1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Luc Maranget, projet Moscova, INRIA Rocquencourt *)
(* *)
(* Copyright 2001 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
open Misc
open Longident
open Primitive
open Types
open Asttypes
open Typedtree
open Env
open Lambda
(* DEBUG stuff *)
open Printf
let dump_pat fp jpat =
let jid,_ = jpat.jpat_desc in
fprintf fp "%s()" (Ident.unique_name jid.jident_desc)
let dump_list pf fp xs =
fprintf fp "[" ;
List.iter (fun x -> fprintf fp "%a; " pf x) xs ;
fprintf fp "]"
let dump_pats fp jpats = dump_list dump_pat fp jpats
let dump_patss fp xs = dump_list dump_pats fp xs
(*
This first section builds lambda expr needed by jocaml constructs.
These are calls to functions or primitives defined in the
Join_prim module.
*)
let get_signature name =
lazy begin
try
Env.open_pers_signature name Env.empty
with Not_found ->
fatal_error ("transjoin: module "^name^" not found")
end
let env_join = get_signature "Join_prim"
let transl_name env name =
try
Env.lookup_value (Lident name) (Lazy.force env)
with
| Not_found ->
fatal_error ("Join primitive: "^name^" not found")
let mk_lambda env name = lazy (transl_name env name)
let lambda_init_unit_queue = mk_lambda env_join "init_unit_queue"
let lambda_create_process = mk_lambda env_join "create_process"
(* Channel creation *)
let lambda_create_async = mk_lambda env_join "create_async"
and lambda_create_alone = mk_lambda env_join "create_alone"
and lambda_alloc_alone = mk_lambda env_join "alloc_alone"
and lambda_patch_alone = mk_lambda env_join "patch_alone"
and lambda_create_sync = mk_lambda env_join "create_sync"
and lambda_create_sync_alone = mk_lambda env_join "create_sync_alone"
and lambda_alloc_stub_guard = mk_lambda env_join "alloc_stub_guard"
and lambda_alloc_sync_alone = mk_lambda env_join "alloc_sync_alone"
and lambda_patch_sync_alone = mk_lambda env_join "patch_sync_alone"
(* Asynchronous sends *)
let lambda_send_async = mk_lambda env_join "send_async"
and lambda_tail_send_async = mk_lambda env_join "tail_send_async"
(* Optimized sends *)
let lambda_local_send_async = mk_lambda env_join "local_send_async"
and lambda_local_tail_send_async = mk_lambda env_join "local_tail_send_async"
and lambda_local_send_sync = mk_lambda env_join "local_send_sync"
let lambda_create_automaton = mk_lambda env_join "create_automaton"
let lambda_create_automaton_debug = mk_lambda env_join "create_automaton_debug"
let lambda_wrap_automaton = mk_lambda env_join "wrap_automaton"
let lambda_patch_table = mk_lambda env_join "patch_table"
let lambda_get_queue = mk_lambda env_join "get_queue"
let lambda_reply_to = mk_lambda env_join "reply_to"
let lambda_reply_to_exn = mk_lambda env_join "reply_to_exn"
let lambda_raise_join_exit = mk_lambda env_join "raise_join_exit"
let mk_apply f args loc = match Lazy.force f with
| _,{val_kind=Val_prim p} -> Lprim (Pccall p,args)
| path,_ -> Lapply (transl_path path, args, loc)
let lambda_int i = Lconst (Const_base (Const_int i))
and lambda_string s = Lconst (Const_base (Const_string s))
let init_unit_queue auto idx =
mk_apply lambda_init_unit_queue [Lvar auto ; lambda_int idx]
let create_process p loc = mk_apply lambda_create_process [p] loc
let do_send send auto num arg =
mk_apply send [Lvar auto ; lambda_int num ; arg]
let create_async auto num =
mk_apply lambda_create_async [Lvar auto ; lambda_int num]
and create_alone id name =
mk_apply lambda_create_alone [Lvar id ; lambda_string name]
and alloc_alone name = mk_apply lambda_alloc_alone [lambda_string name]
and patch_alone id g =
mk_apply lambda_patch_alone [Lvar id ; Lvar g]
and send_async chan arg = mk_apply lambda_send_async [chan ; arg]
and tail_send_async chan arg = mk_apply lambda_tail_send_async [chan ; arg]
