summaryrefslogtreecommitdiff
path: root/manual/manual/refman/exten.etex
blob: 4b4ddb2e76d7151cc719e49fbdbb8751bd86c001 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
\chapter{Language extensions} \label{c:extensions}
\pdfchapter{Language extensions}
%HEVEA\cutname{extn.html}

This chapter describes language extensions and convenience features
that are implemented in OCaml, but not described in the
OCaml reference manual.

\section{Integer literals for types \texttt{int32}, \texttt{int64}
         and \texttt{nativeint}} \label{s:ext-integer}

(Introduced in Objective Caml 3.07)

\begin{syntax}
constant: ...
          | int32-literal
          | int64-literal
          | nativeint-literal
;
int32-literal: integer-literal 'l'
;
int64-literal: integer-literal 'L'
;
nativeint-literal: integer-literal 'n'
\end{syntax}

An integer literal can be followed by one of the letters "l", "L" or "n"
to indicate that this integer has type "int32", "int64" or "nativeint"
respectively, instead of the default type "int" for integer literals.
\index{int32\@\verb`int32`}
\index{int64\@\verb`int64`}
\index{nativeint\@\verb`nativeint`}
The library modules "Int32"[\moduleref{Int32}],
"Int64"[\moduleref{Int64}] and "Nativeint"[\moduleref{Nativeint}]
provide operations on these integer types.

\section{Recursive definitions of values} \label{s:letrecvalues}

(Introduced in Objective Caml 1.00)

As mentioned in section~\ref{s:localdef}, the @'let' 'rec'@ binding
construct, in addition to the definition of recursive functions,
also supports a certain class of recursive definitions of
non-functional values, such as
\begin{center}
@"let" "rec" name_1 "=" "1" "::" name_2
"and" name_2 "=" "2" "::" name_1
"in" expr@
\end{center}
which binds @name_1@ to the cyclic list "1::2::1::2::"\ldots, and
@name_2@ to the cyclic list "2::1::2::1::"\ldots
Informally, the class of accepted definitions consists of those
definitions where the defined names occur only inside function
bodies or as argument to a data constructor.

More precisely, consider the expression:
\begin{center}
@"let" "rec" name_1 "=" expr_1 "and" \ldots "and" name_n "=" expr_n "in" expr@
\end{center}
It will be accepted if each one of @expr_1 \ldots expr_n@ is
statically constructive with respect to @name_1 \ldots name_n@,
is not immediately linked to any of @name_1 \ldots name_n@,
and is not an array constructor whose arguments have abstract type.

An expression @@e@@ is said to be {\em statically constructive
with respect to} the variables @name_1 \ldots name_n@ if at least
one of the following conditions is true:
\begin{itemize}
\item @@e@@ has no free occurrence of any of @name_1 \ldots name_n@
\item @@e@@ is a variable
\item @@e@@ has the form @"fun" \ldots "->" \ldots@
\item @@e@@ has the form @"function" \ldots "->" \ldots@
\item @@e@@ has the form @"lazy" "(" \ldots ")"@
\item @@e@@ has one of the following forms, where each one of
  @expr_1 \ldots expr_m@ is statically constructive with respect to
  @name_1 \ldots name_n@, and @expr_0@ is statically constructive with
  respect to @name_1 \ldots name_n, xname_1 \ldots xname_m@:
  \begin{itemize}
  \item @"let" ["rec"] xname_1 "=" expr_1 "and" \ldots
         "and" xname_m "=" expr_m "in" expr_0@
  \item @"let" "module" \ldots "in" expr_1@
  \item @constr "("expr_1"," \ldots "," expr_m")"@
  \item @"`"tag-name "("expr_1"," \ldots "," expr_m")"@
  \item @"[|" expr_1";" \ldots ";" expr_m "|]"@
  \item @"{" field_1 "=" expr_1";" \ldots ";" field_m = expr_m "}"@
  \item @"{" expr_1 "with" field_2 "=" expr_2";" \ldots ";"
             field_m = expr_m "}"@ where @expr_1@ is not immediately
             linked to @name_1 \ldots name_n@
  \item @"(" expr_1"," \ldots "," expr_m ")"@
  \item @expr_1";" \ldots ";" expr_m@
  \end{itemize}
\end{itemize}

An expression @@e@@ is said to be {\em immediately linked to} the variable
@name@ in the following cases:
\begin{itemize}
\item @@e@@ is @name@
\item @@e@@ has the form @expr_1";" \ldots ";" expr_m@ where @expr_m@
   is immediately linked to @name@
\item @@e@@ has the form @"let" ["rec"] xname_1 "=" expr_1 "and" \ldots
   "and" xname_m "=" expr_m "in" expr_0@ where @expr_0@ is immediately
   linked to @name@ or to one of the @xname_i@ such that @expr_i@
   is immediately linked to @name@.
\end{itemize}

\section{Lazy patterns} \label{s:lazypat}

\ikwd{lazy\@\texttt{lazy}}

(Introduced in Objective Caml 3.11)

\begin{syntax}
pattern: ...
         | 'lazy' pattern
\end{syntax}

The pattern @"lazy" pattern@ matches a value \var{v} of type "Lazy.t",
provided @pattern@ matches the result of forcing \var{v} with
"Lazy.force". A successful match of a pattern containing @"lazy"@
sub-patterns forces the corresponding parts of the value being matched, even
those that imply no test such as @"lazy" value-name@ or @"lazy" "_"@.
Matching a value with a @pattern-matching@ where some patterns
contain @"lazy"@ sub-patterns may imply forcing parts of the value,
even when the pattern selected in the end has no @"lazy"@ sub-pattern.

For more information, see the description of module "Lazy" in the
standard library (
\ifouthtml
\ahref{libref/Lazy.html}{Module \texttt{Lazy}}\else section~\ref{Lazy}\fi).
%
\index{Lazy (module)\@\verb`Lazy` (module)}%
\index{force\@\verb`force`}%

\section{Recursive modules} \label{s-recursive-modules}
\ikwd{module\@\texttt{module}}
\ikwd{and\@\texttt{and}}

(Introduced in Objective Caml 3.07)

% TODO: relaxed syntax

\begin{syntax}
definition:
        ...
      | 'module' 'rec' module-name ':' module-type '=' module-expr \\
        { 'and' module-name ':' module-type '=' module-expr }
;
specification:
        ...
      | 'module' 'rec' module-name ':' module-type
                 { 'and' module-name':' module-type }
\end{syntax}

Recursive module definitions, introduced by the @"module rec"@ \ldots
@"and"@ \ldots\ construction, generalize regular module definitions
@'module' module-name '=' module-expr@ and module specifications
@'module' module-name ':' module-type@ by allowing the defining
@module-expr@ and the @module-type@ to refer recursively to the module
identifiers being defined.  A typical example of a recursive module
definition is:
\begin{verbatim}
    module rec A : sig
                     type t = Leaf of string | Node of ASet.t
                     val compare: t -> t -> int
                   end
                 = struct
                     type t = Leaf of string | Node of ASet.t
                     let compare t1 t2 =
                       match (t1, t2) with
                         (Leaf s1, Leaf s2) -> Pervasives.compare s1 s2
                       | (Leaf _, Node _) -> 1
                       | (Node _, Leaf _) -> -1
                       | (Node n1, Node n2) -> ASet.compare n1 n2
                   end
        and ASet : Set.S with type elt = A.t
                 = Set.Make(A)
\end{verbatim}
It can be given the following specification:
\begin{verbatim}
    module rec A : sig
                     type t = Leaf of string | Node of ASet.t
                     val compare: t -> t -> int
                   end
        and ASet : Set.S with type elt = A.t
\end{verbatim}

This is an experimental extension of OCaml: the class of
recursive definitions accepted, as well as its dynamic semantics are
not final and subject to change in future releases.

Currently, the compiler requires that all dependency cycles between
the recursively-defined module identifiers go through at least one
``safe'' module.  A module is ``safe'' if all value definitions that
it contains have function types @typexpr_1 '->' typexpr_2@.  Evaluation of a
recursive module definition proceeds by building initial values for
the safe modules involved, binding all (functional) values to
@'fun' '_' '->' 'raise' @"Undefined_recursive_module".  The defining
module expressions are then evaluated, and the initial values
for the safe modules are replaced by the values thus computed.  If a
function component of a safe module is applied during this computation
(which corresponds to an ill-founded recursive definition), the
"Undefined_recursive_module" exception is raised.

Note that, in the @specification@ case, the @module-type@s must be
parenthesized if they use the @'with' mod-constraint@ construct.

\section{Private types}\label{s:private-types}
\ikwd{private\@\texttt{private}}

Private type declarations in module signatures, of the form
"type t = private ...", enable libraries to
reveal some, but not all aspects of the implementation of a type to
clients of the library.  In this respect, they strike a middle ground
between abstract type declarations, where no information is revealed
on the type implementation, and data type definitions and type
abbreviations, where all aspects of the type implementation are
publicized.  Private type declarations come in three flavors: for
variant and record types (section~\ref{s-private-types-variant}),
for type abbreviations (section~\ref{s-private-types-abbrev}),
and for row types (section~\ref{s-private-rows}).

\subsection{Private variant and record types} \label{s-private-types-variant}

(Introduced in Objective Caml 3.07)

\begin{syntax}
type-representation:
          ...
        | '=' 'private' [ '|' ] constr-decl { '|' constr-decl }
        | '=' 'private' record-decl
\end{syntax}

Values of a variant or record type declared @"private"@
can be de-structured normally in pattern-matching or via
the @expr '.' field@ notation for record accesses.  However, values of
these types cannot be constructed directly by constructor application
or record construction.  Moreover, assignment on a mutable field of a
private record type is not allowed.

