summaryrefslogtreecommitdiff
path: root/ceilometer/storage/hbase/utils.py
blob: 1fe4a3a4e55981fab51983864b568e3e40cc127b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
""" Various HBase helpers
"""
import copy
import datetime
import json

import bson.json_util
from happybase.hbase import ttypes

from ceilometer.openstack.common.gettextutils import _
from ceilometer.openstack.common import log
from ceilometer import utils

LOG = log.getLogger(__name__)

EVENT_TRAIT_TYPES = {'none': 0, 'string': 1, 'integer': 2, 'float': 3,
                     'datetime': 4}
OP_SIGN = {'eq': '=', 'lt': '<', 'le': '<=', 'ne': '!=', 'gt': '>', 'ge': '>='}
# We need this additional dictionary because we have reverted timestamp in
# row-keys for stored metrics
OP_SIGN_REV = {'eq': '=', 'lt': '>', 'le': '>=', 'ne': '!=', 'gt': '<',
               'ge': '<='}


def _QualifierFilter(op, qualifier):
    return "QualifierFilter (%s, 'binaryprefix:m_%s')" % (op, qualifier)


def timestamp(dt, reverse=True):
    """Timestamp is count of milliseconds since start of epoch.

    If reverse=True then timestamp will be reversed. Such a technique is used
    in HBase rowkey design when period queries are required. Because of the
    fact that rows are sorted lexicographically it's possible to vary whether
    the 'oldest' entries will be on top of the table or it should be the newest
    ones (reversed timestamp case).

    :param dt: datetime which is translated to timestamp
    :param reverse: a boolean parameter for reverse or straight count of
      timestamp in milliseconds
    :return: count or reversed count of milliseconds since start of epoch
    """
    epoch = datetime.datetime(1970, 1, 1)
    td = dt - epoch
    ts = td.microseconds + td.seconds * 1000000 + td.days * 86400000000
    return 0x7fffffffffffffff - ts if reverse else ts


def make_events_query_from_filter(event_filter):
    """Return start and stop row for filtering and a query.

    Query is based on the selected parameter.
    :param event_filter: storage.EventFilter object.
    """
    start = "%s" % (timestamp(event_filter.start_time, reverse=False)
                    if event_filter.start_time else "")
    stop = "%s" % (timestamp(event_filter.end_time, reverse=False)
                   if event_filter.end_time else "")
    kwargs = {'event_type': event_filter.event_type,
              'event_id': event_filter.message_id}
    res_q = make_query(**kwargs)

    if event_filter.traits_filter:
        for trait_filter in event_filter.traits_filter:
            q_trait = make_query(trait_query=True, **trait_filter)
            if q_trait:
                if res_q:
                    res_q += " AND " + q_trait
                else:
                    res_q = q_trait
    return res_q, start, stop


def make_timestamp_query(func, start=None, start_op=None, end=None,
                         end_op=None, bounds_only=False, **kwargs):
    """Return a filter start and stop row for filtering and a query.

    Query is based on the fact that CF-name is 'rts'.
    :param start: Optional start timestamp
    :param start_op: Optional start timestamp operator, like gt, ge
    :param end: Optional end timestamp
    :param end_op: Optional end timestamp operator, like lt, le
    :param bounds_only: if True than query will not be returned
    :param func: a function that provide a format of row
    :param kwargs: kwargs for :param func
    """
    # We don't need to dump here because get_start_end_rts returns strings
    rts_start, rts_end = get_start_end_rts(start, end)
    start_row, end_row = func(rts_start, rts_end, **kwargs)

    if bounds_only:
        return start_row, end_row

    q = []
    start_op = start_op or 'ge'
    end_op = end_op or 'lt'
    if rts_start:
        q.append("SingleColumnValueFilter ('f', 'rts', %s, 'binary:%s')" %
                 (OP_SIGN_REV[start_op], rts_start))
    if rts_end:
        q.append("SingleColumnValueFilter ('f', 'rts', %s, 'binary:%s')" %
                 (OP_SIGN_REV[end_op], rts_end))

    res_q = None
    if len(q):
        res_q = " AND ".join(q)

    return start_row, end_row, res_q


def get_start_end_rts(start, end):

    rts_start = str(timestamp(start)) if start else ""
    rts_end = str(timestamp(end)) if end else ""
    return rts_start, rts_end


def make_query(metaquery=None, trait_query=None, **kwargs):
    """Return a filter query string based on the selected parameters.