and local_send_async auto idx arg =
mk_apply lambda_local_send_async [Lvar auto ; lambda_int idx ; arg]
and local_tail_send_async auto idx arg =
mk_apply lambda_local_tail_send_async [Lvar auto ; lambda_int idx ; arg]
and local_tail_send_async2 auto idx arg =
mk_apply lambda_local_tail_send_async [Lvar auto ; idx ; arg]
Location.none
and local_send_sync auto idx arg =
mk_apply lambda_local_send_sync [Lvar auto ; lambda_int idx ; arg]
and local_send_sync2 auto idx arg =
mk_apply lambda_local_send_sync [Lvar auto ; idx ; arg]
Location.none
(* Those two are inlined *)
let local_tail_send_alone guard arg loc =
Lapply (Lvar guard, [arg],loc)
let local_send_alone guard arg loc =
create_process
(Lfunction
(Curried, [Ident.create "_x"],
local_tail_send_alone guard arg Location.none))
loc
let lambda_string s = Lconst (Const_base (Const_string s))
let create_sync auto num =
mk_apply lambda_create_sync [Lvar auto ; lambda_int num]
and create_sync_alone id name =
mk_apply lambda_create_sync_alone [Lvar id; lambda_string name]
let alloc_stub_guard =
mk_apply lambda_alloc_stub_guard [lambda_unit]
and alloc_sync_alone id name =
mk_apply lambda_alloc_sync_alone [Lvar id ; lambda_string name]
and patch_sync_alone id stub =
mk_apply lambda_patch_sync_alone [Lvar id ; Lvar stub]
let create_automaton nchans names =
mk_apply lambda_create_automaton_debug [lambda_int nchans ; names]
let wrap_automaton id = mk_apply lambda_wrap_automaton [Lvar id]
let reply_to lam1 lam2 = mk_apply lambda_reply_to [lam1; lam2]
and reply_to_exn exn kont =
mk_apply lambda_reply_to_exn [Lvar exn ; Lvar kont]
let raise_join_exit = mk_apply lambda_raise_join_exit [lambda_unit]
let get_replies sync p =
let reps = Typejoin.get_replies p in
match reps, sync with
| (id,_)::rem, Some oid when Ident.same id oid ->
true, List.map fst rem
| _, _ -> false, List.map fst reps
let do_spawn p loc =
if p = lambda_unit then
p
else
let param = Ident.create "_x" in
create_process (Lfunction (Curried, [param], p)) loc
let do_get_queue auto num = mk_apply lambda_get_queue [auto ; lambda_int num]
(*
All about synchronous threads.
Synchronous threads are guarded processes, when one of matched names
at least is synchronous.
In such case the guarded process is compiled into a function,
whose result is the answer to a distinguished synchronous name
(principal name)
The list of replied-to ports is computed by the typer.
*)
let principal p = match Typejoin.get_replies p with
| (x,_)::_ -> Some x
| [] -> None
(* Once again for finding back parts of principal threads *)
let rec is_principal id p = match p.exp_desc with
| Texp_asyncsend (_,_) | Texp_null
-> false
| Texp_reply (_, kont) -> kont=id
| Texp_par (p1, p2) ->
is_principal id p1 || is_principal id p2
| Texp_let (_,_,p) | Texp_def (_,p)
| Texp_sequence (_,p) | Texp_when (_,p) ->
is_principal id p
| Texp_match (_,(_,p)::cls,_) ->
is_principal id p &&
List.for_all (fun (_,p) -> is_principal id p) cls
| Texp_ifthenelse (_,pifso, Some pifno) ->
is_principal id pifso && is_principal id pifno
| Texp_ifthenelse (_,_,None) -> false
| Texp_for (_,_,_,_,_,_) -> false
| _ -> assert false
(*
The simple_proc predicates decides whether a new thread is needed
to execute a process p or not.
More specifically, the execution of p must terminate and does not
raise an exception.
Note :
-There are connections beetween the answers of
simple_proc and the way threads are introduced by
transl_simple_proc and transl_proc in Translcore
-Interaction of predicate/compilation can be quadratic, I do
not think it harms on real programs
*)
(*
simple_pat checks irrefutabililty for let patterns.
Idealy one should use some Partial/Total field, but this
information is lost.. Does not matter much anyway.