The typical use of private types is in the export signature of a
module, to ensure that construction of values of the private type always
go through the functions provided by the module, while still allowing
pattern-matching outside the defining module.  For example:
\begin{verbatim}
        module M : sig
                     type t = private A | B of int
                     val a : t
                     val b : int -> t
                   end
                 = struct
                     type t = A | B of int
                     let a = A
                     let b n = assert (n > 0); B n
                   end
\end{verbatim}
Here, the @"private"@ declaration ensures that in any value of type
"M.t", the argument to the "B" constructor is always a positive integer.

With respect to the variance of their parameters, private types are
handled like abstract types. That is, if a private type has
parameters, their variance is the one explicitly given by prefixing
the parameter by a `"+"' or a `"-"', it is invariant otherwise.

\subsection{Private type abbreviations} \label{s-private-types-abbrev}

(Introduced in Objective Caml 3.11)

\begin{syntax}
type-equation:
          ...
        | '=' 'private' typexpr
\end{syntax}

Unlike a regular type abbreviation, a private type abbreviation
declares a type that is distinct from its implementation type @typexpr@.
However, coercions from the type to @typexpr@ are permitted.
Moreover, the compiler ``knows'' the implementation type and can take
advantage of this knowledge to perform type-directed optimizations.

The following example uses a private type abbreviation to define a
module of nonnegative integers:
\begin{verbatim}
        module N : sig
                     type t = private int
                     val of_int: int -> t
                     val to_int: t -> int
                   end
                 = struct
                     type t = int
                     let of_int n = assert (n >= 0); n
                     let to_int n = n
                   end
\end{verbatim}
The type "N.t" is incompatible with "int", ensuring that nonnegative
integers and regular integers are not confused.  However, if "x" has
type "N.t", the coercion "(x :> int)" is legal and returns the
underlying integer, just like "N.to_int x".  Deep coercions are also
supported: if "l" has type "N.t list", the coercion "(l :> int list)"
returns the list of underlying integers, like "List.map N.to_int l"
but without copying the list "l".

Note that the coercion @"(" expr ":>" typexpr ")"@ is actually an abbreviated
form,
and will only work in presence of private abbreviations if neither the
type of @expr@ nor @typexpr@ contain any type variables. If they do,
you must use the full form @"(" expr ":" typexpr_1 ":>" typexpr_2 ")"@ where
@typexpr_1@ is the expected type of @expr@. Concretely, this would be "(x :
N.t :> int)" and "(l : N.t list :> int list)" for the above examples.

\subsection{Private row types} \label{s-private-rows}
\ikwd{private\@\texttt{private}}

(Introduced in Objective Caml 3.09)

\begin{syntax}
type-equation:
          ...
        | '=' 'private' typexpr
\end{syntax}

Private row types are type abbreviations where part of the
structure of the type is left abstract. Concretely @typexpr@ in the
above should denote either an object type or a polymorphic variant
type, with some possibility of refinement left. If the private
declaration is used in an interface, the corresponding implementation
may either provide a ground instance, or a refined private type.
\begin{verbatim}
   module M : sig type c = private < x : int; .. > val o : c end =
     struct
       class c = object method x = 3 method y = 2 end
       let o = new c
     end
\end{verbatim}
This declaration does more than hiding the "y" method, it also makes
the type "c" incompatible with any other closed object type, meaning
that only "o" will be of type "c". In that respect it behaves
similarly to private record types. But private row types are
more flexible with respect to incremental refinement. This feature can
be used in combination with functors.
\begin{verbatim}
   module F(X : sig type c = private < x : int; .. > end) =
     struct
       let get_x (o : X.c) = o#x
     end
   module G(X : sig type c = private < x : int; y : int; .. > end) =
     struct
       include F(X)
       let get_y (o : X.c) = o#y
     end
\end{verbatim}

A polymorphic variant type [t], for example
\begin{verbatim}
   type t = [ `A of int | `B of bool ]
\end{verbatim}
can be refined in two ways. A definition [u] may add new field to [t],
and the declaration
\begin{verbatim}
  type u = private [> t]
\end{verbatim}
will keep those new fields abstract. Construction of values of type
[u] is possible using the known variants of [t], but any
pattern-matching will require a default case to handle the potential
extra fields. Dually, a declaration [u] may restrict the fields of [t]
through abstraction: the declaration
\begin{verbatim}
  type v = private [< t > `A]
\end{verbatim}
corresponds to private variant types. One cannot create a value of the
private type [v], except using the constructors that are explicitly
listed as present, "(`A n)" in this example; yet, when
patter-matching on a [v], one should assume that any of the
constructors of [t] could be present.

Similarly to abstract types, the variance of type parameters
is not inferred, and must be given explicitly.


\section{Local opens for patterns}
\ikwd{let\@\texttt{let}}
\ikwd{open\@\texttt{open}} \label{s:local-opens}

(Introduced in OCaml 4.04)

\begin{syntax}
pattern:
       ...
     | module-path '.(' pattern ')'
     | module-path '.[' pattern ']'
     | module-path '.[|' pattern '|]'
     | module-path '.{' pattern '}'

\end{syntax}

For patterns, local opens are limited to the
@module-path'.('pattern')'@ construction. This
construction locally open the module referred to by the module path
@module-path@ in the scope of the pattern @pattern@.

When the body of a local open pattern is delimited by
@'[' ']'@,  @'[|' '|]'@,  or @'{' '}'@, the parentheses can be omitted.
For example, @module-path'.['pattern']'@ is equivalent to
@module-path'.(['pattern'])'@, and @module-path'.[|' pattern '|]'@ is
equivalent to @module-path'.([|' pattern '|])'@.

\section{Object copy short notations} \label{s:object-notations}
\ikwd{with\@\texttt{with}}

(Introduced in OCaml 4.03)

\begin{syntax}
expr:
     ...
  | '{' '<' expr 'with' field ['=' expr] { ';' field ['=' expr] } [';'] '>' '}'
\end{syntax}

In an object copy expression,
a single identifier @id@ stands for @id '=' id@, and a qualified identifier
@module-path '.' id@ stands for @module-path '.' id '=' id@.
For example, all following methods are equivalent:
\begin{verbatim}
          object
            val x=0. val y=0. val z=0.
            method f_0 x y = {< x; y >}
            method f_1 x y = {< x = x; y >}
            method f_2 x y = {< x=x ; y = y >}
          end
\end{verbatim}

\section{Explicit polymorphic type annotations} \label{s:explicit-polymorphic-type}
\ikwd{let\@\texttt{let}}

(Introduced in OCaml 3.12)

\begin{syntax}
let-binding:
          ...
        | value-name ':' poly-typexpr '=' expr
\end{syntax}

Polymorphic type annotations in @"let"@-definitions behave in a way
similar to polymorphic methods: they explicitly require the defined
value to be polymorphic, and allow one to use this polymorphism in
recursive occurrences (when using @"let" "rec"@). Note however that this
is a normal  polymorphic type, unifiable with any instance of
itself.

There are two possible applications of this feature. One is polymorphic
recursion:
\begin{verbatim}
        type 'a t = Leaf of 'a | Node of ('a * 'a) t
        let rec depth : 'a. 'a t -> 'b = function
            Leaf _ -> 1
          | Node x -> 1 + depth x
\end{verbatim}
Note that "'b" is not explicitly polymorphic here, and it will
actually be unified with "int".

The other application is to ensure that some definition is sufficiently
polymorphic:
\begin{caml_example}{verbatim}[error]
let id: 'a. 'a -> 'a = fun x -> x + 1
\end{caml_example}

\section{Locally abstract types}
\ikwd{type\@\texttt{type}}
\ikwd{fun\@\texttt{fun}} \label{s:locally-abstract}

(Introduced in OCaml 3.12, short syntax added in 4.03)

\begin{syntax}
parameter:
       ...
     | '(' "type" {{typeconstr-name}} ')'
\end{syntax}

The expression @"fun" '(' "type" typeconstr-name ')' "->" expr@ introduces a
type constructor named @typeconstr-name@ which is considered abstract
in the scope of the sub-expression, but then replaced by a fresh type
variable.  Note that contrary to what the syntax could suggest, the
expression @"fun" '(' "type" typeconstr-name ')' "->" expr@ itself does not
suspend the evaluation of @expr@ as a regular abstraction would.  The
syntax has been chosen to fit nicely in the context of function
declarations, where it is generally used. It is possible to freely mix
regular function parameters with pseudo type parameters, as in:
\begin{verbatim}
        let f = fun (type t) (foo : t list) -> ...
\end{verbatim}
and even use the alternative syntax for declaring functions:
\begin{verbatim}
        let f (type t) (foo : t list) = ...
\end{verbatim}
If several locally abstract types need to be introduced, it is possible to use
the syntax
@"fun" '(' "type" typeconstr-name_1 \ldots typeconstr-name_n ')' "->" expr@
as syntactic sugar for @"fun" '(' "type" typeconstr-name_1 ')' "->" \ldots "->"
"fun" '(' "type" typeconstr-name_n ')' "->" expr@. For instance,
\begin{verbatim}
        let f = fun (type t u v) -> fun (foo : (t * u * v) list) -> ...
        let f' (type t u v) (foo : (t * u * v) list) = ...
\end{verbatim}

This construction is useful because the type constructors it introduces
can be used in places where a type variable is not allowed. For
instance, one can use it to define an exception in a local module
within a polymorphic function.
\begin{verbatim}
        let f (type t) () =
          let module M = struct exception E of t end in
          (fun x -> M.E x), (function M.E x -> Some x | _ -> None)
\end{verbatim}

Here is another example:
\begin{verbatim}
        let sort_uniq (type s) (cmp : s -> s -> int) =
          let module S = Set.Make(struct type t = s let compare = cmp end) in
          fun l ->
            S.elements (List.fold_right S.add l S.empty)
\end{verbatim}

It is also extremely useful for first-class modules (see
section~\ref{s-first-class-modules}) and generalized algebraic datatypes
(GADTs: see section~\ref{s:gadts}).

