include <stdbool.h>
#include <inttypes.h>

#include "connmgr.h"
#include "coverage.h"
#include "cmap.h"
#include "dpif.h"
#include "openvswitch/dynamic-string.h"
#include "fail-open.h"
#include "guarded-list.h"
#include "latch.h"
#include "openvswitch/list.h"
#include "netlink.h"
#include "openvswitch/ofpbuf.h"
#include "ofproto-dpif-ipfix.h"
#include "ofproto-dpif-sflow.h"
#include "ofproto-dpif-xlate.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "poll-loop.h"
#include "seq.h"
#include "unixctl.h"
#include "openvswitch/vlog.h"

#define MAX_QUEUE_LENGTH 512
#define UPCALL_MAX_BATCH 64
#define REVALIDATE_MAX_BATCH 50

VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);

COVERAGE_DEFINE(dumped_duplicate_flow);
COVERAGE_DEFINE(dumped_new_flow);
COVERAGE_DEFINE(handler_duplicate_upcall);
COVERAGE_DEFINE(upcall_ukey_contention);
COVERAGE_DEFINE(revalidate_missed_dp_flow);

/* A thread that reads upcalls from dpif, forwards each upcall's packet,
 * and possibly sets up a kernel flow as a cache. */
struct handler {
    struct udpif *udpif;               /* Parent udpif. */
    pthread_t thread;                  /* Thread ID. */
    uint32_t handler_id;               /* Handler id. */
};

/* In the absence of a multiple-writer multiple-reader datastructure for
 * storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
 * own lock for writing. */
#define N_UMAPS 512 /* per udpif. */
struct umap {
    struct ovs_mutex mutex;            /* Take for writing to the following. */
    struct cmap cmap;                  /* Datapath flow keys. */
};

/* A thread that processes datapath flows, updates OpenFlow statistics, and
 * updates or removes them if necessary.
 *
 * Revalidator threads operate in two phases: "dump" and "sweep". In between
 * each phase, all revalidators sync up so that all revalidator threads are
 * either in one phase or the other, but not a combination.
 *
 *     During the dump phase, revalidators fetch flows from the datapath and
 *     attribute the statistics to OpenFlow rules. Each datapath flow has a
 *     corresponding ukey which caches the most recently seen statistics. If
 *     a flow needs to be deleted (for example, because it is unused over a
 *     period of time), revalidator threads may delete the flow during the
 *     dump phase. The datapath is not guaranteed to reliably dump all flows
 *     from the datapath, and there is no mapping between datapath flows to
 *     revalidators, so a particular flow may be handled by zero or more
 *     revalidators during a single dump phase. To avoid duplicate attribution
 *     of statistics, ukeys are never deleted during this phase.
 *
 *     During the sweep phase, each revalidator takes ownership of a different
 *     slice of umaps and sweeps through all ukeys in those umaps to figure out
 *     whether they need to be deleted. During this phase, revalidators may
 *     fetch individual flows which were not dumped during the dump phase to
 *     validate them and attribute statistics.
 */
struct revalidator {
    struct udpif *udpif;               /* Parent udpif. */
    pthread_t thread;                  /* Thread ID. */
    unsigned int id;                   /* ovsthread_id_self(). */
};

/* An upcall handler for ofproto_dpif.
 *
 * udpif keeps records of two kind of logically separate units:
 *
 * upcall handling
 * ---------------
 *
 *    - An array of 'struct handler's for upcall handling and flow
 *      installation.
 *
 * flow revalidation
 * -----------------
 *
 *    - Revalidation threads which read the datapath flow table and maintains
 *      them.
 */
struct udpif {
    struct ovs_list list_node;         /* In all_udpifs list. */

    struct dpif *dpif;                 /* Datapath handle. */
    struct dpif_backer *backer;        /* Opaque dpif_backer pointer. */

    struct handler *handlers;          /* Upcall handlers. */
    size_t n_handlers;

    struct revalidator *revalidators;  /* Flow revalidators. */
    size_t n_revalidators;

    struct latch exit_latch;           /* Tells child threads to exit. */

    /* Revalidation. */
    struct seq *reval_seq;             /* Incremented to force revalidation. */
    bool reval_exit;                   /* Set by leader on 'exit_latch. */
    struct ovs_barrier reval_barrier;  /* Barrier used by revalidators. */
    struct dpif_flow_dump *dump;       /* DPIF flow dump state. */
    long long int dump_duration;       /* Duration of the last flow dump. */
    struct seq *dump_seq;              /* Increments each dump iteration. */
    atomic_bool enable_ufid;           /* If true, skip dumping flow attrs. */

    /* These variables provide a mechanism for the main thread to pause
     * all revalidation without having to completely shut the threads down.
     * 'pause_latch' is shared between the main thread and the lead
     * revalidator thread, so when it is desirable to halt revalidation, the
     * main thread will set the latch. 'pause' and 'pause_barrier' are shared
     * by revalidator threads. The lead revalidator will set 'pause' when it
     * observes the latch has been set, and this will cause all revalidator
     * threads to wait on 'pause_barrier' at the beginning of the next
     * revalidation round. */
    bool pause;                        /* Set by leader on 'pause_latch. */
    struct latch pause_latch;          /* Set to force revalidators pause. */
    struct ovs_barrier pause_barrier;  /* Barrier used to pause all */
                                       /* revalidators by main thread. */

    /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
     *
     * During the flow dump phase, revalidators insert into these with a random
     * distribution. During the garbage collection phase, each revalidator
     * takes care of garbage collecting a slice of these maps. */
    struct umap *ukeys;

    /* Datapath flow statistics. */
    unsigned int max_n_flows;
    unsigned int avg_n_flows;

    /* Following fields are accessed and modified by different threads. */
    atomic_uint flow_limit;            /* Datapath flow hard limit. */

    /* n_flows_mutex prevents multiple threads updating these concurrently. */
    atomic_uint n_flows;               /* Number of flows in the datapath. */
    atomic_llong n_flows_timestamp;    /* Last time n_flows was updated. */
    struct ovs_mutex n_flows_mutex;

    /* Following fields are accessed and modified only from the main thread. */
    struct unixctl_conn **conns;       /* Connections waiting on dump_seq. */
    uint64_t conn_seq;                 /* Corresponds to 'dump_seq' when
                                          conns[n_conns-1] was stored. */
    size_t n_conns;                    /* Number of connections waiting. */
};

enum upcall_type {
    BAD_UPCALL,                 /* Some kind of bug somewhere. */
    MISS_UPCALL,                /* A flow miss.  */
    SFLOW_UPCALL,               /* sFlow sample. */
    FLOW_SAMPLE_UPCALL,         /* Per-flow sampling. */
    IPFIX_UPCALL                /* Per-bridge sampling. */
};

enum reval_result {
    UKEY_KEEP,
    UKEY_DELETE,
    UKEY_MODIFY
};

struct upcall {
    struct ofproto_dpif *ofproto;  /* Parent ofproto. */
    const struct recirc_id_node *recirc; /* Recirculation context. */
    bool have_recirc_ref;                /* Reference held on recirc ctx? */

    /* The flow and packet are only required to be constant when using
     * dpif-netdev.  If a modification is absolutely necessary, a const cast
     * may be used with other datapaths. */
    const struct flow *flow;       /* Parsed representation of the packet. */
    const ovs_u128 *ufid;          /* Unique identifier for 'flow'. */
    unsigned pmd_id;               /* Datapath poll mode driver id. */
    const struct dp_packet *packet;   /* Packet associated with this upcall. */
    ofp_port_t in_port;            /* OpenFlow in port, or OFPP_NONE. */
    uint16_t mru;                  /* If !0, Maximum receive unit of
                                      fragmented IP packet */

    enum dpif_upcall_type type;    /* Datapath type of the upcall. */
    const struct nlattr *userdata; /* Userdata for DPIF_UC_ACTION Upcalls. */
    const struct nlattr *actions;  /* Flow actions in DPIF_UC_ACTION Upcalls. */

    bool xout_initialized;         /* True if 'xout' must be uninitialized. */
    struct xlate_out xout;         /* Result of xlate_actions(). */
    struct ofpbuf odp_actions;     /* Datapath actions from xlate_actions(). */
    struct flow_wildcards wc;      /* Dependencies that megaflow must match. */
    struct ofpbuf put_actions;     /* Actions 'put' in the fastpath. */

    struct dpif_ipfix *ipfix;      /* IPFIX pointer or NULL. */
    struct dpif_sflow *sflow;      /* SFlow pointer or NULL. */

    struct udpif_key *ukey;        /* Revalidator flow cache. */
    bool ukey_persists;            /* Set true to keep 'ukey' beyond the
                                      lifetime of this upcall. */

    uint64_t dump_seq;             /* udpif->dump_seq at translation time. */
    uint64_t reval_seq;            /* udpif->reval_seq at translation time. */

    /* Not used by the upcall callback interface. */
    const struct nlattr *key;      /* Datapath flow key. */
    size_t key_len;                /* Datapath flow key length. */
    const struct nlattr *out_tun_key;  /* Datapath output tunnel key. */

    uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
};

/* 'udpif_key's are responsible for tracking the little bit of state udpif
 * needs to do flow expiration which can't be pulled directly from the
 * datapath.  They may be created by any handler or revalidator thread at any
 * time, and read by any revalidator during the dump phase. They are however
 * each owned by a single revalidator which takes care of destroying them
 * during the garbage-collection phase.
 *
 * The mutex within the ukey protects some members of the ukey. The ukey
 * itself is protected by RCU and is held within a umap in the parent udpif.
 * Adding or removing a ukey from a umap is only safe when holding the
 * corresponding umap lock. */
struct udpif_key {
    struct cmap_node cmap_node;     /* In parent revalidator 'ukeys' map. */