*)
(* forward declaration, filled by Translcore *)
let simple_prim = ref ((fun p -> assert false) : Primitive.description -> bool)
let rec simple_pat p = match p.pat_desc with
| Tpat_any | Tpat_var _ -> true
| Tpat_alias (p,_,_)|Tpat_lazy p -> simple_pat p
| Tpat_tuple ps -> List.for_all simple_pat ps
| Tpat_record (lps,_) -> List.for_all (fun (_,_,_,p) -> simple_pat p) lps
| Tpat_or (p1,p2,_) -> simple_pat p1 && simple_pat p2
| Tpat_constant _|Tpat_construct _|Tpat_variant _
| Tpat_array _ -> false
let rec simple_exp e = match e.exp_desc with
(* Mixed cases *)
| Texp_sequence (e1,e2) | Texp_when (e1,e2) ->
simple_exp e1 && simple_exp e2
| Texp_let (_, pes,e) ->
List.for_all (fun (pat,e) -> simple_pat pat && simple_exp e) pes &&
simple_exp e
| Texp_match (e,pes,Total) ->
simple_exp e &&
List.for_all (fun (_,e) -> simple_exp e) pes
| Texp_match (_, _, Partial) -> false
| Texp_ifthenelse (e, eifso, eo) ->
simple_exp e && simple_exp eifso && simple_exp_option eo
| Texp_def (_,e) -> simple_exp e
(* Simple simple expressions *)
| Texp_ident _ | Texp_constant _ | Texp_function _
| Texp_variant (_,None)
| Texp_instvar _ | Texp_setinstvar _ | Texp_spawn (_)
-> true
(* Recursion *)
| Texp_construct (_,_,_,es,_) | Texp_tuple (es) | Texp_array (es)
-> List.for_all simple_exp es
| Texp_variant (_, Some e) | Texp_field (e,_,_,_)
-> simple_exp e
| Texp_setfield (e1,_,_,_,e2) -> simple_exp e1 && simple_exp e2
| Texp_apply ({exp_desc=Texp_ident (_,_,{val_kind=Val_prim p})}, args) ->
List.length args < p.prim_arity || (* will be compiled as function *)
(!simple_prim p &&
List.for_all (fun (_,eo,_) -> simple_exp_option eo) args)
| Texp_apply (_,_) -> false
| Texp_for (_,_,e1,e2,_,e3) ->
simple_exp e1 && simple_exp e2 && simple_exp e3
| Texp_record (les,eo) ->
List.for_all (fun (_,_,_,e) -> simple_exp e) les &&
simple_exp_option eo
(* Asserts are special *)
| Texp_assert e -> !Clflags.noassert || simple_exp e
| Texp_assertfalse -> !Clflags.noassert
(* Who knows ? *)
| Texp_letmodule _ | Texp_override (_,_) | Texp_lazy (_)
| Texp_send _ | Texp_while (_,_) | Texp_new _ | Texp_try (_,_)
| Texp_object _| Texp_pack _
-> false
(* Process constructs are not errors *)
| Texp_reply (_, _)|Texp_par (_, _)|Texp_asyncsend (_, _)
| Texp_null
-> assert false
and simple_exp_option = function
| None -> true
| Some e -> simple_exp e
and simple_proc p = match p.exp_desc with
(* Mixed cases *)
| Texp_sequence (e,p) | Texp_when (e,p) ->
simple_exp e && simple_proc p
| Texp_let (_, pes,e) ->
List.for_all (fun (pat,e) -> simple_pat pat && simple_exp e) pes &&
simple_proc e
| Texp_match (e,pps,Total) ->
simple_exp e &&
List.for_all (fun (_,e) -> simple_proc e) pps
| Texp_match (_,_,Partial) -> false
| Texp_ifthenelse (e, pifso, Some pifno) ->
simple_exp e && simple_proc pifso && simple_proc pifno
| Texp_ifthenelse (e, pifso, None) ->
simple_exp e && simple_proc pifso
| Texp_def (_,p) -> simple_proc p
| Texp_for (_,_,e1,e2,_,_body) -> (* _body is compiled so a not to fail *)
simple_exp e1 && simple_exp e2
(* Process constructs *)
| Texp_reply (e, _) -> simple_exp e
| Texp_par (p1, p2) -> simple_proc p1 || simple_proc p2
| Texp_asyncsend (e1, e2) -> simple_exp e1 && simple_exp e2
| Texp_null -> true
(* Plain expressions no longer are errors *)
| Texp_spawn _|Texp_object _|Texp_lazy _|Texp_assert _|
Texp_letmodule _|Texp_override _|Texp_setinstvar _|
Texp_instvar _|Texp_new _|Texp_send _|
Texp_while _|Texp_array _|
Texp_setfield _|Texp_field _|Texp_record _|
Texp_variant _|Texp_construct _|Texp_tuple _|Texp_try _|
