1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Output the DFA tables and its entry points *)
open Printf
open Syntax
open Lexgen
open Common
let output_auto_defs oc =
fprintf oc "let __ocaml_lex_init_lexbuf lexbuf mem_size =\n\
let pos = lexbuf.Lexing.lex_curr_pos in\n\
lexbuf.Lexing.lex_mem <- Array.create mem_size (-1) ;\n\
lexbuf.Lexing.lex_start_pos <- pos ;\n\
lexbuf.Lexing.lex_last_pos <- pos ;\n\
lexbuf.Lexing.lex_last_action <- -1\n\
\n\
" ;
output_string oc
"let rec __ocaml_lex_next_char lexbuf =\n\
if lexbuf.Lexing.lex_curr_pos >= lexbuf.Lexing.lex_buffer_len then begin\n\
if lexbuf.Lexing.lex_eof_reached then\n\
256\n\
else begin\n\
lexbuf.Lexing.refill_buff lexbuf ;\n\
__ocaml_lex_next_char lexbuf\n\
end\n\
end else begin\n\
let i = lexbuf.Lexing.lex_curr_pos in\n\
let c = lexbuf.Lexing.lex_buffer.[i] in\n\
lexbuf.Lexing.lex_curr_pos <- i+1 ;\n\
Char.code c\n\
end\n\
\n\
"
let output_pats oc pats = List.iter (fun p -> fprintf oc "|%d" p) pats
let output_action oc mems r =
output_memory_actions " " oc mems ;
match r with
| Backtrack ->
fprintf oc
" lexbuf.Lexing.lex_curr_pos <- lexbuf.Lexing.lex_last_pos ;\n" ;
fprintf oc " lexbuf.Lexing.lex_last_action\n"
| Goto n ->
fprintf oc " __ocaml_lex_state%d lexbuf\n" n
let output_pat oc i =
if i >= 256 then
fprintf oc "|eof"
else
fprintf oc "|'%s'" (Char.escaped (Char.chr i))
let output_clause oc pats mems r =
fprintf oc "(* " ;
List.iter (output_pat oc) pats ;
fprintf oc " *)\n" ;
fprintf oc " %a ->\n" output_pats pats ; output_action oc mems r
let output_default_clause oc mems r =
fprintf oc " | _ ->\n" ; output_action oc mems r
let output_moves oc moves =
let t = Hashtbl.create 17 in
let add_move i (m,mems) =
let mems,r = try Hashtbl.find t m with Not_found -> mems,[] in
Hashtbl.replace t m (mems,(i::r)) in
for i = 0 to 256 do
add_move i moves.(i)
done ;
let most_frequent = ref Backtrack
and most_mems = ref []
and size = ref 0 in
Hashtbl.iter
(fun m (mems,pats) ->
let size_m = List.length pats in
if size_m > !size then begin
most_frequent := m ;
most_mems := mems ;
size := size_m
end)
t ;
Hashtbl.iter
(fun m (mems,pats) ->
if m <> !most_frequent then output_clause oc (List.rev pats) mems m)
t ;
output_default_clause oc !most_mems !most_frequent
let output_tag_actions pref oc mvs =
output_string oc "(*" ;
List.iter
(fun i -> match i with
| SetTag (t,m) -> fprintf oc " t%d <- [%d] ;" t m
| EraseTag t -> fprintf oc " t%d <- -1 ;" t)
mvs ;
output_string oc " *)\n" ;
List.iter
(fun i -> match i with
| SetTag (t,m) ->
fprintf oc "%s%a <- %a ;\n"
pref output_mem_access t output_mem_access m
| EraseTag t ->
fprintf oc "%s%a <- -1 ;\n"
pref output_mem_access t)
mvs
let output_trans pref oc i trans =
fprintf oc "%s __ocaml_lex_state%d lexbuf = " pref i ;
match trans with
| Perform (n,mvs) ->
output_tag_actions " " oc mvs ;
fprintf oc " %d\n" n
| Shift (trans, move) ->
begin match trans with
| Remember (n,mvs) ->
output_tag_actions " " oc mvs ;
fprintf oc
" lexbuf.Lexing.lex_last_pos <- lexbuf.Lexing.lex_curr_pos ;\n" ;
fprintf oc " lexbuf.Lexing.lex_last_action <- %d ;\n" n
| No_remember -> ()
end ;
fprintf oc " match __ocaml_lex_next_char lexbuf with\n" ;
output_moves oc move
let output_automata oc auto =
output_auto_defs oc ;
let n = Array.length auto in
output_trans "let rec" oc 0 auto.(0) ;
for i = 1 to n-1 do
output_trans "\nand" oc i auto.(i)
done ;
output_char oc '\n'
(* Output the entries *)
let output_entry sourcefile ic oc tr e =
let init_num, init_moves = e.auto_initial_state in
fprintf oc "%s %alexbuf =\n\
__ocaml_lex_init_lexbuf lexbuf %d; %a\n\
let __ocaml_lex_result = __ocaml_lex_state%d lexbuf in\n\
lexbuf.Lexing.lex_start_p <- lexbuf.Lexing.lex_curr_p;\n\
lexbuf.Lexing.lex_curr_p <- {lexbuf.Lexing.lex_curr_p with\n\
Lexing.pos_cnum = lexbuf.Lexing.lex_abs_pos + lexbuf.Lexing.lex_curr_pos};\n\
match __ocaml_lex_result with\n"
e.auto_name output_args e.auto_args
e.auto_mem_size (output_memory_actions " ") init_moves init_num ;
List.iter
(fun (num, env, loc) ->
fprintf oc " | ";
fprintf oc "%d ->\n" num;
output_env sourcefile ic oc tr env ;
copy_chunk sourcefile ic oc tr loc true;
fprintf oc "\n")
e.auto_actions;
fprintf oc " | _ -> raise (Failure \"lexing: empty token\")\n\n\n"
(* Main output function *)
let output_lexdef sourcefile ic oc tr header entry_points transitions trailer =
copy_chunk sourcefile ic oc tr header false;
output_automata oc transitions ;
begin match entry_points with
[] -> ()
| entry1 :: entries ->
output_string oc "let rec "; output_entry sourcefile ic oc tr entry1;
List.iter
(fun e -> output_string oc "and "; output_entry sourcefile ic oc tr e)
entries;
output_string oc ";;\n\n";
end;
copy_chunk sourcefile ic oc tr trailer false
|