    /* These elements are read only once created, and therefore aren't
     * protected by a mutex. */
    const struct nlattr *key;      /* Datapath flow key. */
    size_t key_len;                /* Length of 'key'. */
    const struct nlattr *mask;     /* Datapath flow mask. */
    size_t mask_len;               /* Length of 'mask'. */
    ovs_u128 ufid;                 /* Unique flow identifier. */
    bool ufid_present;             /* True if 'ufid' is in datapath. */
    uint32_t hash;                 /* Pre-computed hash for 'key'. */
    unsigned pmd_id;               /* Datapath poll mode driver id. */

    struct ovs_mutex mutex;                   /* Guards the following. */
    struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
    long long int created OVS_GUARDED;        /* Estimate of creation time. */
    uint64_t dump_seq OVS_GUARDED;            /* Tracks udpif->dump_seq. */
    uint64_t reval_seq OVS_GUARDED;           /* Tracks udpif->reval_seq. */
    bool flow_exists OVS_GUARDED;             /* Ensures flows are only deleted
                                                 once. */
    /* Datapath flow actions as nlattrs.  Protected by RCU.  Read with
     * ukey_get_actions(), and write with ukey_set_actions(). */
    OVSRCU_TYPE(struct ofpbuf *) actions;

    struct xlate_cache *xcache OVS_GUARDED;   /* Cache for xlate entries that
                                               * are affected by this ukey.
                                               * Used for stats and learning.*/
    union {
        struct odputil_keybuf buf;
        struct nlattr nla;
    } keybuf, maskbuf;

    uint32_t key_recirc_id;   /* Non-zero if reference is held by the ukey. */
    struct recirc_refs recircs;  /* Action recirc IDs with references held. */
};

/* Datapath operation with optional ukey attached. */
struct ukey_op {
    struct udpif_key *ukey;
    struct dpif_flow_stats stats; /* Stats for 'op'. */
    struct dpif_op dop;           /* Flow operation. */
};

static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);

static size_t recv_upcalls(struct handler *);
static int process_upcall(struct udpif *, struct upcall *,
                          struct ofpbuf *odp_actions, struct flow_wildcards *);
static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
static void udpif_stop_threads(struct udpif *);
static void udpif_start_threads(struct udpif *, size_t n_handlers,
                                size_t n_revalidators);
static void udpif_pause_revalidators(struct udpif *);
static void udpif_resume_revalidators(struct udpif *);
static void *udpif_upcall_handler(void *);
static void *udpif_revalidator(void *);
static unsigned long udpif_get_n_flows(struct udpif *);
static void revalidate(struct revalidator *);
static void revalidator_pause(struct revalidator *);
static void revalidator_sweep(struct revalidator *);
static void revalidator_purge(struct revalidator *);
static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
                                const char *argv[], void *aux);
static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
                                             const char *argv[], void *aux);
static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
                                            const char *argv[], void *aux);
static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
                                              const char *argv[], void *aux);
static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
                                             const char *argv[], void *aux);
static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
                                            const char *argv[], void *aux);
static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
                                     const char *argv[], void *aux);
static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
                                 const char *argv[], void *aux);

static struct udpif_key *ukey_create_from_upcall(struct upcall *,
                                                 struct flow_wildcards *);
static int ukey_create_from_dpif_flow(const struct udpif *,
                                      const struct dpif_flow *,
                                      struct udpif_key **);
static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
                             size_t *size);
static bool ukey_install_start(struct udpif *, struct udpif_key *ukey);
static bool ukey_install_finish(struct udpif_key *ukey, int error);
static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
static struct udpif_key *ukey_lookup(struct udpif *udpif,
                                     const ovs_u128 *ufid,
                                     const unsigned pmd_id);
static int ukey_acquire(struct udpif *, const struct dpif_flow *,
                        struct udpif_key **result, int *error);
static void ukey_delete__(struct udpif_key *);
static void ukey_delete(struct umap *, struct udpif_key *);
static enum upcall_type classify_upcall(enum dpif_upcall_type type,
                                        const struct nlattr *userdata);

static int upcall_receive(struct upcall *, const struct dpif_backer *,
                          const struct dp_packet *packet, enum dpif_upcall_type,
                          const struct nlattr *userdata, const struct flow *,
                          const unsigned int mru,
                          const ovs_u128 *ufid, const unsigned pmd_id);
static void upcall_uninit(struct upcall *);

static upcall_callback upcall_cb;
static dp_purge_callback dp_purge_cb;

static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
static atomic_bool enable_ufid = ATOMIC_VAR_INIT(true);

void
udpif_init(void)
{
    static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
    if (ovsthread_once_start(&once)) {
        unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
                                 NULL);
        unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
                                 upcall_unixctl_disable_megaflows, NULL);
        unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
                                 upcall_unixctl_enable_megaflows, NULL);
        unixctl_command_register("upcall/disable-ufid", "", 0, 0,
                                 upcall_unixctl_disable_ufid, NULL);
        unixctl_command_register("upcall/enable-ufid", "", 0, 0,
                                 upcall_unixctl_enable_ufid, NULL);
        unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
                                 upcall_unixctl_set_flow_limit, NULL);
        unixctl_command_register("revalidator/wait", "", 0, 0,
                                 upcall_unixctl_dump_wait, NULL);
        unixctl_command_register("revalidator/purge", "", 0, 0,
                                 upcall_unixctl_purge, NULL);
        ovsthread_once_done(&once);
    }
}

struct udpif *
udpif_create(struct dpif_backer *backer, struct dpif *dpif)
{
    struct udpif *udpif = xzalloc(sizeof *udpif);

    udpif->dpif = dpif;
    udpif->backer = backer;
    atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
    udpif->reval_seq = seq_create();
    udpif->dump_seq = seq_create();
    latch_init(&udpif->exit_latch);
    latch_init(&udpif->pause_latch);
    ovs_list_push_back(&all_udpifs, &udpif->list_node);
    atomic_init(&udpif->enable_ufid, false);
    atomic_init(&udpif->n_flows, 0);
    atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
    ovs_mutex_init(&udpif->n_flows_mutex);
    udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
    for (int i = 0; i < N_UMAPS; i++) {
        cmap_init(&udpif->ukeys[i].cmap);
        ovs_mutex_init(&udpif->ukeys[i].mutex);
    }

    dpif_register_upcall_cb(dpif, upcall_cb, udpif);
    dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);

    return udpif;
}

void
udpif_run(struct udpif *udpif)
{
    if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
        int i;

        for (i = 0; i < udpif->n_conns; i++) {
            unixctl_command_reply(udpif->conns[i], NULL);
        }
        free(udpif->conns);
        udpif->conns = NULL;
        udpif->n_conns = 0;
    }
}

void
udpif_destroy(struct udpif *udpif)
{
    udpif_stop_threads(udpif);

    dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif);
    dpif_register_upcall_cb(udpif->dpif, NULL, udpif);

    for (int i = 0; i < N_UMAPS; i++) {
        cmap_destroy(&udpif->ukeys[i].cmap);
        ovs_mutex_destroy(&udpif->ukeys[i].mutex);
    }
    free(udpif->ukeys);
    udpif->ukeys = NULL;

    ovs_list_remove(&udpif->list_node);
    latch_destroy(&udpif->exit_latch);
    latch_destroy(&udpif->pause_latch);
    seq_destroy(udpif->reval_seq);
    seq_destroy(udpif->dump_seq);
    ovs_mutex_destroy(&udpif->n_flows_mutex);
    free(udpif);
}

/* Stops the handler and revalidator threads, must be enclosed in
 * ovsrcu quiescent state unless when destroying udpif. */
static void
udpif_stop_threads(struct udpif *udpif)
{
    if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
        size_t i;

        latch_set(&udpif->exit_latch);

        for (i = 0; i < udpif->n_handlers; i++) {
            struct handler *handler = &udpif->handlers[i];

            xpthread_join(handler->thread, NULL);
        }

        for (i = 0; i < udpif->n_revalidators; i++) {
            xpthread_join(udpif->revalidators[i].thread, NULL);
        }

        dpif_disable_upcall(udpif->dpif);

        for (i = 0; i < udpif->n_revalidators; i++) {
            struct revalidator *revalidator = &udpif->revalidators[i];

            /* Delete ukeys, and delete all flows from the datapath to prevent
             * double-counting stats. */
            revalidator_purge(revalidator);
        }

        latch_poll(&udpif->exit_latch);

        ovs_barrier_destroy(&udpif->reval_barrier);
        ovs_barrier_destroy(&udpif->pause_barrier);

        free(udpif->revalidators);
        udpif->revalidators = NULL;
        udpif->n_revalidators = 0;

        free(udpif->handlers);
        udpif->handlers = NULL;
        udpif->n_handlers = 0;
    }
}

/* Starts the handler and revalidator threads, must be enclosed in
 * ovsrcu quiescent state. */
static void
udpif_start_threads(struct udpif *udpif, size_t n_handlers,
                    size_t n_revalidators)
{
    if (udpif && n_handlers && n_revalidators) {
        size_t i;
        bool enable_ufid;

        udpif->n_handlers = n_handlers;
        udpif->n_revalidators = n_revalidators;

        udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
        for (i = 0; i < udpif->n_handlers; i++) {
            struct handler *handler = &udpif->handlers[i];

            handler->udpif = udpif;
            handler->handler_id = i;
            handler->thread = ovs_thread_create(
                "handler", udpif_upcall_handler, handler);
        }

        enable_ufid = ofproto_dpif_get_enable_ufid(udpif->backer);
        atomic_init(&udpif->enable_ufid, enable_ufid);
        dpif_enable_upcall(udpif->dpif);

        ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
        ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
        udpif->reval_exit = false;
        udpif->pause = false;
        udpif->revalidators = xzalloc(udpif->n_revalidators
                                      * sizeof *udpif->revalidators);
        for (i = 0; i < udpif->n_revalidators; i++) {
            struct revalidator *revalidator = &udpif->revalidators[i];

            revalidator->udpif = udpif;
            revalidator->thread = ovs_thread_create(
                "revalidator", udpif_revalidator, revalidator);
        }
    }
}