Texp_apply _|Texp_function _|Texp_constant _|Texp_ident _|
Texp_assertfalse|Texp_pack _
-> assert false
let do_reply_handler pri kids lam =
match kids with
| [] -> lam
| _ ->
let param = Ident.create "#exn#" in
Ltrywith
(lam,
param,
List.fold_right
(fun kid k -> Lsequence (reply_to_exn param kid Location.none, k))
kids
(if pri then Lprim (Praise, [Lvar param]) else
raise_join_exit Location.none))
let lambda_reply_handler sync p lam =
let pri, kids = get_replies sync p in
do_reply_handler pri kids lam
let reply_handler sync p comp_fun e =
(* Find actual continuations to reply to *)
let pri, kids = get_replies sync p in
if simple_exp e then
comp_fun e
else
do_reply_handler pri kids (comp_fun e)
let partition_procs procs = List.partition simple_proc procs
let rec do_as_procs r e = match e.exp_desc with
| Texp_null -> r
| Texp_par (e1,e2) ->
do_as_procs (do_as_procs r e2) e1
| _ -> e::r
let rec get_principal id = function
| [] -> assert false (* one thread must be principal *)
| p::rem ->
if is_principal id p then
p,rem
else
let r,rrem = get_principal id rem in
r,p::rrem
let as_procs sync e =
let ps = do_as_procs [] e in
let psync, ps = match sync with
| None -> None, ps
| Some id ->
let psync, ps = get_principal id ps in
Some psync, ps in
let seqs, forks = partition_procs ps in
psync, seqs, forks
(*
This section is for compiling automata.
Most material is here, other is in Translcore
*)
let rec get_chan_rec id = function
| [] -> raise Not_found
| (oid,x)::rem ->
if id = oid then x else get_chan_rec id rem
let dump_idx fp (id, _) = fprintf fp "%s" (Ident.unique_name id)
let get_num msg names id =
try
let {jchannel_id=x} = get_chan_rec id names in
match x with
| Chan (_,num) -> num
| _ ->
fatal_error
(Printf.sprintf "Transljoin.get_num: %s is a forwarder"
(Ident.unique_name id))
with
| Not_found ->
fatal_error
(Printf.sprintf "Transljoin.get_num: %s" (Ident.unique_name id))
let get_chan msg names id =
try
let {jchannel_id=x} = get_chan_rec id names in
x
with
| Not_found ->
fatal_error
(Printf.sprintf "Transljoin.get_chan: %s" (Ident.unique_name id))
let patch_table auto t =
mk_apply
lambda_patch_table
[Lvar auto ; Lprim (Pmakeblock (0,Immutable), t)]
let rec principal_param ipri params nums = match params, nums with
| param::params, num::nums ->
if num=ipri then param
else principal_param ipri params nums
| _,_ -> assert false
let names_block nchans names =
let t = Array.create nchans "" in
List.iter
(fun (id, {jchannel_id=x}) ->match x with
| Chan (_,i) -> t.(i) <- Ident.unique_name id
| _ -> ())
names ;
Lconst
(Const_block
(0, Array.fold_right (fun s r -> Const_base (Const_string s)::r) t []))
let create_auto
{ jauto_name=(auto_name, wrapped_name);
jauto_names = names ; jauto_nchans=nchans ; } k =
if nchans > 0 then
Llet
(Strict, auto_name,
create_automaton
nchans (names_block nchans names)
Location.none,
Llet
(Strict, wrapped_name, wrap_automaton auto_name Location.none, k))
else k
let create_channels {jauto_name=(raw_name, name) ; jauto_names=names} k =
List.fold_right
(fun (id,jc) k ->
let {jchannel_sync=sync ; jchannel_id=x} = jc in
match x with
| Chan (_,num) ->
Llet
(StrictOpt, id,
(if sync then
create_sync
else
create_async) name num Location.none,
if
Typeopt.is_unit_channel_type
jc.jchannel_type
jc.jchannel_env
then
Lsequence (init_unit_queue raw_name num Location.none, k)
else k)
| _ -> k)
names k
let create_dispatchers disps k =
List.fold_right
(fun (id,chan,lam) k ->
Llet
(StrictOpt, id, lam,
let name = Ident.unique_name chan.jchannel_ident in
Llet
(StrictOpt, chan.jchannel_ident,