\paragraph{Polymorphic syntax} (Introduced in OCaml 4.00)

\begin{syntax}
let-binding:
       ...
     | value-name ':' 'type' {{ typeconstr-name }} '.' typexpr '=' expr
;
class-field:
          ...
        | 'method' ['private'] method-name ':' 'type'
          {{ typeconstr-name }} '.' typexpr '=' expr
        | 'method!' ['private'] method-name ':' 'type'
          {{ typeconstr-name }} '.' typexpr '=' expr
\end{syntax}

The @"(type" typeconstr-name")"@ syntax construction by itself does not make
polymorphic the type variable it introduces, but it can be combined
with explicit polymorphic annotations where needed.
The above rule is provided as syntactic sugar to make this easier:
\begin{verbatim}
        let rec f : type t1 t2. t1 * t2 list -> t1 = ...
\end{verbatim}
\noindent
is automatically expanded into
\begin{verbatim}
        let rec f : 't1 't2. 't1 * 't2 list -> 't1 =
          fun (type t1) (type t2) -> (... : t1 * t2 list -> t1)
\end{verbatim}
This syntax can be very useful when defining recursive functions involving
GADTs, see the section~\ref{s:gadts} for a more detailed explanation.

The same feature is provided for method definitions.
The @'method!'@ form combines this extension with the
``explicit overriding'' extension described in
section~\ref{s:explicit-overriding}.

\section{First-class modules}\label{s-first-class-modules}
\ikwd{module\@\texttt{module}}
\ikwd{val\@\texttt{val}}
\ikwd{with\@\texttt{with}}
\ikwd{and\@\texttt{and}}

(Introduced in OCaml 3.12; pattern syntax and package type inference
introduced in 4.00; structural comparison of package types introduced in 4.02.;
fewer parens required starting from 4.05)

\begin{syntax}
typexpr:
      ...
    | '(''module' package-type')'
;
module-expr:
      ...
    | '(''val' expr [':' package-type]')'
;
expr:
      ...
    | '(''module' module-expr [':' package-type]')'
;
pattern:
      ...
    | '(''module' module-name [':' package-type]')'
;
package-type:
      modtype-path
    | modtype-path 'with' package-constraint { 'and' package-constraint }
;
package-constraint:
          'type' typeconstr '=' typexpr
;
\end{syntax}

Modules are typically thought of as static components. This extension
makes it possible to pack a module as a first-class value, which can
later be dynamically unpacked into a module.

The expression @'(' 'module' module-expr ':' package-type ')'@ converts the
module (structure or functor) denoted by module expression @module-expr@
to a value of the core language that encapsulates this module.  The
type of this core language value is @'(' 'module' package-type ')'@.
The @package-type@ annotation can be omitted if it can be inferred
from the context.

Conversely, the module expression @'(' 'val' expr ':' package-type ')'@
evaluates the core language expression @expr@ to a value, which must
have type @'module' package-type@, and extracts the module that was
encapsulated in this value. Again @package-type@ can be omitted if the
type of @expr@ is known.
If the module expression is already parenthesized, like the arguments
of functors are, no additional parens are needed: "Map.Make(val key)".

The pattern @'(' 'module' module-name ':' package-type ')'@ matches a
package with type @package-type@ and binds it to @module-name@.
It is not allowed in toplevel let bindings.
Again @package-type@ can be omitted if it can be inferred from the
enclosing pattern.

The @package-type@ syntactic class appearing in the  @'(' 'module'
package-type ')'@ type expression and in the annotated forms represents a
subset of module types.
This subset consists of named module types with optional constraints
of a limited form: only non-parametrized types can be specified.

For type-checking purposes (and starting from OCaml 4.02), package types
are compared using the structural comparison of module types.

In general, the module expression @'(' "val" expr ":" package-type
')'@ cannot be used in the body of a functor, because this could cause
unsoundness in conjunction with applicative functors.
Since OCaml 4.02, this is relaxed in two ways:
if @package-type@ does not contain nominal type declarations ({\em
  i.e.} types that are created with a proper identity), then this
expression can be used anywhere, and even if it contains such types
it can be used inside the body of a generative
functor, described in section~\ref{s:generative-functors}.
It can also be used anywhere in the context of a local module binding
@'let' 'module' module-name '=' '(' "val" expr_1 ":" package-type ')'
 "in" expr_2@.

\paragraph{Basic example} A typical use of first-class modules is to
select at run-time among several implementations of a signature.
Each implementation is a structure that we can encapsulate as a
first-class module, then store in a data structure such as a hash
table:
\begin{verbatim}
        module type DEVICE = sig ... end
        let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17

        module SVG = struct ... end
        let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)

        module PDF = struct ... end
        let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)
\end{verbatim}
We can then select one implementation based on command-line
arguments, for instance:
\begin{verbatim}
        module Device =
          (val (try Hashtbl.find devices (parse_cmdline())
                with Not_found -> eprintf "Unknown device %s\n"; exit 2)
           : DEVICE)
\end{verbatim}
Alternatively, the selection can be performed within a function:
\begin{verbatim}
        let draw_using_device device_name picture =
          let module Device =
            (val (Hashtbl.find_devices device_name) : DEVICE)
          in
            Device.draw picture
\end{verbatim}

\paragraph{Advanced examples}
With first-class modules, it is possible to parametrize some code over the
implementation of a module without using a functor.

\begin{verbatim}
        let sort (type s) (module Set : Set.S with type elt = s) l =
          Set.elements (List.fold_right Set.add l Set.empty)
        val sort : (module Set.S with type elt = 'a) -> 'a list -> 'a list
\end{verbatim}

To use this function, one can wrap the "Set.Make" functor:

\begin{verbatim}
        let make_set (type s) cmp =
          let module S = Set.Make(struct
            type t = s
            let compare = cmp
          end) in
          (module S : Set.S with type elt = s)
        val make_set : ('a -> 'a -> int) -> (module Set.S with type elt = 'a)
\end{verbatim}

\iffalse
Another advanced use of first-class module is to encode existential
types. In particular, they can be used to simulate generalized
algebraic data types (GADT). To demonstrate this, we first define a type
of witnesses for type equalities:

\begin{verbatim}
        module TypEq : sig
          type ('a, 'b) t
          val apply: ('a, 'b) t -> 'a -> 'b
          val refl: ('a, 'a) t
          val sym: ('a, 'b) t -> ('b, 'a) t
        end = struct
          type ('a, 'b) t = ('a -> 'b) * ('b -> 'a)
          let refl = (fun x -> x), (fun x -> x)
          let apply (f, _) x = f x
          let sym (f, g) = (g, f)
        end
\end{verbatim}

We can then define a parametrized algebraic data type whose
constructors provide some information about the type parameter:

\begin{verbatim}
        module rec Typ : sig
          module type PAIR = sig
            type t and t1 and t2
            val eq: (t, t1 * t2) TypEq.t
            val t1: t1 Typ.typ
            val t2: t2 Typ.typ
          end

          type 'a typ =
            | Int of ('a, int) TypEq.t
            | String of ('a, string) TypEq.t
            | Pair of (module PAIR with type t = 'a)
        end = Typ
\end{verbatim}

Values of type "'a typ" are supposed to be runtime representations for
the type "'a". The constructors "Int" and "String" are easy: they
directly give a witness of type equality between the parameter "'a"
and the ground types "int" (resp. "string"). The constructor "Pair" is
more complex. One wants to give a witness of type equality between
"'a" and a type of the form "t1 * t2" together with the representations
for "t1" and "t2". However, these two types are unknown. The code above
shows how to use first-class modules to simulate existentials.

Here is how to construct values of type "'a typ":

\begin{verbatim}
        let int = Typ.Int TypEq.refl

        let str = Typ.String TypEq.refl

        let pair (type s1) (type s2) t1 t2 =
          let module P = struct
            type t = s1 * s2
            type t1 = s1
            type t2 = s2
            let eq = TypEq.refl
            let t1 = t1
            let t2 = t2
          end in
          let pair = (module P : Typ.PAIR with type t = s1 * s2) in
          Typ.Pair pair
\end{verbatim}

And finally, here is an example of a polymorphic function that takes the
runtime representation of some type "'a" and a value of the same type,
then pretty-prints the value into a string:

\begin{verbatim}
        open Typ
        let rec to_string: 'a. 'a Typ.typ -> 'a -> string =
          fun (type s) t x ->
            match t with
            | Int eq -> string_of_int (TypEq.apply eq x)
            | String eq -> Printf.sprintf "%S" (TypEq.apply eq x)
            | Pair p ->
                let module P = (val p : PAIR with type t = s) in
                let (x1, x2) = TypEq.apply P.eq x in
                Printf.sprintf "(%s,%s)" (to_string P.t1 x1) (to_string P.t2 x2)
\end{verbatim}

Note that this function uses an explicit polymorphic annotation to obtain
polymorphic recursion.
\fi

\section{Recovering the type of a module} \label{s:module-type-of}

\ikwd{module\@\texttt{module}}
\ikwd{type\@\texttt{type}}
\ikwd{of\@\texttt{of}}
\ikwd{include\@\texttt{include}}

(Introduced in OCaml 3.12)

\begin{syntax}
module-type:
     ...
   | 'module' 'type' 'of' module-expr
\end{syntax}

The construction @'module' 'type' 'of' module-expr@ expands to the module type
(signature or functor type) inferred for the module expression @module-expr@.
To make this module type reusable in many situations, it is
intentionally not strengthened: abstract types and datatypes are not
explicitly related with the types of the original module.
For the same reason, module aliases in the inferred type are expanded.