/* Pauses all revalidators.  Should only be called by the main thread.
 * When function returns, all revalidators are paused and will proceed
 * only after udpif_resume_revalidators() is called. */
static void
udpif_pause_revalidators(struct udpif *udpif)
{
    if (ofproto_dpif_backer_enabled(udpif->backer)) {
        latch_set(&udpif->pause_latch);
        ovs_barrier_block(&udpif->pause_barrier);
    }
}

/* Resumes the pausing of revalidators.  Should only be called by the
 * main thread. */
static void
udpif_resume_revalidators(struct udpif *udpif)
{
    if (ofproto_dpif_backer_enabled(udpif->backer)) {
        latch_poll(&udpif->pause_latch);
        ovs_barrier_block(&udpif->pause_barrier);
    }
}

/* Tells 'udpif' how many threads it should use to handle upcalls.
 * 'n_handlers' and 'n_revalidators' can never be zero.  'udpif''s
 * datapath handle must have packet reception enabled before starting
 * threads. */
void
udpif_set_threads(struct udpif *udpif, size_t n_handlers,
                  size_t n_revalidators)
{
    ovs_assert(udpif);
    ovs_assert(n_handlers && n_revalidators);

    ovsrcu_quiesce_start();
    if (udpif->n_handlers != n_handlers
        || udpif->n_revalidators != n_revalidators) {
        udpif_stop_threads(udpif);
    }

    if (!udpif->handlers && !udpif->revalidators) {
        int error;

        error = dpif_handlers_set(udpif->dpif, n_handlers);
        if (error) {
            VLOG_ERR("failed to configure handlers in dpif %s: %s",
                     dpif_name(udpif->dpif), ovs_strerror(error));
            return;
        }

        udpif_start_threads(udpif, n_handlers, n_revalidators);
    }
    ovsrcu_quiesce_end();
}

/* Waits for all ongoing upcall translations to complete.  This ensures that
 * there are no transient references to any removed ofprotos (or other
 * objects).  In particular, this should be called after an ofproto is removed
 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
void
udpif_synchronize(struct udpif *udpif)
{
    /* This is stronger than necessary.  It would be sufficient to ensure
     * (somehow) that each handler and revalidator thread had passed through
     * its main loop once. */
    size_t n_handlers = udpif->n_handlers;
    size_t n_revalidators = udpif->n_revalidators;

    ovsrcu_quiesce_start();
    udpif_stop_threads(udpif);
    udpif_start_threads(udpif, n_handlers, n_revalidators);
    ovsrcu_quiesce_end();
}

/* Notifies 'udpif' that something changed which may render previous
 * xlate_actions() results invalid. */
void
udpif_revalidate(struct udpif *udpif)
{
    seq_change(udpif->reval_seq);
}

/* Returns a seq which increments every time 'udpif' pulls stats from the
 * datapath.  Callers can use this to get a sense of when might be a good time
 * to do periodic work which relies on relatively up to date statistics. */
struct seq *
udpif_dump_seq(struct udpif *udpif)
{
    return udpif->dump_seq;
}

void
udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
{
    size_t i;

    simap_increase(usage, "handlers", udpif->n_handlers);

    simap_increase(usage, "revalidators", udpif->n_revalidators);
    for (i = 0; i < N_UMAPS; i++) {
        simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
    }
}

/* Remove flows from a single datapath. */
void
udpif_flush(struct udpif *udpif)
{
    size_t n_handlers, n_revalidators;

    n_handlers = udpif->n_handlers;
    n_revalidators = udpif->n_revalidators;

    ovsrcu_quiesce_start();

    udpif_stop_threads(udpif);
    dpif_flow_flush(udpif->dpif);
    udpif_start_threads(udpif, n_handlers, n_revalidators);

    ovsrcu_quiesce_end();
}

/* Removes all flows from all datapaths. */
static void
udpif_flush_all_datapaths(void)
{
    struct udpif *udpif;

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        udpif_flush(udpif);
    }
}

static bool
udpif_use_ufid(struct udpif *udpif)
{
    bool enable;

    atomic_read_relaxed(&enable_ufid, &enable);
    return enable && ofproto_dpif_get_enable_ufid(udpif->backer);
}


static unsigned long
udpif_get_n_flows(struct udpif *udpif)
{
    long long int time, now;
    unsigned long flow_count;

    now = time_msec();
    atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
    if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
        struct dpif_dp_stats stats;

        atomic_store_relaxed(&udpif->n_flows_timestamp, now);
        dpif_get_dp_stats(udpif->dpif, &stats);
        flow_count = stats.n_flows;
        atomic_store_relaxed(&udpif->n_flows, flow_count);
        ovs_mutex_unlock(&udpif->n_flows_mutex);
    } else {
        atomic_read_relaxed(&udpif->n_flows, &flow_count);
    }
    return flow_count;
}

/* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
 * upcalls from dpif, processes the batch and installs corresponding flows
 * in dpif. */
static void *
udpif_upcall_handler(void *arg)
{
    struct handler *handler = arg;
    struct udpif *udpif = handler->udpif;

    while (!latch_is_set(&handler->udpif->exit_latch)) {
        if (recv_upcalls(handler)) {
            poll_immediate_wake();
        } else {
            dpif_recv_wait(udpif->dpif, handler->handler_id);
            latch_wait(&udpif->exit_latch);
        }
        poll_block();
    }

    return NULL;
}

static size_t
recv_upcalls(struct handler *handler)
{
    struct udpif *udpif = handler->udpif;
    uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
    struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
    struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
    struct upcall upcalls[UPCALL_MAX_BATCH];
    struct flow flows[UPCALL_MAX_BATCH];
    size_t n_upcalls, i;

    n_upcalls = 0;
    while (n_upcalls < UPCALL_MAX_BATCH) {
        struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
        struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
        struct upcall *upcall = &upcalls[n_upcalls];
        struct flow *flow = &flows[n_upcalls];
        unsigned int mru;
        int error;

        ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
                        sizeof recv_stubs[n_upcalls]);
        if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
            ofpbuf_uninit(recv_buf);
            break;
        }

        if (odp_flow_key_to_flow(dupcall->key, dupcall->key_len, flow)
            == ODP_FIT_ERROR) {
            goto free_dupcall;
        }

        if (dupcall->mru) {
            mru = nl_attr_get_u16(dupcall->mru);
        } else {
            mru = 0;
        }

        error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
                               dupcall->type, dupcall->userdata, flow, mru,
                               &dupcall->ufid, PMD_ID_NULL);
        if (error) {
            if (error == ENODEV) {
                /* Received packet on datapath port for which we couldn't
                 * associate an ofproto.  This can happen if a port is removed
                 * while traffic is being received.  Print a rate-limited
                 * message in case it happens frequently. */
                dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
                              dupcall->key_len, NULL, 0, NULL, 0,
                              &dupcall->ufid, PMD_ID_NULL, NULL);
                VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
                             "port %"PRIu32, flow->in_port.odp_port);
            }
            goto free_dupcall;
        }

        upcall->key = dupcall->key;
        upcall->key_len = dupcall->key_len;
        upcall->ufid = &dupcall->ufid;

        upcall->out_tun_key = dupcall->out_tun_key;
        upcall->actions = dupcall->actions;

        pkt_metadata_from_flow(&dupcall->packet.md, flow);
        flow_extract(&dupcall->packet, flow);

        error = process_upcall(udpif, upcall,
                               &upcall->odp_actions, &upcall->wc);
        if (error) {
            goto cleanup;
        }

        n_upcalls++;
        continue;

cleanup:
        upcall_uninit(upcall);
free_dupcall:
        dp_packet_uninit(&dupcall->packet);
        ofpbuf_uninit(recv_buf);
    }

    if (n_upcalls) {
        handle_upcalls(handler->udpif, upcalls, n_upcalls);
        for (i = 0; i < n_upcalls; i++) {
            dp_packet_uninit(&dupcalls[i].packet);
            ofpbuf_uninit(&recv_bufs[i]);
            upcall_uninit(&upcalls[i]);
        }
    }

    return n_upcalls;
}

static void *
udpif_revalidator(void *arg)
{
    /* Used by all revalidators. */
    struct revalidator *revalidator = arg;
    struct udpif *udpif = revalidator->udpif;
    bool leader = revalidator == &udpif->revalidators[0];

    /* Used only by the leader. */
    long long int start_time = 0;
    uint64_t last_reval_seq = 0;
    size_t n_flows = 0;

    revalidator->id = ovsthread_id_self();
    for (;;) {
        if (leader) {
            uint64_t reval_seq;

            recirc_run(); /* Recirculation cleanup. */

            reval_seq = seq_read(udpif->reval_seq);
            last_reval_seq = reval_seq;

            n_flows = udpif_get_n_flows(udpif);
            udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
            udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;

            /* Only the leader checks the pause latch to prevent a race where
             * some threads think it's false and proceed to block on
             * reval_barrier and others think it's true and block indefinitely
             * on the pause_barrier */
            udpif->pause = latch_is_set(&udpif->pause_latch);

            /* Only the leader checks the exit latch to prevent a race where
             * some threads think it's true and exit and others think it's
             * false and block indefinitely on the reval_barrier */
            udpif->reval_exit = latch_is_set(&udpif->exit_latch);

            start_time = time_msec();
            if (!udpif->reval_exit) {
                bool terse_dump;

                terse_dump = udpif_use_ufid(udpif);
                udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump);
            }
        }

        /* Wait for the leader to start the flow dump. */
        ovs_barrier_block(&udpif->reval_barrier);
        if (udpif->pause) {
            revalidator_pause(revalidator);
        }

        if (udpif->reval_exit) {
            break;
        }
        revalidate(revalidator);