    :param metaquery: optional metaquery dict
    :param trait_query: optional boolean, for trait_query from kwargs
    :param kwargs: key-value pairs to filter on. Key should be a real
      column name in db
    """
    q = []
    res_q = None

    # Query for traits differs from others. It is constructed with
    # SingleColumnValueFilter with the possibility to choose comparison
    # operator
    if trait_query:
        trait_name = kwargs.pop('key')
        op = kwargs.pop('op', 'eq')
        for k, v in kwargs.items():
            if v is not None:
                res_q = ("SingleColumnValueFilter "
                         "('f', '%s+%d', %s, 'binary:%s', true, true)" %
                         (trait_name, EVENT_TRAIT_TYPES[k], OP_SIGN[op],
                          dump(v)))
        return res_q

    # Note: we use extended constructor for SingleColumnValueFilter here.
    # It is explicitly specified that entry should not be returned if CF is not
    # found in table.
    for key, value in sorted(kwargs.items()):
        if value is not None:
            if key == 'source':
                q.append("SingleColumnValueFilter "
                         "('f', 's_%s', =, 'binary:%s', true, true)" %
                         (value, dump('1')))
            elif key == 'trait_type':
                q.append("ColumnPrefixFilter('%s')" % value)
            elif key == 'event_id':
                q.append("RowFilter ( = , 'regexstring:\d*_%s')" % value)
            else:
                q.append("SingleColumnValueFilter "
                         "('f', '%s', =, 'binary:%s', true, true)" %
                         (key, dump(value)))
    res_q = None
    if len(q):
        res_q = " AND ".join(q)

    if metaquery:
        meta_q = []
        for k, v in metaquery.items():
            meta_q.append(
                "SingleColumnValueFilter ('f', '%s', =, 'binary:%s', "
                "true, true)"
                % ('r_' + k, dump(v)))
        meta_q = " AND ".join(meta_q)
        # join query and metaquery
        if res_q is not None:
            res_q += " AND " + meta_q
        else:
            res_q = meta_q   # metaquery only

    return res_q


def get_meter_columns(metaquery=None, need_timestamp=False, **kwargs):
    """Return a list of required columns in meter table to be scanned.

    SingleColumnFilter has 'columns' filter that should be used to determine
    what columns we are interested in. But if we want to use 'filter' and
    'columns' together we have to include columns we are filtering by
    to columns list.

    Please see an example: If we make scan with filter
    "SingleColumnValueFilter ('f', 's_test-1', =, 'binary:\"1\"')"
    and columns ['f:rts'], the output will be always empty
    because only 'rts' will be returned and filter will be applied
    to this data so 's_test-1' cannot be find.
    To make this request correct it should be fixed as follows:
    filter = "SingleColumnValueFilter ('f', 's_test-1', =, 'binary:\"1\"')",
    columns = ['f:rts','f:s_test-1']}

    :param metaquery: optional metaquery dict
    :param need_timestamp: flag, which defines the need for timestamp columns
    :param kwargs: key-value pairs to filter on. Key should be a real
      column name in db
    """
    columns = ['f:message', 'f:recorded_at']
    columns.extend("f:%s" % k for k, v in kwargs.items()
                   if v is not None)
    if metaquery:
        columns.extend("f:r_%s" % k for k, v in metaquery.items()
                       if v is not None)
    source = kwargs.get('source')
    if source:
        columns.append("f:s_%s" % source)
    if need_timestamp:
        columns.extend(['f:rts', 'f:timestamp'])
    return columns


def make_sample_query_from_filter(sample_filter, require_meter=True):
    """Return a query dictionary based on the settings in the filter.

    :param sample_filter: SampleFilter instance
    :param require_meter: If true and the filter does not have a meter,
      raise an error.
    """

    meter = sample_filter.meter
    if not meter and require_meter:
        raise RuntimeError('Missing required meter specifier')
    start_row, end_row, ts_query = make_timestamp_query(
        make_general_rowkey_scan,
        start=sample_filter.start, start_op=sample_filter.start_timestamp_op,
        end=sample_filter.end, end_op=sample_filter.end_timestamp_op,
        some_id=meter)
    kwargs = dict(user_id=sample_filter.user,
                  project_id=sample_filter.project,
                  counter_name=meter,
                  resource_id=sample_filter.resource,
                  source=sample_filter.source,
                  message_id=sample_filter.message_id)

    q = make_query(metaquery=sample_filter.metaquery, **kwargs)

    if q:
        res_q = q + " AND " + ts_query if ts_query else q
    else:
        res_q = ts_query if ts_query else None

    need_timestamp = (sample_filter.start or sample_filter.end) is not None
    columns = get_meter_columns(metaquery=sample_filter.metaquery,
                                need_timestamp=need_timestamp, **kwargs)
    return res_q, start_row, end_row, columns


def make_meter_query_for_resource(start_timestamp, start_timestamp_op,
                                  end_timestamp, end_timestamp_op, source,
                                  query=None):
    """This method is used when Resource table should be filtered by meters.