A typical use, in conjunction with the signature-level @'include'@
construct, is to extend the signature of an existing structure.
In that case, one wants to keep the types equal to types in the
original module. This can done using the following idiom.
\begin{verbatim}
        module type MYHASH = sig
          include module type of struct include Hashtbl end
          val replace: ('a, 'b) t -> 'a -> 'b -> unit
        end
\end{verbatim}
The signature "MYHASH" then contains all the fields of the signature
of the module "Hashtbl" (with strengthened type definitions), plus the
new field "replace".  An implementation of this signature can be
obtained easily by using the @'include'@ construct again, but this
time at the structure level:
\begin{verbatim}
        module MyHash : MYHASH = struct
          include Hashtbl
          let replace t k v = remove t k; add t k v
        end
\end{verbatim}

Another application where the absence of strengthening comes handy, is
to provide an alternative implementation for an existing module.
\begin{verbatim}
        module MySet : module type of Set = struct
          ...
        end
\end{verbatim}
This idiom guarantees that "Myset" is compatible with Set, but allows
it to represent sets internally in a different way.

\section{Substituting inside a signature}
\ikwd{with\@\texttt{with}}
\ikwd{module\@\texttt{module}}
\ikwd{type\@\texttt{type}}
\label{s:signature-substitution}

(Introduced in OCaml 3.12)

\begin{syntax}
mod-constraint:
          ...
        | 'type' [type-params] typeconstr-name ':=' typexpr
        | 'module' module-name ':=' extended-module-path
\end{syntax}

``Destructive'' substitution (@'with' ... ':=' ...@) behaves essentially like
normal signature constraints (@'with' ... '=' ...@), but it additionally removes
the redefined type or module from the signature. There are a number of
restrictions: one can only remove types and modules at the outermost
level (not inside submodules), and in the case of @'with type'@ the
definition must be another type constructor with the same type
parameters.

A natural application of destructive substitution is merging two
signatures sharing a type name.
\begin{caml_example*}{verbatim}
        module type Printable = sig
          type t
          val print : Format.formatter -> t -> unit
        end
        module type Comparable = sig
          type t
          val compare : t -> t -> int
        end
        module type PrintableComparable = sig
          include Printable
          include Comparable with type t := t
        end
\end{caml_example*}

One can also use this to completely remove a field:
\begin{caml_example}{verbatim}
module type S = Comparable with type t := int
\end{caml_example}
or to rename one:
\begin{caml_example}{verbatim}
module type S = sig
  type u
  include Comparable with type t := u
end
\end{caml_example}

Note that you can also remove manifest types, by substituting with the
same type.
\begin{caml_example}{verbatim}
module type ComparableInt = Comparable with type t = int ;;
module type CompareInt = ComparableInt with type t := int
\end{caml_example}

\section{Type-level module aliases}
\ikwd{module\@\texttt{module}}
\label{s:module-alias}

(Introduced in OCaml 4.02)

\begin{syntax}
specification:
          ...
        | 'module' module-name '=' module-path
\end{syntax}

The above specification, inside a signature, only matches a module
definition equal to @module-path@. Conversely, a type-level module
alias can be matched by itself, or by any supertype of the type of the
module it references.

There are several restrictions on @module-path@:
\begin{enumerate}
\item it should be of the form \(M_0.M_1...M_n\) ({\em i.e.} without
  functor applications);
\item inside the body of a  functor, \(M_0\) should not be one of the
  functor parameters;
\item inside a recursive module definition, \(M_0\) should not be one of
  the recursively defined modules.
\end{enumerate}

Such specifications are also inferred. Namely, when @P@ is a path
satisfying the above constraints,
\begin{caml_eval}
module P = struct end
\end{caml_eval}
\begin{caml_example*}{verbatim}
module N = P
\end{caml_example*}
has type
\caml
\:module N = P
\endcaml

Type-level module aliases are used when checking module path
equalities. That is, in a context where module name @N@ is known to be
an alias for @P@, not only these two module paths check as equal, but
@F(N)@ and @F(P)@ are also recognized as equal. In the default
compilation mode, this is the only difference with the previous
approach of module aliases having just the same module type as the
module they reference.

When the compiler flag @'-no-alias-deps'@ is enabled, type-level
module aliases are also exploited to avoid introducing dependencies
between compilation units. Namely, a module alias referring to a
module inside another compilation unit does not introduce a link-time
dependency on that compilation unit, as long as it is not
dereferenced; it still introduces a compile-time dependency if the
interface needs to be read, {\em i.e.}  if the module is a submodule
of the compilation unit, or if some type components are referred to.
Additionally, accessing a module alias introduces a link-time
dependency on the compilation unit containing the module referenced by
the alias, rather than the compilation unit containing the alias.
Note that these differences in link-time behavior may be incompatible
with the previous behavior, as some compilation units might not be
extracted from libraries, and their side-effects ignored.

These weakened dependencies make possible to use module aliases in
place of the @'-pack'@ mechanism. Suppose that you have a library
@'Mylib'@ composed of modules @'A'@ and @'B'@. Using @'-pack'@, one
would issue the command line
\begin{verbatim}
  ocamlc -pack a.cmo b.cmo -o mylib.cmo
\end{verbatim}
and as a result obtain a @'Mylib'@ compilation unit, containing
physically @'A'@ and @'B'@ as submodules, and with no dependencies on
their respective compilation units.
Here is a concrete example of a possible alternative approach:
\begin{enumerate}
\item Rename the files containing @'A'@ and @'B'@ to @'Mylib_A'@ and
  @'Mylib_B'@.
\item Create a packing interface @'Mylib.ml'@, containing the
  following lines.
\begin{verbatim}
    module A = Mylib_A
    module B = Mylib_B
\end{verbatim}
\item Compile @'Mylib.ml'@ using @'-no-alias-deps'@, and the other
  files using @'-no-alias-deps'@ and @'-open' 'Mylib'@ (the last one is
  equivalent to adding the line @'open!' 'Mylib'@ at the top of each
  file).
\begin{verbatim}
    ocamlc -c -no-alias-deps Mylib.ml
    ocamlc -c -no-alias-deps -open Mylib Mylib_*.mli Mylib_*.ml
\end{verbatim}
\item Finally, create a library containing all the compilation units,
  and export all the compiled interfaces.
\begin{verbatim}
    ocamlc -a Mylib*.cmo -o Mylib.cma
\end{verbatim}
\end{enumerate}
This approach lets you access @'A'@ and @'B'@ directly inside the
library, and as @'Mylib.A'@ and @'Mylib.B'@ from outside.
It also has the advantage that @'Mylib'@ is no longer monolithic: if
you use @'Mylib.A'@, only @'Mylib_A'@ will be linked in, not
@'Mylib_B'@.
%Note that in the above @'Mylib.cmo'@ is actually empty, and one could
%name the interface @'Mylib.mli'@, but this would require that all
%clients are compiled with the @'-no-alias-deps'@ flag.

\section{Overriding in open statements}\label{s:explicit-overriding-open}
\ikwd{open.\@\texttt{open\char33}}

(Introduced in OCaml 4.01)

\begin{syntax}
definition:
      ...
   |  'open!' module-path
;
specification:
      ...
   |  'open!' module-path
;
expr:
       ...
     | 'let' 'open!' module-path 'in' expr
;
class-body-type:
       ...
   |  'let' 'open!' module-path 'in' class-body-type
;
class-expr:
       ...
   |  'let' 'open!' module-path 'in' class-expr
;
\end{syntax}

Since OCaml 4.01, @"open"@ statements shadowing an existing identifier
(which is later used) trigger the warning 44.  Adding a @"!"@
character after the @"open"@ keyword indicates that such a shadowing is
intentional and should not trigger the warning.

This is also available (since OCaml 4.06) for local opens in class
expressions and class type expressions.

\section{Generalized algebraic datatypes} \ikwd{type\@\texttt{type}}
\ikwd{match\@\texttt{match}} \label{s:gadts}

(Introduced in OCaml 4.00)

\begin{syntax}
constr-decl:
          ...
        | constr-name ':' [ constr-args '->' ] typexpr
;
type-param:
          ...
        | [variance] '_'
\end{syntax}

Generalized algebraic datatypes, or GADTs, extend usual sum types in
two ways: constraints on type parameters may change depending on the
value constructor, and some type variables may be existentially
quantified.
Adding constraints is done by giving an explicit return type
(the rightmost @typexpr@ in the above syntax), where type parameters
are instantiated.
This return type must use the same type constructor as the type being
defined, and have the same number of parameters.
Variables are made existential when they appear inside a constructor's
argument, but not in its return type.

Since the use of a return type often eliminates the need to name type
parameters in the left-hand side of a type definition, one can replace
them with anonymous types @"_"@ in that case.

The constraints associated to each constructor can be recovered
through pattern-matching.
Namely, if the type of the scrutinee of a pattern-matching contains
a locally abstract type, this type can be refined according to the
constructor used.
These extra constraints are only valid inside the corresponding branch
of the pattern-matching.
If a constructor has some existential variables, fresh locally
abstract types are generated, and they must not escape the
scope of this branch.