        /* Wait for all flows to have been dumped before we garbage collect. */
        ovs_barrier_block(&udpif->reval_barrier);
        revalidator_sweep(revalidator);

        /* Wait for all revalidators to finish garbage collection. */
        ovs_barrier_block(&udpif->reval_barrier);

        if (leader) {
            unsigned int flow_limit;
            long long int duration;

            atomic_read_relaxed(&udpif->flow_limit, &flow_limit);

            dpif_flow_dump_destroy(udpif->dump);
            seq_change(udpif->dump_seq);

            duration = MAX(time_msec() - start_time, 1);
            udpif->dump_duration = duration;
            if (duration > 2000) {
                flow_limit /= duration / 1000;
            } else if (duration > 1300) {
                flow_limit = flow_limit * 3 / 4;
            } else if (duration < 1000 && n_flows > 2000
                       && flow_limit < n_flows * 1000 / duration) {
                flow_limit += 1000;
            }
            flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
            atomic_store_relaxed(&udpif->flow_limit, flow_limit);

            if (duration > 2000) {
                VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
                          duration);
            }

            poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
            seq_wait(udpif->reval_seq, last_reval_seq);
            latch_wait(&udpif->exit_latch);
            latch_wait(&udpif->pause_latch);
            poll_block();

            if (!latch_is_set(&udpif->pause_latch) &&
                !latch_is_set(&udpif->exit_latch)) {
                long long int now = time_msec();
                /* Block again if we are woken up within 5ms of the last start
                 * time. */
                start_time += 5;

                if (now < start_time) {
                    poll_timer_wait_until(start_time);
                    latch_wait(&udpif->exit_latch);
                    latch_wait(&udpif->pause_latch);
                    poll_block();
                }
            }
        }
    }

    return NULL;
}

static enum upcall_type
classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata)
{
    union user_action_cookie cookie;
    size_t userdata_len;

    /* First look at the upcall type. */
    switch (type) {
    case DPIF_UC_ACTION:
        break;

    case DPIF_UC_MISS:
        return MISS_UPCALL;

    case DPIF_N_UC_TYPES:
    default:
        VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
        return BAD_UPCALL;
    }

    /* "action" upcalls need a closer look. */
    if (!userdata) {
        VLOG_WARN_RL(&rl, "action upcall missing cookie");
        return BAD_UPCALL;
    }
    userdata_len = nl_attr_get_size(userdata);
    if (userdata_len < sizeof cookie.type
        || userdata_len > sizeof cookie) {
        VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
                     userdata_len);
        return BAD_UPCALL;
    }
    memset(&cookie, 0, sizeof cookie);
    memcpy(&cookie, nl_attr_get(userdata), userdata_len);
    if (userdata_len == MAX(8, sizeof cookie.sflow)
        && cookie.type == USER_ACTION_COOKIE_SFLOW) {
        return SFLOW_UPCALL;
    } else if (userdata_len == MAX(8, sizeof cookie.slow_path)
               && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
        return MISS_UPCALL;
    } else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
               && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
        return FLOW_SAMPLE_UPCALL;
    } else if (userdata_len == MAX(8, sizeof cookie.ipfix)
               && cookie.type == USER_ACTION_COOKIE_IPFIX) {
        return IPFIX_UPCALL;
    } else {
        VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
                     " and size %"PRIuSIZE, cookie.type, userdata_len);
        return BAD_UPCALL;
    }
}

/* Calculates slow path actions for 'xout'.  'buf' must statically be
 * initialized with at least 128 bytes of space. */
static void
compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
                  const struct flow *flow, odp_port_t odp_in_port,
                  struct ofpbuf *buf)
{
    union user_action_cookie cookie;
    odp_port_t port;
    uint32_t pid;

    memset(&cookie, 0, sizeof cookie);
    cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
    cookie.slow_path.unused = 0;
    cookie.slow_path.reason = xout->slow;

    port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
        ? ODPP_NONE
        : odp_in_port;
    pid = dpif_port_get_pid(udpif->dpif, port, flow_hash_5tuple(flow, 0));
    odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path,
                             ODPP_NONE, false, buf);
}

/* If there is no error, the upcall must be destroyed with upcall_uninit()
 * before quiescing, as the referred objects are guaranteed to exist only
 * until the calling thread quiesces.  Otherwise, do not call upcall_uninit()
 * since the 'upcall->put_actions' remains uninitialized. */
static int
upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
               const struct dp_packet *packet, enum dpif_upcall_type type,
               const struct nlattr *userdata, const struct flow *flow,
               const unsigned int mru,
               const ovs_u128 *ufid, const unsigned pmd_id)
{
    int error;

    error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
                         &upcall->sflow, NULL, &upcall->in_port);
    if (error) {
        return error;
    }

    upcall->recirc = NULL;
    upcall->have_recirc_ref = false;
    upcall->flow = flow;
    upcall->packet = packet;
    upcall->ufid = ufid;
    upcall->pmd_id = pmd_id;
    upcall->type = type;
    upcall->userdata = userdata;
    ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
                    sizeof upcall->odp_actions_stub);
    ofpbuf_init(&upcall->put_actions, 0);

    upcall->xout_initialized = false;
    upcall->ukey_persists = false;

    upcall->ukey = NULL;
    upcall->key = NULL;
    upcall->key_len = 0;
    upcall->mru = mru;

    upcall->out_tun_key = NULL;
    upcall->actions = NULL;

    return 0;
}

static void
upcall_xlate(struct udpif *udpif, struct upcall *upcall,
             struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
    struct dpif_flow_stats stats;
    struct xlate_in xin;

    stats.n_packets = 1;
    stats.n_bytes = dp_packet_size(upcall->packet);
    stats.used = time_msec();
    stats.tcp_flags = ntohs(upcall->flow->tcp_flags);

    xlate_in_init(&xin, upcall->ofproto, upcall->flow, upcall->in_port, NULL,
                  stats.tcp_flags, upcall->packet, wc, odp_actions);

    if (upcall->type == DPIF_UC_MISS) {
        xin.resubmit_stats = &stats;

        if (xin.frozen_state) {
            /* We may install a datapath flow only if we get a reference to the
             * recirculation context (otherwise we could have recirculation
             * upcalls using recirculation ID for which no context can be
             * found).  We may still execute the flow's actions even if we
             * don't install the flow. */
            upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
            upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
        }
    } else {
        /* For non-miss upcalls, we are either executing actions (one of which
         * is an userspace action) for an upcall, in which case the stats have
         * already been taken care of, or there's a flow in the datapath which
         * this packet was accounted to.  Presumably the revalidators will deal
         * with pushing its stats eventually. */
    }

    upcall->dump_seq = seq_read(udpif->dump_seq);
    upcall->reval_seq = seq_read(udpif->reval_seq);

    xlate_actions(&xin, &upcall->xout);
    if (wc) {
        /* Convert the input port wildcard from OFP to ODP format. There's no
         * real way to do this for arbitrary bitmasks since the numbering spaces
         * aren't the same. However, flow translation always exact matches the
         * whole thing, so we can do the same here. */
        WC_MASK_FIELD(wc, in_port.odp_port);
    }

    upcall->xout_initialized = true;

    if (!upcall->xout.slow) {
        ofpbuf_use_const(&upcall->put_actions,
                         odp_actions->data, odp_actions->size);
    } else {
        /* upcall->put_actions already initialized by upcall_receive(). */
        compose_slow_path(udpif, &upcall->xout, upcall->flow,
                          upcall->flow->in_port.odp_port,
                          &upcall->put_actions);
    }

    /* This function is also called for slow-pathed flows.  As we are only
     * going to create new datapath flows for actual datapath misses, there is
     * no point in creating a ukey otherwise. */
    if (upcall->type == DPIF_UC_MISS) {
        upcall->ukey = ukey_create_from_upcall(upcall, wc);
    }
}

static void
upcall_uninit(struct upcall *upcall)
{
    if (upcall) {
        if (upcall->xout_initialized) {
            xlate_out_uninit(&upcall->xout);
        }
        ofpbuf_uninit(&upcall->odp_actions);
        ofpbuf_uninit(&upcall->put_actions);
        if (upcall->ukey) {
            if (!upcall->ukey_persists) {
                ukey_delete__(upcall->ukey);
            }
        } else if (upcall->have_recirc_ref) {
            /* The reference was transferred to the ukey if one was created. */
            recirc_id_node_unref(upcall->recirc);
        }
    }
}