    In this method we are looking into all qualifiers with m_ prefix.
    :param start_timestamp: meter's timestamp start range.
    :param start_timestamp_op: meter's start time operator, like ge, gt.
    :param end_timestamp: meter's timestamp end range.
    :param end_timestamp_op: meter's end time operator, like lt, le.
    :param source: source filter.
    :param query: a query string to concatenate with.
    """
    start_rts, end_rts = get_start_end_rts(start_timestamp, end_timestamp)
    mq = []
    start_op = start_timestamp_op or 'ge'
    end_op = end_timestamp_op or 'lt'

    if start_rts:
        filter_value = start_rts + '+' + source if source else start_rts
        mq.append(_QualifierFilter(OP_SIGN_REV[start_op], filter_value))

    if end_rts:
        filter_value = end_rts + '+' + source if source else end_rts
        mq.append(_QualifierFilter(OP_SIGN_REV[end_op], filter_value))

    if mq:
        meter_q = " AND ".join(mq)
        # If there is a filtering on time_range we need to point that
        # qualifiers should start with m_. Overwise in case e.g.
        # QualifierFilter (>=, 'binaryprefix:m_9222030811134775808')
        # qualifier 's_test' satisfies the filter and will be returned.
        meter_q = _QualifierFilter("=", '') + " AND " + meter_q
        query = meter_q if not query else query + " AND " + meter_q
    return query


def make_general_rowkey_scan(rts_start=None, rts_end=None, some_id=None):
    """If it's filter on some_id without start and end.

    start_row = some_id while end_row = some_id + MAX_BYTE.
    """
    if some_id is None:
        return None, None
    if not rts_start:
        rts_start = chr(127)
    end_row = "%s_%s" % (some_id, rts_start)
    start_row = "%s_%s" % (some_id, rts_end)

    return start_row, end_row


def format_meter_reference(c_name, c_type, c_unit, rts, source):
    """Format reference to meter data."""
    return "%s+%s+%s!%s!%s" % (rts, source, c_name, c_type, c_unit)


def timestamp_from_record_tuple(record):
    """Extract timestamp from HBase tuple record."""
    return record[0]['timestamp']


def resource_id_from_record_tuple(record):
    """Extract resource_id from HBase tuple record."""
    return record[0]['resource_id']


def deserialize_entry(entry, get_raw_meta=True):
    """Return a list of flatten_result, sources, meters and metadata.

    Flatten_result contains a dict of simple structures such as 'resource_id':1
    sources/meters are the lists of sources and meters correspondingly.
    metadata is metadata dict. This dict may be returned as flattened if
    get_raw_meta is False.

    :param entry: entry from HBase, without row name and timestamp
    :param get_raw_meta: If true then raw metadata will be returned,
                         if False metadata will be constructed from
                         'f:r_metadata.' fields
    """
    flatten_result = {}
    sources = []
    meters = []
    metadata_flattened = {}
    for k, v in entry.items():
        if k.startswith('f:s_'):
            sources.append(k[4:])
        elif k.startswith('f:r_metadata.'):
            metadata_flattened[k[len('f:r_metadata.'):]] = load(v)
        elif k.startswith("f:m_"):
            meter = (k[4:], load(v))
            meters.append(meter)
        else:
            flatten_result[k[2:]] = load(v)
    if get_raw_meta:
        metadata = flatten_result.get('resource_metadata', {})
    else:
        metadata = metadata_flattened

    return flatten_result, sources, meters, metadata


def serialize_entry(data=None, **kwargs):
    """Return a dict that is ready to be stored to HBase

    :param data: dict to be serialized
    :param kwargs: additional args
    """
    data = data or {}
    entry_dict = copy.copy(data)
    entry_dict.update(**kwargs)

    result = {}
    for k, v in entry_dict.items():
        if k == 'source':
            # user, project and resource tables may contain several sources.
            # Besides, resource table may contain several meters.
            # To make insertion safe we need to store all meters and sources in
            # a separate cell. For this purpose s_ and m_ prefixes are
            # introduced.
                result['f:s_%s' % v] = dump('1')
        elif k == 'meter':
            for meter, ts in v.items():
                result['f:m_%s' % meter] = dump(ts)
        elif k == 'resource_metadata':
            # keep raw metadata as well as flattened to provide
            # capability with API v2. It will be flattened in another
            # way on API level. But we need flattened too for quick filtering.
            flattened_meta = dump_metadata(v)
            for k, m in flattened_meta.items():
                result['f:r_metadata.' + k] = dump(m)
            result['f:resource_metadata'] = dump(v)
        else:
            result['f:' + k] = dump(v)
    return result


def dump_metadata(meta):
    resource_metadata = {}
    for key, v in utils.dict_to_keyval(meta):
        resource_metadata[key] = v
    return resource_metadata


def dump(data):
    return json.dumps(data, default=bson.json_util.default)


def load(data):
    return json.loads(data, object_hook=object_hook)


# We don't want to have tzinfo in decoded json.This object_hook is
# overwritten json_util.object_hook for $date
def object_hook(dct):
    if "$date" in dct:
        dt = bson.json_util.object_hook(dct)
        return dt.replace(tzinfo=None)
    return bson.json_util.object_hook(dct)


def create_tables(conn, tables, column_families):
    for table in tables:
        try:
            conn.create_table(table, column_families)
        except ttypes.AlreadyExists:
            if conn.table_prefix:
                table = ("%(table_prefix)s"
                         "%(separator)s"
                         "%(table_name)s" %
                         dict(table_prefix=conn.table_prefix,
                              separator=conn.table_prefix_separator,
                              table_name=table))

            LOG.warn(_("Cannot create table %(table_name)s   "
                       "it already exists. Ignoring error")
                     % {'table_name': table})