\paragraph{Recursive functions}

Here is a concrete example:
\begin{verbatim}
        type _ term =
          | Int : int -> int term
          | Add : (int -> int -> int) term
          | App : ('b -> 'a) term * 'b term -> 'a term

        let rec eval : type a. a term -> a = function
          | Int n    -> n                 (* a = int *)
          | Add      -> (fun x y -> x+y)  (* a = int -> int -> int *)
          | App(f,x) -> (eval f) (eval x)
                  (* eval called at types (b->a) and b for fresh b *)

        let two = eval (App (App (Add, Int 1), Int 1))
        val two : int = 2
\end{verbatim}
It is important to remark that the function "eval" is using the
polymorphic syntax for locally abstract types. When defining a recursive
function that manipulates a GADT, explicit polymorphic recursion should
generally be used. For instance, the following definition fails with a
type error:
\begin{verbatim}
        let rec eval (type a) : a term -> a = function
          | Int n    -> n
          | Add      -> (fun x y -> x+y)
          | App(f,x) -> (eval f) (eval x)
(*                            ^
   Error: This expression has type ($App_'b -> a) term but an expression was
   expected of type 'a
   The type constructor $App_'b would escape its scope
*)
\end{verbatim}
In absence of an explicit polymorphic annotation, a monomorphic type
is inferred for the recursive function. If a recursive call occurs
inside the function definition at a type that involves an existential
GADT type variable, this variable flows to the type of the recursive
function, and thus escapes its scope. In the above example, this happens
in the branch "App(f,x)" when "eval" is called with "f" as an argument.
In this branch, the type of "f" is "($App_ 'b-> a)". The prefix "$" in
"$App_ 'b" denotes an existential type named by the compiler
(see~\ref{p:existential-names}). Since the type of "eval" is
"'a term -> 'a", the call "eval f" makes the existential type "$App_'b"
flow to the type variable "'a" and escape its scope. This triggers the
above error.

\paragraph{Type inference}

Type inference for GADTs is notoriously hard.
This is due to the fact some types may become ambiguous when escaping
from a branch.
For instance, in the "Int" case above, "n" could have either type "int"
or "a", and they are not equivalent outside of that branch.
As a first approximation, type inference will always work if a
pattern-matching is annotated with types containing no free type
variables (both on the scrutinee and the return type).
This is the case in the above example, thanks to the type annotation
containing only locally abstract types.

In practice, type inference is a bit more clever than that: type
annotations do not need to be immediately on the pattern-matching, and
the types do not have to be always closed.
As a result, it is usually enough to only annotate functions, as in
the example above. Type annotations are
propagated in two ways: for the scrutinee, they follow the flow of
type inference, in a way similar to polymorphic methods; for the
return type, they follow the structure of the program, they are split
on functions, propagated to all branches of a pattern matching,
and go through tuples, records, and sum types.
Moreover, the notion of ambiguity used is stronger: a type is only
seen as ambiguous if it was mixed with incompatible types (equated by
constraints), without type annotations between them.
For instance, the following program types correctly.
\begin{verbatim}
        let rec sum : type a. a term -> _ = fun x ->
          let y =
            match x with
            | Int n -> n
            | Add   -> 0
            | App(f,x) -> sum f + sum x
          in y + 1
        val sum : 'a term -> int = <fun>
\end{verbatim}
Here the return type "int" is never mixed with "a", so it is seen as
non-ambiguous, and can be inferred.
When using such partial type annotations we strongly suggest
specifying the "-principal" mode, to check that inference is
principal.

The exhaustiveness check is aware of GADT constraints, and can
automatically infer that some cases cannot happen.
For instance, the following pattern matching is correctly seen as
exhaustive (the "Add" case cannot happen).
\begin{verbatim}
        let get_int : int term -> int = function
          | Int n    -> n
          | App(_,_) -> 0
\end{verbatim}


\paragraph{Refutation cases and redundancy} (Introduced in OCaml 4.03)

Usually, the exhaustiveness check only tries to check whether the
cases omitted from the pattern matching are typable or not.
However, you can force it to try harder by adding {\em refutation cases}:
\begin{syntax}
matching-case:
     pattern ['when' expr] '->' expr
   | pattern '->' '.'
\end{syntax}
In presence of a refutation case, the exhaustiveness check will first
compute the intersection of the pattern with the complement of the
cases preceding it. It then checks whether the resulting patterns can
really match any concrete values by trying to type-check them.
Wild cards in the generated patterns are handled in a special way: if
their type is a variant type with only GADT constructors, then the
pattern is split into the different constructors, in order to check whether
any of them is possible (this splitting is not done for arguments of these
constructors, to avoid non-termination.) We also split tuples and
variant types with only one case, since they may contain GADTs inside.
For instance, the following code is deemed exhaustive:

\begin{verbatim}
        type _ t =
          | Int : int t
          | Bool : bool t

        let deep : (char t * int) option -> char = function
          | None -> 'c'
          | _ -> .
\end{verbatim}

Namely, the inferred remaining case is "Some _", which is split into
"Some (Int, _)" and "Some (Bool, _)", which are both untypable.
Note that the refutation case could be omitted here, because it is
automatically added when there is only one case in the pattern
matching.

Another addition is that the redundancy check is now aware of GADTs: a
case will be detected as redundant if it could be replaced by a
refutation case using the same pattern.

\paragraph{Advanced examples}
The "term" type we have defined above is an {\em indexed} type, where
a type parameter reflects a property of the value contents.
Another use of GADTs is {\em singleton} types, where a GADT value
represents exactly one type. This value can be used as runtime
representation for this type, and a function receiving it can have a
polytypic behavior.

Here is an example of a polymorphic function that takes the
runtime representation of some type "t" and a value of the same type,
then pretty-prints the value as a string:
\begin{verbatim}
        type _ typ =
          | Int : int typ
          | String : string typ
          | Pair : 'a typ * 'b typ -> ('a * 'b) typ

        let rec to_string: type t. t typ -> t -> string =
          fun t x ->
          match t with
          | Int -> string_of_int x
          | String -> Printf.sprintf "%S" x
          | Pair(t1,t2) ->
              let (x1, x2) = x in
              Printf.sprintf "(%s,%s)" (to_string t1 x1) (to_string t2 x2)
\end{verbatim}

Another frequent application of GADTs is equality witnesses.
\begin{verbatim}
        type (_,_) eq = Eq : ('a,'a) eq

        let cast : type a b. (a,b) eq -> a -> b = fun Eq x -> x
\end{verbatim}
Here type "eq" has only one constructor, and by matching on it one
adds a local constraint allowing the conversion between "a" and "b".
By building such equality witnesses, one can make equal types which
are syntactically different.

Here is an example using both singleton types and equality witnesses
to implement dynamic types.
\begin{verbatim}
        let rec eq_type : type a b. a typ -> b typ -> (a,b) eq option =
          fun a b ->
          match a, b with
          | Int, Int -> Some Eq
          | String, String -> Some Eq
          | Pair(a1,a2), Pair(b1,b2) ->
              begin match eq_type a1 b1, eq_type a2 b2 with
              | Some Eq, Some Eq -> Some Eq
              | _ -> None
              end
          | _ -> None

        type dyn = Dyn : 'a typ * 'a -> dyn

        let get_dyn : type a. a typ -> dyn -> a option =
          fun a (Dyn(b,x)) ->
          match eq_type a b with
          | None -> None
          | Some Eq -> Some x
\end{verbatim}

\paragraph{Existential type names in error messages}%
\label{p:existential-names}
(Updated in OCaml 4.03.0)

The typing of pattern matching in presence of GADT can generate many
existential types. When necessary, error messages refer to these
existential types using compiler-generated names. Currently, the
compiler generates these names according to the following nomenclature:
\begin{itemize}
\item First, types whose name starts with a "$" are existentials.
\item "$Constr_'a" denotes an existential type introduced for the type
variable "'a" of the GADT constructor "Constr":
\begin{caml_example}{verbatim}[error]
type any = Any : 'name -> any
let escape (Any x) = x
\end{caml_example}
\item "$Constr" denotes an existential type introduced for an anonymous %$
type variable in the GADT constructor "Constr":
\begin{caml_example}{verbatim}[error]
type any = Any : _ -> any
let escape (Any x) = x
\end{caml_example}
\item "$'a" if the existential variable was unified with the type %$
variable "'a" during typing:
\begin{caml_example}{verbatim}[error]
type ('arg,'result,'aux) fn =
  | Fun: ('a ->'b) -> ('a,'b,unit) fn
  | Mem1: ('a ->'b) * 'a * 'b -> ('a, 'b, 'a * 'b) fn
 let apply: ('arg,'result, _ ) fn -> 'arg -> 'result = fun f x ->
  match f with
  | Fun f -> f x
  | Mem1 (f,y,fy) -> if x = y then fy else f x
\end{caml_example}
\item "$n" (n a number) is an internally generated existential %$
which could not be named using one of the previous schemes.
\end{itemize}

As shown by the last item, the current behavior is imperfect
and may be improved in future versions.

\paragraph{Equations on non-local abstract types} (Introduced in OCaml
4.04)

GADT pattern-matching may also add type equations to non-local
abstract types. The behaviour is the same as with local abstract
types. Reusing the above "eq" type, one can write:
\begin{verbatim}
        module M : sig type t val x : t val e : (t,int) eq end = struct
          type t = int
          let x = 33
          let e = Eq
        end

        let x : int = let Eq = M.e in M.x
\end{verbatim}

Of course, not all abstract types can be refined, as this would
contradict the exhaustiveness check. Namely, builtin types (those
defined by the compiler itself, such as "int" or "array"), and
abstract types defined by the local module, are non-instantiable, and
as such cause a type error rather than introduce an equation.

\section{Syntax for Bigarray access}\label{s:bigarray-access}

(Introduced in Objective Caml 3.00)

\begin{syntax}
expr:
          ...
        | expr '.{' expr { ',' expr } '}'
        | expr '.{' expr { ',' expr } '}' '<-' expr
\end{syntax}

This extension provides syntactic sugar for getting and setting
elements in the arrays provided by the
"Bigarray"[\moduleref{Bigarray}] library.