/* If there are less flows than the limit, and this is a miss upcall which
 *
 *      - Has no recirc_id, OR
 *      - Has a recirc_id and we can get a reference on the recirc ctx,
 *
 * Then we should install the flow (true). Otherwise, return false. */
static bool
should_install_flow(struct udpif *udpif, struct upcall *upcall)
{
    unsigned int flow_limit;

    if (upcall->type != DPIF_UC_MISS) {
        return false;
    } else if (upcall->recirc && !upcall->have_recirc_ref) {
        VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow");
        return false;
    }

    atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
    if (udpif_get_n_flows(udpif) >= flow_limit) {
        VLOG_WARN_RL(&rl, "upcall: datapath flow limit reached");
        return false;
    }

    return true;
}

static int
upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
          unsigned pmd_id, enum dpif_upcall_type type,
          const struct nlattr *userdata, struct ofpbuf *actions,
          struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
{
    static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
    struct udpif *udpif = aux;
    struct upcall upcall;
    bool megaflow;
    int error;

    atomic_read_relaxed(&enable_megaflows, &megaflow);

    error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
                           flow, 0, ufid, pmd_id);
    if (error) {
        return error;
    }

    error = process_upcall(udpif, &upcall, actions, wc);
    if (error) {
        goto out;
    }

    if (upcall.xout.slow && put_actions) {
        ofpbuf_put(put_actions, upcall.put_actions.data,
                   upcall.put_actions.size);
    }

    if (OVS_UNLIKELY(!megaflow && wc)) {
        flow_wildcards_init_for_packet(wc, flow);
    }

    if (!should_install_flow(udpif, &upcall)) {
        error = ENOSPC;
        goto out;
    }

    if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
        VLOG_WARN_RL(&rl, "upcall_cb failure: ukey installation fails");
        error = ENOSPC;
    }
out:
    if (!error) {
        upcall.ukey_persists = true;
    }
    upcall_uninit(&upcall);
    return error;
}

static int
process_upcall(struct udpif *udpif, struct upcall *upcall,
               struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
    const struct nlattr *userdata = upcall->userdata;
    const struct dp_packet *packet = upcall->packet;
    const struct flow *flow = upcall->flow;

    switch (classify_upcall(upcall->type, userdata)) {
    case MISS_UPCALL:
        upcall_xlate(udpif, upcall, odp_actions, wc);
        return 0;

    case SFLOW_UPCALL:
        if (upcall->sflow) {
            union user_action_cookie cookie;
            const struct nlattr *actions;
            size_t actions_len = 0;
            struct dpif_sflow_actions sflow_actions;
            memset(&sflow_actions, 0, sizeof sflow_actions);
            memset(&cookie, 0, sizeof cookie);
            memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.sflow);
            if (upcall->actions) {
                /* Actions were passed up from datapath. */
                actions = nl_attr_get(upcall->actions);
                actions_len = nl_attr_get_size(upcall->actions);
                if (actions && actions_len) {
                    dpif_sflow_read_actions(flow, actions, actions_len,
                                            &sflow_actions);
                }
            }
            if (actions_len == 0) {
                /* Lookup actions in userspace cache. */
                struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
                                                     upcall->pmd_id);
                if (ukey) {
                    ukey_get_actions(ukey, &actions, &actions_len);
                    dpif_sflow_read_actions(flow, actions, actions_len,
                                            &sflow_actions);
                }
            }
            dpif_sflow_received(upcall->sflow, packet, flow,
                                flow->in_port.odp_port, &cookie,
                                actions_len > 0 ? &sflow_actions : NULL);
        }
        break;

    case IPFIX_UPCALL:
        if (upcall->ipfix) {
            union user_action_cookie cookie;
            struct flow_tnl output_tunnel_key;

            memset(&cookie, 0, sizeof cookie);
            memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.ipfix);

            if (upcall->out_tun_key) {
                odp_tun_key_from_attr(upcall->out_tun_key, false,
                                      &output_tunnel_key);
            }
            dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
                                     flow->in_port.odp_port,
                                     cookie.ipfix.output_odp_port,
                                     upcall->out_tun_key ?
                                         &output_tunnel_key : NULL);
        }
        break;

    case FLOW_SAMPLE_UPCALL:
        if (upcall->ipfix) {
            union user_action_cookie cookie;
            struct flow_tnl output_tunnel_key;

            memset(&cookie, 0, sizeof cookie);
            memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.flow_sample);

            if (upcall->out_tun_key) {
                odp_tun_key_from_attr(upcall->out_tun_key, false,
                                      &output_tunnel_key);
            }

            /* The flow reflects exactly the contents of the packet.
             * Sample the packet using it. */
            dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
                                   &cookie, flow->in_port.odp_port,
                                   upcall->out_tun_key ?
                                       &output_tunnel_key : NULL);
        }
        break;

    case BAD_UPCALL:
        break;
    }

    return EAGAIN;
}

static void
handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
               size_t n_upcalls)
{
    struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
    struct ukey_op ops[UPCALL_MAX_BATCH * 2];
    size_t n_ops, n_opsp, i;

    /* Handle the packets individually in order of arrival.
     *
     *   - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
     *     processes received packets for these protocols.
     *
     *   - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
     *     controller.
     *
     * The loop fills 'ops' with an array of operations to execute in the
     * datapath. */
    n_ops = 0;
    for (i = 0; i < n_upcalls; i++) {
        struct upcall *upcall = &upcalls[i];
        const struct dp_packet *packet = upcall->packet;
        struct ukey_op *op;

        if (should_install_flow(udpif, upcall)) {
            struct udpif_key *ukey = upcall->ukey;

            upcall->ukey_persists = true;
            op = &ops[n_ops++];

            op->ukey = ukey;
            op->dop.type = DPIF_OP_FLOW_PUT;
            op->dop.u.flow_put.flags = DPIF_FP_CREATE;
            op->dop.u.flow_put.key = ukey->key;
            op->dop.u.flow_put.key_len = ukey->key_len;
            op->dop.u.flow_put.mask = ukey->mask;
            op->dop.u.flow_put.mask_len = ukey->mask_len;
            op->dop.u.flow_put.ufid = upcall->ufid;
            op->dop.u.flow_put.stats = NULL;
            ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
                             &op->dop.u.flow_put.actions_len);
        }

        if (upcall->odp_actions.size) {
            op = &ops[n_ops++];
            op->ukey = NULL;
            op->dop.type = DPIF_OP_EXECUTE;
            op->dop.u.execute.packet = CONST_CAST(struct dp_packet *, packet);
            op->dop.u.execute.flow = upcall->flow;
            odp_key_to_pkt_metadata(upcall->key, upcall->key_len,
                                    &op->dop.u.execute.packet->md);
            op->dop.u.execute.actions = upcall->odp_actions.data;
            op->dop.u.execute.actions_len = upcall->odp_actions.size;
            op->dop.u.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
            op->dop.u.execute.probe = false;
            op->dop.u.execute.mtu = upcall->mru;
        }
    }

    /* Execute batch.
     *
     * We install ukeys before installing the flows, locking them for exclusive
     * access by this thread for the period of installation. This ensures that
     * other threads won't attempt to delete the flows as we are creating them.
     */
    n_opsp = 0;
    for (i = 0; i < n_ops; i++) {
        struct udpif_key *ukey = ops[i].ukey;

        if (ukey) {
            /* If we can't install the ukey, don't install the flow. */
            if (!ukey_install_start(udpif, ukey)) {
                ukey_delete__(ukey);
                ops[i].ukey = NULL;
                continue;
            }
        }
        opsp[n_opsp++] = &ops[i].dop;
    }
    dpif_operate(udpif->dpif, opsp, n_opsp);
    for (i = 0; i < n_ops; i++) {
        if (ops[i].ukey) {
            ukey_install_finish(ops[i].ukey, ops[i].dop.error);
        }
    }
}

static uint32_t
get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
{
    return hash_2words(ufid->u32[0], pmd_id);
}

static struct udpif_key *
ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
{
    struct udpif_key *ukey;
    int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
    struct cmap *cmap = &udpif->ukeys[idx].cmap;

    CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
                             get_ukey_hash(ufid, pmd_id), cmap) {
        if (ovs_u128_equals(ukey->ufid, *ufid)) {
            return ukey;
        }
    }
    return NULL;
}

/* Provides safe lockless access of RCU protected 'ukey->actions'.  Callers may
 * alternatively access the field directly if they take 'ukey->mutex'. */
static void
ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
{
    const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
    *actions = buf->data;
    *size = buf->size;
}

static void
ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
{
    ovsrcu_postpone(ofpbuf_delete,
                    ovsrcu_get_protected(struct ofpbuf *, &ukey->actions));
    ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
}

static struct udpif_key *
ukey_create__(const struct nlattr *key, size_t key_len,
              const struct nlattr *mask, size_t mask_len,
              bool ufid_present, const ovs_u128 *ufid,
              const unsigned pmd_id, const struct ofpbuf *actions,
              uint64_t dump_seq, uint64_t reval_seq, long long int used,
              uint32_t key_recirc_id, struct xlate_out *xout)
    OVS_NO_THREAD_SAFETY_ANALYSIS
{
    struct udpif_key *ukey = xmalloc(sizeof *ukey);

    memcpy(&ukey->keybuf, key, key_len);
    ukey->key = &ukey->keybuf.nla;
    ukey->key_len = key_len;
    memcpy(&ukey->maskbuf, mask, mask_len);
    ukey->mask = &ukey->maskbuf.nla;
    ukey->mask_len = mask_len;
    ukey->ufid_present = ufid_present;
    ukey->ufid = *ufid;
    ukey->pmd_id = pmd_id;
    ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);

    ovsrcu_init(&ukey->actions, NULL);
    ukey_set_actions(ukey, actions);

    ovs_mutex_init(&ukey->mutex);
    ukey->dump_seq = dump_seq;
    ukey->reval_seq = reval_seq;
    ukey->flow_exists = false;
    ukey->created = time_msec();
    memset(&ukey->stats, 0, sizeof ukey->stats);
    ukey->stats.used = used;
    ukey->xcache = NULL;

    ukey->key_recirc_id = key_recirc_id;
    recirc_refs_init(&ukey->recircs);
    if (xout) {
        /* Take ownership of the action recirc id references. */
        recirc_refs_swap(&ukey->recircs, &xout->recircs);
    }

    return ukey;
}

static struct udpif_key *
ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
{
    struct odputil_keybuf keystub, maskstub;
    struct ofpbuf keybuf, maskbuf;
    bool megaflow;
    struct odp_flow_key_parms odp_parms = {
        .flow = upcall->flow,
        .mask = wc ? &wc->masks : NULL,
    };

    odp_parms.support = ofproto_dpif_get_support(upcall->ofproto)->odp;
    if (upcall->key_len) {
        ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
    } else {
        /* dpif-netdev doesn't provide a netlink-formatted flow key in the
         * upcall, so convert the upcall's flow here. */
        ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
        odp_flow_key_from_flow(&odp_parms, &keybuf);
    }

    atomic_read_relaxed(&enable_megaflows, &megaflow);
    ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
    if (megaflow && wc) {
        odp_parms.key_buf = &keybuf;
        odp_flow_key_from_mask(&odp_parms, &maskbuf);
    }

    return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
                         true, upcall->ufid, upcall->pmd_id,
                         &upcall->put_actions, upcall->dump_seq,
                         upcall->reval_seq, 0,
                         upcall->have_recirc_ref ? upcall->recirc->id : 0,
                         &upcall->xout);
}

static int
ukey_create_from_dpif_flow(const struct udpif *udpif,
                           const struct dpif_flow *flow,
                           struct udpif_key **ukey)
{
    struct dpif_flow full_flow;
    struct ofpbuf actions;
    uint64_t dump_seq, reval_seq;
    uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
    const struct nlattr *a;
    unsigned int left;

    if (!flow->key_len || !flow->actions_len) {
        struct ofpbuf buf;
        int err;

        /* If the key or actions were not provided by the datapath, fetch the
         * full flow. */
        ofpbuf_use_stack(&buf, &stub, sizeof stub);
        err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
                            flow->ufid_present ? &flow->ufid : NULL,
                            flow->pmd_id, &buf, &full_flow);
        if (err) {
            return err;
        }
        flow = &full_flow;
    }

    /* Check the flow actions for recirculation action.  As recirculation
     * relies on OVS userspace internal state, we need to delete all old
     * datapath flows with either a non-zero recirc_id in the key, or any
     * recirculation actions upon OVS restart. */
    NL_ATTR_FOR_EACH (a, left, flow->key, flow->key_len) {
        if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
            && nl_attr_get_u32(a) != 0) {
            return EINVAL;
        }
    }
    NL_ATTR_FOR_EACH (a, left, flow->actions, flow->actions_len) {
        if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
            return EINVAL;
        }
    }

    dump_seq = seq_read(udpif->dump_seq);
    reval_seq = seq_read(udpif->reval_seq) - 1; /* Ensure revalidation. */
    ofpbuf_use_const(&actions, flow->actions, flow->actions_len);
    *ukey = ukey_create__(flow->key, flow->key_len,
                          flow->mask, flow->mask_len, flow->ufid_present,
                          &flow->ufid, flow->pmd_id, &actions, dump_seq,
                          reval_seq, flow->stats.used, 0, NULL);

    return 0;
}

/* Attempts to insert a ukey into the shared ukey maps.
 *
 * On success, returns true, installs the ukey and returns it in a locked
 * state. Otherwise, returns false. */
static bool
ukey_install_start(struct udpif *udpif, struct udpif_key *new_ukey)
    OVS_TRY_LOCK(true, new_ukey->mutex)
{
    struct umap *umap;
    struct udpif_key *old_ukey;
    uint32_t idx;
    bool locked = false;

    idx = new_ukey->hash % N_UMAPS;
    umap = &udpif->ukeys[idx];
    ovs_mutex_lock(&umap->mutex);
    old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
    if (old_ukey) {
        /* Uncommon case: A ukey is already installed with the same UFID. */
        if (old_ukey->key_len == new_ukey->key_len
            && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
            COVERAGE_INC(handler_duplicate_upcall);
        } else {
            struct ds ds = DS_EMPTY_INITIALIZER;

            odp_format_ufid(&old_ukey->ufid, &ds);
            ds_put_cstr(&ds, " ");
            odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
            ds_put_cstr(&ds, "\n");
            odp_format_ufid(&new_ukey->ufid, &ds);
            ds_put_cstr(&ds, " ");
            odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);

            VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
            ds_destroy(&ds);
        }
    } else {
        ovs_mutex_lock(&new_ukey->mutex);
        cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
        locked = true;
    }
    ovs_mutex_unlock(&umap->mutex);

    return locked;
}

static void
ukey_install_finish__(struct udpif_key *ukey) OVS_REQUIRES(ukey->mutex)
{
    ukey->flow_exists = true;
}

static bool
ukey_install_finish(struct udpif_key *ukey, int error)
    OVS_RELEASES(ukey->mutex)
{
    if (!error) {
        ukey_install_finish__(ukey);
    }
    ovs_mutex_unlock(&ukey->mutex);

    return !error;
}

static bool
ukey_install(struct udpif *udpif, struct udpif_key *ukey)
{
    /* The usual way to keep 'ukey->flow_exists' in sync with the datapath is
     * to call ukey_install_start(), install the corresponding datapath flow,
     * then call ukey_install_finish(). The netdev interface using upcall_cb()
     * doesn't provide a function to separately finish the flow installation,
     * so we perform the operations together here.
     *
     * This is fine currently, as revalidator threads will only delete this
     * ukey during revalidator_sweep() and only if the dump_seq is mismatched.
     * It is unlikely for a revalidator thread to advance dump_seq and reach
     * the next GC phase between ukey creation and flow installation. */
    return ukey_install_start(udpif, ukey) && ukey_install_finish(ukey, 0);
}

/* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
 * lock the ukey. If the ukey does not exist, create it.
 *
 * Returns 0 on success, setting *result to the matching ukey and returning it
 * in a locked state. Otherwise, returns an errno and clears *result. EBUSY
 * indicates that another thread is handling this flow. Other errors indicate
 * an unexpected condition creating a new ukey.
 *
 * *error is an output parameter provided to appease the threadsafety analyser,
 * and its value matches the return value. */
static int
ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
             struct udpif_key **result, int *error)
    OVS_TRY_LOCK(0, (*result)->mutex)
{
    struct udpif_key *ukey;
    int retval;

    ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
    if (ukey) {
        retval = ovs_mutex_trylock(&ukey->mutex);
    } else {
        /* Usually we try to avoid installing flows from revalidator threads,
         * because locking on a umap may cause handler threads to block.
         * However there are certain cases, like when ovs-vswitchd is
         * restarted, where it is desirable to handle flows that exist in the
         * datapath gracefully (ie, don't just clear the datapath). */
        bool install;

        retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
        if (retval) {
            goto done;
        }
        install = ukey_install_start(udpif, ukey);
        if (install) {
            ukey_install_finish__(ukey);
            retval = 0;
        } else {
            ukey_delete__(ukey);
            retval = EBUSY;
        }
    }

done:
    *error = retval;
    if (retval) {
        *result = NULL;
    } else {
        *result = ukey;
    }
    return retval;
}

static void
ukey_delete__(struct udpif_key *ukey)
    OVS_NO_THREAD_SAFETY_ANALYSIS
{
    if (ukey) {
        if (ukey->key_recirc_id) {
            recirc_free_id(ukey->key_recirc_id);
        }
        recirc_refs_unref(&ukey->recircs);
        xlate_cache_delete(ukey->xcache);
        ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
        ovs_mutex_destroy(&ukey->mutex);
        free(ukey);
    }
}

static void
ukey_delete(struct umap *umap, struct udpif_key *ukey)
    OVS_REQUIRES(umap->mutex)
{
    cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
    ovsrcu_postpone(ukey_delete__, ukey);
}

static bool
should_revalidate(const struct udpif *udpif, uint64_t packets,
                  long long int used)
{
    long long int metric, now, duration;

    if (udpif->dump_duration < 200) {
        /* We are likely to handle full revalidation for the flows. */
        return true;
    }

    /* Calculate the mean time between seeing these packets. If this
     * exceeds the threshold, then delete the flow rather than performing
     * costly revalidation for flows that aren't being hit frequently.
     *
     * This is targeted at situations where the dump_duration is high (~1s),
     * and revalidation is triggered by a call to udpif_revalidate(). In
     * these situations, revalidation of all flows causes fluctuations in the
     * flow_limit due to the interaction with the dump_duration and max_idle.
     * This tends to result in deletion of low-throughput flows anyway, so
     * skip the revalidation and just delete those flows. */
    packets = MAX(packets, 1);
    now = MAX(used, time_msec());
    duration = now - used;
    metric = duration / packets;

    if (metric < 200) {
        /* The flow is receiving more than ~5pps, so keep it. */
        return true;
    }
    return false;
}

/* Verifies that the datapath actions of 'ukey' are still correct, and pushes
 * 'stats' for it.
 *
 * Returns a recommended action for 'ukey', options include:
 *      UKEY_DELETE The ukey should be deleted.
 *      UKEY_KEEP   The ukey is fine as is.
 *      UKEY_MODIFY The ukey's actions should be changed but is otherwise
 *                  fine.  Callers should change the actions to those found
 *                  in the caller supplied 'odp_actions' buffer.  The
 *                  recirculation references can be found in 'recircs' and
 *                  must be handled by the caller.
 *
 * If the result is UKEY_MODIFY, then references to all recirc_ids used by the
 * new flow will be held within 'recircs' (which may be none).
 *
 * The caller is responsible for both initializing 'recircs' prior this call,
 * and ensuring any references are eventually freed.
 */
static enum reval_result
revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
                const struct dpif_flow_stats *stats,
                struct ofpbuf *odp_actions, uint64_t reval_seq,
                struct recirc_refs *recircs)
    OVS_REQUIRES(ukey->mutex)
{
    struct xlate_out xout, *xoutp;
    struct netflow *netflow;
    struct ofproto_dpif *ofproto;
    struct dpif_flow_stats push;
    struct flow flow;
    struct flow_wildcards dp_mask, wc;
    enum reval_result result;
    ofp_port_t ofp_in_port;
    struct xlate_in xin;
    long long int last_used;
    int error;
    bool need_revalidate;

    result = UKEY_DELETE;
    xoutp = NULL;
    netflow = NULL;

    ofpbuf_clear(odp_actions);
    need_revalidate = (ukey->reval_seq != reval_seq);
    last_used = ukey->stats.used;
    push.used = stats->used;
    push.tcp_flags = stats->tcp_flags;
    push.n_packets = (stats->n_packets > ukey->stats.n_packets
                      ? stats->n_packets - ukey->stats.n_packets
                      : 0);
    push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes
                    ? stats->n_bytes - ukey->stats.n_bytes
                    : 0);

    if (need_revalidate && last_used
        && !should_revalidate(udpif, push.n_packets, last_used)) {
        goto exit;
    }