The short expressions are translated into calls to functions of the
"Bigarray" module as described in the following table.

\begin{tableau}{|l|l|}{expression}{translation}
\entree{@expr_0'.{'expr_1'}'@}
       {"Bigarray.Array1.get "@expr_0 expr_1@}
\entree{@expr_0'.{'expr_1'}' '<-'expr@}
       {"Bigarray.Array1.set "@expr_0 expr_1 expr@}
\entree{@expr_0'.{'expr_1',' expr_2'}'@}
       {"Bigarray.Array2.get "@expr_0 expr_1 expr_2@}
\entree{@expr_0'.{'expr_1',' expr_2'}' '<-'expr@}
       {"Bigarray.Array2.set "@expr_0 expr_1 expr_2 expr@}
\entree{@expr_0'.{'expr_1',' expr_2',' expr_3'}'@}
       {"Bigarray.Array3.get "@expr_0 expr_1 expr_2 expr_3@}
\entree{@expr_0'.{'expr_1',' expr_2',' expr_3'}' '<-'expr@}
       {"Bigarray.Array3.set "@expr_0 expr_1 expr_2 expr_3 expr@}
\entree{@expr_0'.{'expr_1',' \ldots',' expr_n'}'@}
       {"Bigarray.Genarray.get "@ expr_0 '[|' expr_1',' \ldots ','
        expr_n '|]'@}
\entree{@expr_0'.{'expr_1',' \ldots',' expr_n'}' '<-'expr@}
       {"Bigarray.Genarray.set "@ expr_0 '[|' expr_1',' \ldots ','
        expr_n '|]' expr@}
\end{tableau}

The last two entries are valid for any $n > 3$.

\section{Attributes}\label{s:attributes}

\ikwd{when\@\texttt{when}}

(Introduced in OCaml 4.02,
infix notations for constructs other than expressions added in 4.03)

Attributes are ``decorations'' of the syntax tree which are mostly
ignored by the type-checker but can be used by external tools.  An
attribute is made of an identifier and a payload, which can be a
structure, a type expression (prefixed with ":"), a signature
(prefixed with ":") or a pattern (prefixed with "?") optionally
followed by a "when" clause:


\begin{syntax}
attr-id:
    lowercase-ident
 |  capitalized-ident
 |  attr-id '.' attr-id
;
attr-payload:
    [ module-items ]
 |  ':' typexpr
 |  ':' [ specification ]
 |  '?' pattern ['when' expr]
;
\end{syntax}

The first form of attributes is attached with a postfix notation on
``algebraic'' categories:

\begin{syntax}
attribute:
    '[@' attr-id attr-payload ']'
;
expr: ...
     | expr attribute
;
typexpr: ...
     | typexpr attribute
;
pattern: ...
     | pattern attribute
;
module-expr: ...
     | module-expr attribute
;
module-type: ...
     | module-type attribute
;
class-expr: ...
     | class-expr attribute
;
class-type: ...
     | class-type attribute
;
\end{syntax}

This form of attributes can also be inserted after the @'`'tag-name@
in polymorphic variant type expressions (@tag-spec-first@, @tag-spec@,
@tag-spec-full@) or after the @method-name@ in @method-type@.

The same syntactic form is also used to attach attributes to labels and
constructors in type declarations:

\begin{syntax}
field-decl:
          ['mutable'] field-name ':' poly-typexpr {attribute}
;
constr-decl:
          (constr-name || '()') [ 'of' constr-args ] {attribute}
;
\end{syntax}

Note: when a label declaration is followed by a semi-colon, attributes
can also be put after the semi-colon (in which case they are merged to
those specified before).


The second form of attributes are attached to ``blocks'' such as type
declarations, class fields, etc:

\begin{syntax}
item-attribute:
    '[@@' attr-id attr-payload ']'
;
typedef: ...
   | typedef item-attribute
;
exception-definition:
        'exception' constr-decl
      | 'exception' constr-name '=' constr
;
module-items:
        [';;'] ( definition || expr { item-attribute } ) { [';;'] definition || ';;' expr { item-attribute } } [';;']
;
class-binding: ...
   | class-binding item-attribute
;
class-spec: ...
   | class-spec item-attribute
;
classtype-def: ...
   | classtype-def item-attribute
;
definition:
          'let' ['rec'] let-binding { 'and' let-binding }
        | 'external' value-name ':' typexpr '=' external-declaration { item-attribute }
        | type-definition
        | exception-definition { item-attribute }
        | class-definition
        | classtype-definition
        | 'module' module-name { '(' module-name ':' module-type ')' }
                   [ ':' module-type ] \\ '=' module-expr { item-attribute }
        | 'module' 'type' modtype-name '=' module-type { item-attribute }
        | 'open' module-path { item-attribute }
        | 'include' module-expr { item-attribute }
        | 'module' 'rec' module-name ':' module-type '=' \\
          module-expr { item-attribute } \\
          { 'and' module-name ':' module-type '=' module-expr \\
          { item-attribute } }
;
specification:
          'val' value-name ':' typexpr { item-attribute }
        | 'external' value-name ':' typexpr '=' external-declaration { item-attribute }
        | type-definition
        | 'exception' constr-decl { item-attribute }
        | class-specification
        | classtype-definition
        | 'module' module-name ':' module-type { item-attribute }
        | 'module' module-name { '(' module-name ':' module-type ')' }
          ':' module-type { item-attribute }
        | 'module' 'type' modtype-name { item-attribute }
        | 'module' 'type' modtype-name '=' module-type { item-attribute }
        | 'open' module-path { item-attribute }
        | 'include' module-type { item-attribute }
;
class-field-spec: ...
        | class-field-spec item-attribute
;
class-field: ...
        | class-field item-attribute
;
\end{syntax}

A third form of attributes appears as stand-alone structure or
signature items in the module or class sub-languages.  They are not
attached to any specific node in the syntax tree:

\begin{syntax}
floating-attribute:
    '[@@@' attr-id attr-payload ']'
;
definition: ...
   | floating-attribute
;
specification: ...
   | floating-attribute
;
class-field-spec: ...
   | floating-attribute
;
class-field: ...
   | floating-attribute
;
\end{syntax}

(Note: contrary to what the grammar above describes, @item-attributes@
cannot be attached to these floating attributes in @class-field-spec@
and @class-field@.)


It is also possible to specify attributes using an infix syntax. For instance:

\begin{verbatim}
let[@foo] x = 2 in x + 1          === (let x = 2 [@@foo] in x + 1)
begin[@foo][@bar x] ... end       === (begin ... end)[@foo][@@bar x]
module[@foo] M = ...              === module M = ... [@@foo]
type[@foo] t = T                  === type t = T [@@foo]
method[@foo] m = ...              === method m = ... [@@foo]
\end{verbatim}

For "let", the attributes are applied to each bindings:

\begin{verbatim}
let[@foo] x = 2 and y = 3 in x + y === (let x = 2 [@@foo] and y = 3 in x + y)
let[@foo] x = 2
and[@bar] y = 3 in x + y           === (let x = 2 [@@foo] and y = 3 [@bar] in x + y)
\end{verbatim}


\subsection{Built-in attributes}
\label{ss:builtin-attributes}

Some attributes are understood by the type-checker:
\begin{itemize}
\item
 ``ocaml.warning'' or ``warning'', with a string literal payload.
 This can be used as floating attributes in a
 signature/structure/object/object type.  The string is parsed and has
 the same effect as the "-w" command-line option, in the scope between
 the attribute and the end of the current
 signature/structure/object/object type.  The attribute can also be
 used on an expression,
 in which case its scope is limited to that expression.
 Note that it is not well-defined which scope is used for a specific
 warning.  This is implementation dependant and can change between versions.
 For instance, warnings triggered by the ``ppwarning'' attribute (see below)
 are issued using the global warning configuration.
\item
 ``ocaml.warnerror'' or ``warnerror'', with a string literal payload.
 Same as ``ocaml.warning'', for the "-warn-error" command-line option.
\item
  ``ocaml.deprecated'' or ``deprecated''.
  Can be applied to most kind of items in signatures or
  structures.  When the element is later referenced, a warning (3) is
  triggered.  If the payload of the attribute is a string literal,
  the warning message includes this text.  It is also possible
  to use this ``ocaml.deprecated'' as a floating attribute
  on top of an ``.mli'' file (i.e. before any other non-attribute
  item) or on top of an ``.ml'' file without a corresponding
  interface; this marks the unit itself as being deprecated.
\item
  ``ocaml.deprecated_mutable'' or ``deprecated_mutable''.
  Can be applied to a mutable record label.  If the label is later
  used to modify the field (with ``expr.l <- expr''), a warning (3)
  will be triggered.  If the payload of the attribute is a string literal,
  the warning message includes this text.
\item
  ``ocaml.ppwarning'' or ``ppwarning'', in any context, with
  a string literal payload.  The text is reported as warning (22)
  by the compiler (currently, the warning location is the location
  of the string payload).  This is mostly useful for preprocessors which
  need to communicate warnings to the user.  This could also be used
  to mark explicitly some code location for further inspection.
\item
  ``ocaml.warn_on_literal_pattern'' or ``warn_on_literal_pattern'' annotate
  constructors in type definition. A warning (52) is then emitted when this
  constructor is pattern matched with a constant literal as argument. This
  attribute denotes constructors whose argument is purely informative and
  may change in the future. Therefore, pattern matching on this argument
  with a constant literal is unreliable. For instance, all built-in exception
  constructors are marked as ``warn_on_literal_pattern''.
  Note that, due to an implementation limitation, this warning (52) is only
  triggered for single argument constructor.
\item
  ``ocaml.tailcall'' or ``tailcall'' can be applied to function
  application in order to check that the call is tailcall optimized.
  If it it not the case, a warning (51) is emitted.
\item
  ``ocaml.inline'' or ``inline'' take either ``never'', ``always''
  or nothing as payload on a function or functor definition. If no payload
  is provided, the default value is ``always''. This payload controls when
  applications of the annotated functions should be inlined.
\item
  ``ocaml.inlined'' or ``inlined'' can be applied to any function or functor
  application to check that the call is inlined by the compiler. If the call
  is not inlined, a warning (55) is emitted.
\item
  ``ocaml.noalloc'', ``ocaml.unboxed''and ``ocaml.untagged'' or
  ``noalloc'', ``unboxed'' and ``untagged'' can be used on external
  definitions to obtain finer control over the C-to-OCaml interface. See
  \ref{s:C-cheaper-call} for more details.
\item
  ``ocaml.immediate'' or ``immediate'' applied on an abstract type mark the type as
  having a non-pointer implementation (e.g. ``int'', ``bool'', ``char'' or
  enumerated types). Mutation of these immediate types does not activate the
  garbage collector's write barrier, which can significantly boost performance in
  programs relying heavily on mutable state.
\item
  "ocaml.unboxed" or "unboxed" can be used on a type definition if the
  type is a single-field record or a concrete type with a single
  constructor that has a single argument. It tells the compiler to
  optimize the representation of the type by removing the block that
  represents the record or the constructor (i.e. a value of this type
  is physically equal to its argument). In the case of GADTs, an
  additional restriction applies: the argument must not be an
  existential variable, represented by an existential type variable,
  or an abstract type constructor applied to an existential type
  variable.
\item
   "ocaml.boxed" or "boxed" can be used on type definitions to mean
   the opposite of "ocaml.unboxed": keep the unoptimized
   representation of the type. When there is no annotation, the
   default is currently "boxed" but it may change in the future.
\end{itemize}