    /* We will push the stats, so update the ukey stats cache. */
    ukey->stats = *stats;
    if (!push.n_packets && !need_revalidate) {
        result = UKEY_KEEP;
        goto exit;
    }

    if (ukey->xcache && !need_revalidate) {
        xlate_push_stats(ukey->xcache, &push);
        result = UKEY_KEEP;
        goto exit;
    }

    if (odp_flow_key_to_flow(ukey->key, ukey->key_len, &flow)
        == ODP_FIT_ERROR) {
        goto exit;
    }

    error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL, &netflow,
                         &ofp_in_port);
    if (error) {
        goto exit;
    }

    if (need_revalidate) {
        xlate_cache_clear(ukey->xcache);
    }
    if (!ukey->xcache) {
        ukey->xcache = xlate_cache_new();
    }

    xlate_in_init(&xin, ofproto, &flow, ofp_in_port, NULL, push.tcp_flags,
                  NULL, need_revalidate ? &wc : NULL, odp_actions);
    if (push.n_packets) {
        xin.resubmit_stats = &push;
        xin.may_learn = true;
    }
    xin.xcache = ukey->xcache;
    xlate_actions(&xin, &xout);
    xoutp = &xout;

    if (!need_revalidate) {
        result = UKEY_KEEP;
        goto exit;
    }

    if (xout.slow) {
        ofpbuf_clear(odp_actions);
        compose_slow_path(udpif, &xout, &flow, flow.in_port.odp_port,
                          odp_actions);
    }

    if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, ukey->key,
                             ukey->key_len, &dp_mask, &flow)
        == ODP_FIT_ERROR) {
        goto exit;
    }

    /* Do not modify if any bit is wildcarded by the installed datapath flow,
     * but not the newly revalidated wildcard mask (wc), i.e., if revalidation
     * tells that the datapath flow is now too generic and must be narrowed
     * down.  Note that we do not know if the datapath has ignored any of the
     * wildcarded bits, so we may be overtly conservative here. */
    if (flow_wildcards_has_extra(&dp_mask, &wc)) {
        goto exit;
    }

    if (!ofpbuf_equal(odp_actions,
                      ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
        /* The datapath mask was OK, but the actions seem to have changed.
         * Let's modify it in place. */
        result = UKEY_MODIFY;
        /* Transfer recirc action ID references to the caller. */
        recirc_refs_swap(recircs, &xoutp->recircs);
        goto exit;
    }

    result = UKEY_KEEP;

exit:
    if (result != UKEY_DELETE) {
        ukey->reval_seq = reval_seq;
    }
    if (netflow && result == UKEY_DELETE) {
        netflow_flow_clear(netflow, &flow);
    }
    xlate_out_uninit(xoutp);
    return result;
}

static void
delete_op_init__(struct udpif *udpif, struct ukey_op *op,
                 const struct dpif_flow *flow)
{
    op->ukey = NULL;
    op->dop.type = DPIF_OP_FLOW_DEL;
    op->dop.u.flow_del.key = flow->key;
    op->dop.u.flow_del.key_len = flow->key_len;
    op->dop.u.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
    op->dop.u.flow_del.pmd_id = flow->pmd_id;
    op->dop.u.flow_del.stats = &op->stats;
    op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
}

static void
delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
{
    op->ukey = ukey;
    op->dop.type = DPIF_OP_FLOW_DEL;
    op->dop.u.flow_del.key = ukey->key;
    op->dop.u.flow_del.key_len = ukey->key_len;
    op->dop.u.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
    op->dop.u.flow_del.pmd_id = ukey->pmd_id;
    op->dop.u.flow_del.stats = &op->stats;
    op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
}

static void
modify_op_init(struct ukey_op *op, struct udpif_key *ukey)
{
    op->ukey = ukey;
    op->dop.type = DPIF_OP_FLOW_PUT;
    op->dop.u.flow_put.flags = DPIF_FP_MODIFY;
    op->dop.u.flow_put.key = ukey->key;
    op->dop.u.flow_put.key_len = ukey->key_len;
    op->dop.u.flow_put.mask = ukey->mask;
    op->dop.u.flow_put.mask_len = ukey->mask_len;
    op->dop.u.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
    op->dop.u.flow_put.pmd_id = ukey->pmd_id;
    op->dop.u.flow_put.stats = NULL;
    ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
                     &op->dop.u.flow_put.actions_len);
}

/* Executes datapath operations 'ops' and attributes stats retrieved from the
 * datapath as part of those operations. */
static void
push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
{
    struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
    size_t i;

    ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
    for (i = 0; i < n_ops; i++) {
        opsp[i] = &ops[i].dop;
    }
    dpif_operate(udpif->dpif, opsp, n_ops);

    for (i = 0; i < n_ops; i++) {
        struct ukey_op *op = &ops[i];
        struct dpif_flow_stats *push, *stats, push_buf;

        stats = op->dop.u.flow_del.stats;
        push = &push_buf;

        if (op->dop.type != DPIF_OP_FLOW_DEL) {
            /* Only deleted flows need their stats pushed. */
            continue;
        }

        if (op->dop.error) {
            /* flow_del error, 'stats' is unusable. */
            continue;
        }

        if (op->ukey) {
            ovs_mutex_lock(&op->ukey->mutex);
            push->used = MAX(stats->used, op->ukey->stats.used);
            push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
            push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
            push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
            ovs_mutex_unlock(&op->ukey->mutex);
        } else {
            push = stats;
        }

        if (push->n_packets || netflow_exists()) {
            const struct nlattr *key = op->dop.u.flow_del.key;
            size_t key_len = op->dop.u.flow_del.key_len;
            struct ofproto_dpif *ofproto;
            struct netflow *netflow;
            ofp_port_t ofp_in_port;
            struct flow flow;
            int error;

            if (op->ukey) {
                ovs_mutex_lock(&op->ukey->mutex);
                if (op->ukey->xcache) {
                    xlate_push_stats(op->ukey->xcache, push);
                    ovs_mutex_unlock(&op->ukey->mutex);
                    continue;
                }
                ovs_mutex_unlock(&op->ukey->mutex);
                key = op->ukey->key;
                key_len = op->ukey->key_len;
            }

            if (odp_flow_key_to_flow(key, key_len, &flow)
                == ODP_FIT_ERROR) {
                continue;
            }

            error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL,
                                 &netflow, &ofp_in_port);
            if (!error) {
                struct xlate_in xin;

                xlate_in_init(&xin, ofproto, &flow, ofp_in_port, NULL,
                              push->tcp_flags, NULL, NULL, NULL);
                xin.resubmit_stats = push->n_packets ? push : NULL;
                xin.may_learn = push->n_packets > 0;
                xlate_actions_for_side_effects(&xin);

                if (netflow) {
                    netflow_flow_clear(netflow, &flow);
                }
            }
        }
    }
}

/* Executes datapath operations 'ops', attributes stats retrieved from the
 * datapath, and deletes ukeys corresponding to deleted flows. */
static void
push_ukey_ops(struct udpif *udpif, struct umap *umap,
              struct ukey_op *ops, size_t n_ops)
{
    int i;

    push_dp_ops(udpif, ops, n_ops);
    ovs_mutex_lock(&umap->mutex);
    for (i = 0; i < n_ops; i++) {
        if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
            ukey_delete(umap, ops[i].ukey);
        }
    }
    ovs_mutex_unlock(&umap->mutex);
}

static void
log_unexpected_flow(const struct dpif_flow *flow, int error)
{
    static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 60);
    struct ds ds = DS_EMPTY_INITIALIZER;

    ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
                  "unexpected flow (%s): ", ovs_strerror(error));
    odp_format_ufid(&flow->ufid, &ds);
    VLOG_WARN_RL(&rl, "%s", ds_cstr(&ds));
    ds_destroy(&ds);
}

static void
reval_op_init(struct ukey_op *op, enum reval_result result,
              struct udpif *udpif, struct udpif_key *ukey,
              struct recirc_refs *recircs, struct ofpbuf *odp_actions)
{
    if (result == UKEY_DELETE) {
        delete_op_init(udpif, op, ukey);
    } else if (result == UKEY_MODIFY) {
        /* Store the new recircs. */
        recirc_refs_swap(&ukey->recircs, recircs);
        /* Release old recircs. */
        recirc_refs_unref(recircs);
        /* ukey->key_recirc_id remains, as the key is the same as before. */

        ukey_set_actions(ukey, odp_actions);
        modify_op_init(op, ukey);
    }
}

static void
revalidate(struct revalidator *revalidator)
{
    uint64_t odp_actions_stub[1024 / 8];
    struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);

    struct udpif *udpif = revalidator->udpif;
    struct dpif_flow_dump_thread *dump_thread;
    uint64_t dump_seq, reval_seq;
    unsigned int flow_limit;

    dump_seq = seq_read(udpif->dump_seq);
    reval_seq = seq_read(udpif->reval_seq);
    atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
    dump_thread = dpif_flow_dump_thread_create(udpif->dump);
    for (;;) {
        struct ukey_op ops[REVALIDATE_MAX_BATCH];
        int n_ops = 0;

        struct dpif_flow flows[REVALIDATE_MAX_BATCH];
        const struct dpif_flow *f;
        int n_dumped;

        long long int max_idle;
        long long int now;
        size_t n_dp_flows;
        bool kill_them_all;

        n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
        if (!n_dumped) {
            break;
        }

        now = time_msec();

        /* In normal operation we want to keep flows around until they have
         * been idle for 'ofproto_max_idle' milliseconds.  However:
         *
         *     - If the number of datapath flows climbs above 'flow_limit',
         *       drop that down to 100 ms to try to bring the flows down to
         *       the limit.
         *
         *     - If the number of datapath flows climbs above twice
         *       'flow_limit', delete all the datapath flows as an emergency
         *       measure.  (We reassess this condition for the next batch of
         *       datapath flows, so we will recover before all the flows are
         *       gone.) */
        n_dp_flows = udpif_get_n_flows(udpif);
        kill_them_all = n_dp_flows > flow_limit * 2;
        max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;

        for (f = flows; f < &flows[n_dumped]; f++) {
            long long int used = f->stats.used;
            struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
            enum reval_result result;
            struct udpif_key *ukey;
            bool already_dumped;
            int error;

            if (ukey_acquire(udpif, f, &ukey, &error)) {
                if (error == EBUSY) {
                    /* Another thread is processing this flow, so don't bother
                     * processing it.*/
                    COVERAGE_INC(upcall_ukey_contention);
                } else {
                    log_unexpected_flow(f, error);
                    if (error != ENOENT) {
                        delete_op_init__(udpif, &ops[n_ops++], f);
                    }
                }
                continue;
            }

            already_dumped = ukey->dump_seq == dump_seq;
            if (already_dumped) {
                /* The flow has already been handled during this flow dump
                 * operation. Skip it. */
                if (ukey->xcache) {
                    COVERAGE_INC(dumped_duplicate_flow);
                } else {
                    COVERAGE_INC(dumped_new_flow);
                }
                ovs_mutex_unlock(&ukey->mutex);
                continue;
            }

            if (!used) {
                used = ukey->created;
            }
            if (kill_them_all || (used && used < now - max_idle)) {
                result = UKEY_DELETE;
            } else {
                result = revalidate_ukey(udpif, ukey, &f->stats, &odp_actions,
                                         reval_seq, &recircs);
            }
            ukey->dump_seq = dump_seq;
            ukey->flow_exists = result != UKEY_DELETE;

            if (result != UKEY_KEEP) {
                /* Takes ownership of 'recircs'. */
                reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
                              &odp_actions);
            }
            ovs_mutex_unlock(&ukey->mutex);
        }

        if (n_ops) {
            /* Push datapath ops but defer ukey deletion to 'sweep' phase. */
            push_dp_ops(udpif, ops, n_ops);
        }
        ovsrcu_quiesce();
    }
    dpif_flow_dump_thread_destroy(dump_thread);
    ofpbuf_uninit(&odp_actions);
}

/* Pauses the 'revalidator', can only proceed after main thread
 * calls udpif_resume_revalidators(). */
static void
revalidator_pause(struct revalidator *revalidator)
{
    /* The first block is for sync'ing the pause with main thread. */
    ovs_barrier_block(&revalidator->udpif->pause_barrier);
    /* The second block is for pausing until main thread resumes. */
    ovs_barrier_block(&revalidator->udpif->pause_barrier);
}

static void
revalidator_sweep__(struct revalidator *revalidator, bool purge)
{
    struct udpif *udpif;
    uint64_t dump_seq, reval_seq;
    int slice;

    udpif = revalidator->udpif;
    dump_seq = seq_read(udpif->dump_seq);
    reval_seq = seq_read(udpif->reval_seq);
    slice = revalidator - udpif->revalidators;
    ovs_assert(slice < udpif->n_revalidators);

    for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
        uint64_t odp_actions_stub[1024 / 8];
        struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);

        struct ukey_op ops[REVALIDATE_MAX_BATCH];
        struct udpif_key *ukey;
        struct umap *umap = &udpif->ukeys[i];
        size_t n_ops = 0;

        CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
            bool flow_exists;

            /* Handler threads could be holding a ukey lock while it installs a
             * new flow, so don't hang around waiting for access to it. */
            if (ovs_mutex_trylock(&ukey->mutex)) {
                continue;
            }
            flow_exists = ukey->flow_exists;
            if (flow_exists) {
                struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
                bool seq_mismatch = (ukey->dump_seq != dump_seq
                                     && ukey->reval_seq != reval_seq);
                enum reval_result result;

                if (purge) {
                    result = UKEY_DELETE;
                } else if (!seq_mismatch) {
                    result = UKEY_KEEP;
                } else {
                    struct dpif_flow_stats stats;
                    COVERAGE_INC(revalidate_missed_dp_flow);
                    memset(&stats, 0, sizeof stats);
                    result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
                                             reval_seq, &recircs);
                }
                if (result != UKEY_KEEP) {
                    /* Clears 'recircs' if filled by revalidate_ukey(). */
                    reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
                                  &odp_actions);
                }
            }
            ovs_mutex_unlock(&ukey->mutex);

            if (!flow_exists) {
                /* The common flow deletion case involves deletion of the flow
                 * during the dump phase and ukey deletion here. */
                ovs_mutex_lock(&umap->mutex);
                ukey_delete(umap, ukey);
                ovs_mutex_unlock(&umap->mutex);
            }

            if (n_ops == REVALIDATE_MAX_BATCH) {
                /* Update/delete missed flows and clean up corresponding ukeys
                 * if necessary. */
                push_ukey_ops(udpif, umap, ops, n_ops);
                n_ops = 0;
            }
        }

        if (n_ops) {
            push_ukey_ops(udpif, umap, ops, n_ops);
        }

        ofpbuf_uninit(&odp_actions);
        ovsrcu_quiesce();
    }
}

static void
revalidator_sweep(struct revalidator *revalidator)
{
    revalidator_sweep__(revalidator, false);
}

static void
revalidator_purge(struct revalidator *revalidator)
{
    revalidator_sweep__(revalidator, true);
}

/* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
static void
dp_purge_cb(void *aux, unsigned pmd_id)
{
    struct udpif *udpif = aux;
    size_t i;

    udpif_pause_revalidators(udpif);
    for (i = 0; i < N_UMAPS; i++) {
        struct ukey_op ops[REVALIDATE_MAX_BATCH];
        struct udpif_key *ukey;
        struct umap *umap = &udpif->ukeys[i];
        size_t n_ops = 0;

        CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
             if (ukey->pmd_id == pmd_id) {
                delete_op_init(udpif, &ops[n_ops++], ukey);
                if (n_ops == REVALIDATE_MAX_BATCH) {
                    push_ukey_ops(udpif, umap, ops, n_ops);
                    n_ops = 0;
                }
            }
        }

        if (n_ops) {
            push_ukey_ops(udpif, umap, ops, n_ops);
        }

        ovsrcu_quiesce();
    }
    udpif_resume_revalidators(udpif);
}

static void
upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
                    const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
    struct ds ds = DS_EMPTY_INITIALIZER;
    struct udpif *udpif;

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        unsigned int flow_limit;
        bool ufid_enabled;
        size_t i;

        atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
        ufid_enabled = udpif_use_ufid(udpif);

        ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
        ds_put_format(&ds, "\tflows         : (current %lu)"
            " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
            udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
        ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
        ds_put_format(&ds, "\tufid enabled : ");
        if (ufid_enabled) {
            ds_put_format(&ds, "true\n");
        } else {
            ds_put_format(&ds, "false\n");
        }
        ds_put_char(&ds, '\n');

        for (i = 0; i < n_revalidators; i++) {
            struct revalidator *revalidator = &udpif->revalidators[i];
            int j, elements = 0;

            for (j = i; j < N_UMAPS; j += n_revalidators) {
                elements += cmap_count(&udpif->ukeys[j].cmap);
            }
            ds_put_format(&ds, "\t%u: (keys %d)\n", revalidator->id, elements);
        }
    }

    unixctl_command_reply(conn, ds_cstr(&ds));
    ds_destroy(&ds);
}

/* Disable using the megaflows.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
                                 int argc OVS_UNUSED,
                                 const char *argv[] OVS_UNUSED,
                                 void *aux OVS_UNUSED)
{
    atomic_store_relaxed(&enable_megaflows, false);
    udpif_flush_all_datapaths();
    unixctl_command_reply(conn, "megaflows disabled");
}

/* Re-enable using megaflows.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
                                int argc OVS_UNUSED,
                                const char *argv[] OVS_UNUSED,
                                void *aux OVS_UNUSED)
{
    atomic_store_relaxed(&enable_megaflows, true);
    udpif_flush_all_datapaths();
    unixctl_command_reply(conn, "megaflows enabled");
}

/* Disable skipping flow attributes during flow dump.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
                           const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
    atomic_store_relaxed(&enable_ufid, false);
    unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
}

/* Re-enable skipping flow attributes during flow dump.
 *
 * This command is only needed for advanced debugging, so it's not documented
 * in the man page. */
static void
upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
                          const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
    atomic_store_relaxed(&enable_ufid, true);
    unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
                                "for supported datapaths");
}

/* Set the flow limit.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
                              int argc OVS_UNUSED,
                              const char *argv[],
                              void *aux OVS_UNUSED)
{
    struct ds ds = DS_EMPTY_INITIALIZER;
    struct udpif *udpif;
    unsigned int flow_limit = atoi(argv[1]);

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        atomic_store_relaxed(&udpif->flow_limit, flow_limit);
    }
    ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
    unixctl_command_reply(conn, ds_cstr(&ds));
    ds_destroy(&ds);
}

static void
upcall_unixctl_dump_wait(struct unixctl_conn *conn,
                         int argc OVS_UNUSED,
                         const char *argv[] OVS_UNUSED,
                         void *aux OVS_UNUSED)
{
    if (ovs_list_is_singleton(&all_udpifs)) {
        struct udpif *udpif = NULL;
        size_t len;

        udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
        len = (udpif->n_conns + 1) * sizeof *udpif->conns;
        udpif->conn_seq = seq_read(udpif->dump_seq);
        udpif->conns = xrealloc(udpif->conns, len);
        udpif->conns[udpif->n_conns++] = conn;
    } else {
        unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
    }
}

static void
upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
                     const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
    struct udpif *udpif;

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        int n;

        for (n = 0; n < udpif->n_revalidators; n++) {
            revalidator_purge(&udpif->revalidators[n]);
        }
    }
    unixctl_command_reply(conn, "");
}