\begin{verbatim}
module X = struct
  [@@@warning "+9"]  (* locally enable warning 9 in this structure *)
  ...
end
  [@@deprecated "Please use module 'Y' instead."]

let x = begin[@warning "+9"] ... end in ....

type t = A | B
  [@@deprecated "Please use type 's' instead."]

let f x =
  assert (x >= 0) [@ppwarning "TODO: remove this later"];

let rec no_op = function
  | [] -> ()
  | _ :: q -> (no_op[@tailcall]) q;;

let f x = x [@@inline]

let () = (f[@inlined]) ()

type fragile =
  | Int of int [@warn_on_literal_pattern]
  | String of string [@warn_on_literal_pattern]

let f = function
| Int 0 | String "constant" -> () (* trigger warning 52 *)
| _ -> ()

module Immediate: sig
  type t [@@immediate]
  val x: t ref
end = struct
  type t = A | B
  let x = ref 0
end
  ....

\end{verbatim}


\section{Extension nodes}\label{s:extension-nodes}

(Introduced in OCaml 4.02,
infix notations for constructs other than expressions added in 4.03,
infix notation (e1 ;\%ext e2) added in 4.04.
)

Extension nodes are generic placeholders in the syntax tree. They are
rejected by the type-checker and are intended to be ``expanded'' by external
tools such as "-ppx" rewriters.

Extension nodes share the same notion of identifier and payload as
attributes~\ref{s:attributes}.

The first form of extension node is used for ``algebraic'' categories:

\begin{syntax}
extension:
    '[%' attr-id attr-payload ']'
;
expr: ...
     | extension
;
typexpr: ...
     | extension
;
pattern: ...
     | extension
;
module-expr: ...
     | extension
;
module-type: ...
     | extension
;
class-expr: ...
     | extension
;
class-type: ...
     | extension
;
\end{syntax}

A second form of extension node can be used in structures and
signatures, both in the module and object languages:

\begin{syntax}
item-extension:
    '[%%' attr-id attr-payload ']'
;
definition: ...
   | item-extension
;
specification: ...
   | item-extension
;
class-field-spec: ...
   | item-extension
;
class-field:
   | item-extension
;
\end{syntax}

An infix form is available for extension nodes when
the payload is of the same kind
(expression with expression, pattern with pattern ...).

Examples:

\begin{verbatim}
let%foo x = 2 in x + 1     === [%foo let x = 2 in x + 1]
begin%foo ... end          === [%foo begin ... end]
x ;%foo 2                  === [%foo x; 2]
module%foo M = ..          === [%%foo module M = ... ]
val%foo x : t              === [%%foo: val x : t]
\end{verbatim}

When this form is used together with the infix syntax for attributes,
the attributes are considered to apply to the payload:

\begin{verbatim}
fun%foo[@bar] x -> x + 1 === [%foo (fun x -> x + 1)[@foo ] ];
\end{verbatim}

\subsection{Built-in extension nodes}

(Introduced in OCaml 4.03)

Some extension nodes are understood by the compiler itself:
\begin{itemize}
  \item
    ``ocaml.extension_constructor'' or ``extension_constructor''
    take as payload a constructor from an extensible variant type
    (see \ref{s:extensible-variants}) and return its extension
    constructor slot.
\end{itemize}

\begin{caml_example*}{verbatim}
type t = ..
type t += X of int | Y of string
let x = [%extension_constructor X]
let y = [%extension_constructor Y]
\end{caml_example*}
\begin{caml_example}{toplevel}
 x <> y;;
\end{caml_example}

\section{Quoted strings}\label{s:quoted-strings}

(Introduced in OCaml 4.02)

Quoted strings "{foo|...|foo}" provide a different lexical syntax to
write string literals in OCaml code. They are useful to represent
strings of arbitrary content without escaping -- as long as the
delimiter you chose (here "|foo}") does not occur in the string
itself.

\begin{syntax}
string-literal: ...
     |  '{' quoted-string-id '|'  ........ '|' quoted-string-id '}'
;
quoted-string-id:
     { 'a'...'z' || '_' }
;
\end{syntax}

The opening delimiter has the form "{id|" where "id" is a (possibly
empty) sequence of lowercase letters and underscores.  The
corresponding closing delimiter is "|id}" (with the same
identifier). Unlike regular OCaml string literals, quoted
strings do not interpret any character in a special way.

Example:

\begin{verbatim}
String.length {|\"|}         (* returns 2 *)
String.length {foo|\"|foo}   (* returns 2 *)
\end{verbatim}

Quoted strings are interesting in particular in conjunction to
extension nodes "[%foo ...]" (see \ref{s:extension-nodes}) to embed
foreign syntax fragments to be interpreted by a preprocessor and
turned into OCaml code: you can use "[%sql {|...|}]" for example to
represent arbitrary SQL statements -- assuming you have a ppx-rewriter
that recognizes the "%sql" extension -- without requiring escaping
quotes.

Note that the non-extension form, for example "{sql|...|sql}", should
not be used for this purpose, as the user cannot see in the code that
this string literal has a different semantics than they expect, and
giving a semantics to a specific delimiter limits the freedom to
change the delimiter to avoid escaping issues.

\section{Exception cases in pattern matching}\label{s:exception-match}

(Introduced in OCaml 4.02)

A new form of exception patterns is allowed, only as a toplevel
pattern under a "match"..."with" pattern-matching (other occurrences
are rejected by the type-checker).

\begin{syntax}
pattern: ...
 | 'exception' pattern
;
\end{syntax}

Cases with such a toplevel pattern are called ``exception cases'',
as opposed to regular ``value cases''.  Exception cases are applied
when the evaluation of the matched expression raises an exception.
The exception value is then matched against all the exception cases
and re-raised if none of them accept the exception (as for a
"try"..."with" block).  Since the bodies of all exception and value
cases is outside the scope of the exception handler, they are all
considered to be in tail-position: if the "match"..."with" block
itself is in tail position in the current function, any function call
in tail position in one of the case bodies results in an actual tail
call.

It is an error if all cases are exception cases in a given pattern
matching.

\section{Extensible variant types}\label{s:extensible-variants}

(Introduced in OCaml 4.02)

\begin{syntax}
type-representation:
          ...
        | '=' '..'
;
specification:
        ...
      | 'type' [type-params] typeconstr type-extension-spec
;
definition:
        ...
      | 'type' [type-params] typeconstr type-extension-def
;
type-extension-spec: '+=' ['private'] ['|'] constr-decl { '|' constr-decl }
;
type-extension-def: '+=' ['private'] ['|'] constr-def { '|' constr-def }
;
constr-def:
          constr-decl
        | constr-name '=' constr
;
\end{syntax}

Extensible variant types are variant types which can be extended with
new variant constructors. Extensible variant types are defined using
"..". New variant constructors are added using "+=".
\begin{verbatim}
        type attr = ..

        type attr += Str of string

        type attr +=
          | Int of int
          | Float of float
\end{verbatim}

Pattern matching on an extensible variant type requires a default case
to handle unknown variant constructors:
\begin{verbatim}
        let to_string = function
          | Str s -> s
          | Int i -> string_of_int i
          | Float f -> string_of_float f
          | _ -> "?"
\end{verbatim}

A preexisting example of an extensible variant type is the built-in
"exn" type used for exceptions. Indeed, exception constructors can be
declared using the type extension syntax:
\begin{verbatim}
        type exn += Exc of int
\end{verbatim}

Extensible variant constructors can be rebound to a different name. This
allows exporting variants from another module.
\begin{verbatim}
        type Expr.attr += Str = Expr.Str
\end{verbatim}

Extensible variant constructors can be declared "private". As with
regular variants, this prevents them from being constructed directly by
constructor application while still allowing them to be de-structured in
pattern-matching.


\section{Generative functors}\label{s:generative-functors}

(Introduced in OCaml 4.02)

\begin{syntax}
module-expr:
          ...
        | 'functor' '()' '->' module-expr
        | module-expr '()'
;
definition:
          ...
        | 'module' module-name { '(' module-name ':' module-type ')' || '()' }
                   [ ':' module-type ] \\ '=' module-expr
;
module-type:
          ...
        | 'functor' '()' '->' module-type
;
specification:
          ...
        | 'module' module-name { '(' module-name ':' module-type ')' || '()' }
          ':' module-type
;
\end{syntax}

A generative functor takes a unit "()" argument.
In order to use it, one must necessarily apply it to this unit argument,
ensuring that all type components in the result of the functor behave
in a generative way, {\em i.e.} they are different from types obtained
by other applications of the same functor.
This is equivalent to taking an argument of signature "sig end", and always
applying to "struct end", but not to some defined module (in the
latter case, applying twice to the same module would return identical
types).

As a side-effect of this generativity, one is allowed to unpack
first-class modules in the body of generative functors.

\section{Extension-only syntax}
(Introduced in OCaml 4.02.2, extended in 4.03)

Some syntactic constructions are accepted during parsing and rejected
during type checking. These syntactic constructions can therefore not
be used directly in vanilla OCaml. However, "-ppx" rewriters and other
external tools can exploit this parser leniency to extend the language
with these new syntactic constructions by rewriting them to
vanilla constructions.
\subsection{Extension operators} \label{s:ext-ops}
(Introduced in OCaml 4.02.2)
\begin{syntax}
infix-symbol:
          ...
        | "#" {operator-chars} "#"  {operator-char '|' "#"}
;
\end{syntax}

Operator names starting with a "#" character and containing more than
one "#" character are reserved for extensions.

\subsection{Extension literals} \label{s:extension-literals}
(Introduced in OCaml 4.03)
\begin{syntax}
float-literal:
       ...
     | ["-"] ("0"\ldots"9") { "0"\ldots"9"||"_" } ["." { "0"\ldots"9"||"_" }]
       [("e"||"E") ["+"||"-"] ("0"\ldots"9") { "0"\ldots"9"||"_" }]
       ["g"\ldots"z"||"G"\ldots"Z"]
     | ["-"] ("0x"||"0X")
       ("0"\ldots"9"||"A"\ldots"F"||"a"\ldots"f")
       { "0"\ldots"9"||"A"\ldots"F"||"a"\ldots"f"||"_" }\\
       ["." { "0"\ldots"9"||"A"\ldots"F"||"a"\ldots"f"||"_" }
       [("p"||"P") ["+"||"-"] ("0"\ldots"9") { "0"\ldots"9"||"_" }]
       ["g"\ldots"z"||"G"\ldots"Z"]
;
int-literal:
           ...
        | ["-"] ("0"\ldots"9") { "0"\ldots"9" || "_" }["g"\ldots"z"||"G"\ldots"Z"]
        | ["-"] ("0x"||"0X") ("0"\ldots"9"||"A"\ldots"F"||"a"\ldots"f")
          { "0"\ldots"9"||"A"\ldots"F"||"a"\ldots"f"||"_" }
          ["g"\ldots"z"||"G"\ldots"Z"]
        | ["-"] ("0o"||"0O") ("0"\ldots"7") { "0"\ldots"7"||"_" }
          ["g"\ldots"z"||"G"\ldots"Z"]
        | ["-"] ("0b"||"0B") ("0"\ldots"1") { "0"\ldots"1"||"_" }
          ["g"\ldots"z"||"G"\ldots"Z"]
;
\end{syntax}
Int and float literals followed by an one-letter identifier in the
range @["g".."z"||"G".."Z"]@ are extension-only literals.

\section{Inline records} \label{s:inline-records}
(Introduced in OCaml 4.03)
\begin{syntax}
  constr-args:
          ...
          | record-decl
;
\end{syntax}

The arguments of a sum-type constructors can now be defined using the
same syntax as records.  Mutable and polymorphic fields are allowed.
GADT syntax is supported.  Attributes can be specified on individual
fields.

Syntactically, building or matching constructors with such an inline
record argument is similar to working with a unary constructor whose
unique argument is a declared record type.  A pattern can bind
the inline record as a pseudo-value, but the record cannot escape the
scope of the binding and can only be used with the dot-notation to
extract or modify fields or to build new constructor values.

\begin{verbatim}
type t =
  | Point of {width: int; mutable x: float; mutable y: float}
  | ...

let v = Point {width = 10; x = 0.; y = 0.}

let scale l = function
  | Point p -> Point {p with x = l *. p.x; y = l *. p.y}
  | ....

let print = function
  | Point {x; y; _} -> Printf.printf "%f/%f" x y
  | ....

let reset = function
  | Point p -> p.x <- 0.; p.y <- 0.
  | ...

let invalid = function
  | Point p -> p  (* INVALID *)
  | ...
\end{verbatim}


\section{Local exceptions}
\ikwd{let\@\texttt{let}}
\ikwd{exception\@\texttt{exception}} \label{s:local-exceptions}

(Introduced in OCaml 4.04)

It is possible to define local exceptions in expressions:

\begin{syntax}
expr:
       ...
     | "let" "exception" constr-decl "in" expr
\end{syntax}


The syntactic scope of the exception constructor is the inner
expression, but nothing prevents exception values created with this
constructor from escaping this scope.  Two executions of the definition
above result in two incompatible exception constructors (as for any
exception definition).


\section{Documentation comments}
(Introduced in OCaml 4.03)

Comments which start with "**" are treated specially by the
compiler. They are automatically converted during parsing into
attributes (see \ref{s:attributes}) to allow tools to process them as
documentation.

Such comments can take three forms: {\em floating comments}, {\em item
comments} and {\em label comments}. Any comment starting with "**" which
does not match one of these forms will cause the compiler to emit
warning 50.

Comments which start with "**" are also used by the ocamldoc
documentation generator (see \ref{c:ocamldoc}). The three comment forms
recognised by the compiler are a subset of the forms accepted by
ocamldoc (see \ref{s:ocamldoc-comments}).

\subsection{Floating comments}

Comments surrounded by blank lines that appear within structures,
signatures, classes or class types are converted into
@floating-attribute@s. For example:

\begin{verbatim}
type t = T

(** Now some definitions for [t] *)

let mkT = T
\end{verbatim}

will be converted to:

\begin{verbatim}
type t = T

[@@@ocaml.text " Now some definitions for [t] "]

let mkT = T
\end{verbatim}

\subsection{Item comments}

Comments which appear {\em immediately before} or {\em immediately
after} a structure item, signature item, class item or class type item
are converted into @item-attribute@s. Immediately before or immediately
after means that there must be no blank lines, ";;", or other
documentation comments between them. For example:

\begin{verbatim}
type t = T
(** A description of [t] *)

\end{verbatim}

or

\begin{verbatim}

(** A description of [t] *)
type t = T
\end{verbatim}

will be converted to:

\begin{verbatim}
type t = T
[@@ocaml.doc " A description of [t] "]
\end{verbatim}

Note that, if a comment appears immediately next to multiple items,
as in:

\begin{verbatim}
type t = T
(** An ambiguous comment *)
type s = S
\end{verbatim}

then it will be attached to both items:

\begin{verbatim}
type t = T
[@@ocaml.doc " An ambiguous comment "]
type s = S
[@@ocaml.doc " An ambiguous comment "]
\end{verbatim}

and the compiler will emit warning 50.

\subsection{Label comments}

Comments which appear {\em immediately after} a labelled argument,
record field, variant constructor, object method or polymorphic variant
constructor are are converted into @attribute@s. Immediately
after means that there must be no blank lines or other documentation
comments between them. For example:

\begin{verbatim}
type t1 = lbl:int (** Labelled argument *) -> unit

type t2 = {
  fld: int; (** Record field *)
  fld2: float;
}

type t3 =
  | Cstr of string (** Variant constructor *)
  | Cstr2 of string

type t4 = < meth: int * int; (** Object method *) >

type t5 = [
  `PCstr (** Polymorphic variant constructor *)
]
\end{verbatim}

will be converted to:

\begin{verbatim}
type t1 = lbl:(int [@ocaml.doc " Labelled argument "]) -> unit

type t2 = {
  fld: int [@ocaml.doc " Record field "];
  fld2: float;
}

type t3 =
  | Cstr of string [@ocaml.doc " Variant constructor "]
  | Cstr2 of string

type t4 = < meth : int * int [@ocaml.doc " Object method "] >

type t5 = [
  `PCstr [@ocaml.doc " Polymorphic variant constructor "]
]
\end{verbatim}

Note that label comments take precedence over item comments, so:

\begin{verbatim}
type t = T of string
(** Attaches to T not t *)
\end{verbatim}

will be converted to:

\begin{verbatim}
type t =  T of string [@ocaml.doc " Attaches to T not t "]
\end{verbatim}

whilst:

\begin{verbatim}
type t = T of string
(** Attaches to T not t *)
(** Attaches to t *)
\end{verbatim}

will be converted to:

\begin{verbatim}
type t =  T of string [@ocaml.doc " Attaches to T not t "]
[@@ocaml.doc " Attaches to t "]
\end{verbatim}

In the absence of meaningful comment on the last constructor of
a type, an empty comment~"(**)" can be used instead:

\begin{verbatim}
type t = T of string
(**)
(** Attaches to t *)
\end{verbatim}

will be converted directly to

\begin{verbatim}
type t =  T of string
[@@ocaml.doc " Attaches to t "]
\end{verbatim}