(if chan.jchannel_sync then create_sync_alone
else create_alone) id name Location.none, k)))
disps k
let make_g caller chan g =
(* Printf.eprintf "make_g %s <%s>\n"
caller (Ident.unique_name chan.jchannel_ident) ; *)
if chan.jchannel_sync then
chan.jchannel_ident, (Some (Ident.create "#stub"),g)
else
chan.jchannel_ident, (None,g)
let create_forwarders autos dispss fwdss r =
(* collect all pairs channel ident X (stub_ident option X guard_ident) *)
let id2g = [] in
(*
List.fold_right
(fun disps r ->
List.fold_right
(fun (g,chan,_) r ->
make_g "disp" chan g::r)
disps r)
dispss [] in
*)
let id2g =
List.fold_right
(fun auto r ->
List.fold_right
(fun (_,chan) r -> match chan.jchannel_id with
| Alone g -> make_g "fwd" chan g::r
| Chan (_,_) -> r)
auto.jauto_names r)
autos id2g in
(* patch forwarder data structure *)
let r =
List.fold_right
(fun (id,(sync,g)) r ->
match sync with
| Some stub ->
Lsequence (patch_sync_alone stub g Location.none, r)
| None ->
Lsequence (patch_alone id g Location.none, r))
id2g r in
(* Big let rec of guards *)
let d =
List.fold_right
(fun disps d ->
List.fold_right
(fun disp d -> let (x,_,lam) = disp in (x,lam)::d)
disps d)
dispss [] in
let d =
List.fold_right
(fun fwds d ->
List.fold_right (fun fwd d -> fwd::d) fwds d)
fwdss d in
let r = Lletrec (d, r) in
(* Allocate forwarders *)
let r =
List.fold_right
(fun (id,(sync,_)) r ->
match sync with
| Some stub ->
Llet
(Strict, stub, alloc_stub_guard Location.none,
Llet
(StrictOpt,
id,
alloc_sync_alone stub (Ident.unique_name id) Location.none,
r))
| None ->
Llet
(StrictOpt,
id,alloc_alone (Ident.unique_name id) Location.none,
r))
id2g r in
r
let get_queue names jpat =
let jid,_ = jpat.jpat_desc in
let id = jid.jident_desc in
let x = get_chan "(get_queue)" names id in
match x with
| Alone _ -> assert false
| Chan (name, i) ->
let k = !(jpat.jpat_kont) in
match k with
| None ->
None, do_get_queue (Lvar name) i Location.none
| Some kid ->
let y = Ident.create "_y" in
Some y, do_get_queue (Lvar name) i Location.none
let build_lets bds r =
List.fold_right
(fun (oid, lam) r ->
match oid with
| None -> r
| Some y -> Llet (Strict, y, lam, r))
bds r
let nslots n_names = (n_names + 30) / 31
let major i = i / 31
and minor i = i mod 31
let build_singleton n_names num =
if n_names < 32 then
lambda_int (1 lsl num)
else
let nslots = nslots n_names
and slot = major num
and idx = minor num in
let rec do_rec i =
if i >= nslots then []
else
lambda_int
(if i = slot then (1 lsl idx) else 0)::
do_rec (i+1) in
Lprim (Pmakearray Pintarray, do_rec 0)
let build_int_mask names jpats =
let rec do_rec mask = function
| [] -> mask
| jpat::rem ->
let jid,_ = jpat.jpat_desc in
let i = get_num "(build_mask)" names jid.jident_desc in
do_rec (mask lor (1 lsl i)) rem in
lambda_int (do_rec 0 jpats)
and build_bv_mask n_names names jpats =
let nslots = nslots n_names in
let rec empty i =
if i <= 0 then []
else 0::empty (i-1) in
let rec set_bit slot idx i = function
| [] -> assert false
| num::rem ->
if i = slot then
num lor (1 lsl idx)::rem
else
num::set_bit slot idx (i+1) rem in
let rec do_rec mask = function
| [] -> mask
| jpat::rem ->
let jid,_ = jpat.jpat_desc in
let i = get_num "(build_mask)" names jid.jident_desc in
do_rec
(set_bit (major i) (minor i) 0 mask) rem in
Lconst
(Const_block
(0,
List.map (fun i -> Const_base (Const_int i))
(do_rec (empty nslots) jpats)))
let build_mask n_names names jpats =
if n_names < 32 then
build_int_mask names jpats
else
build_bv_mask n_names names jpats
let rec explode = function
| [] -> []
| [xs] -> List.map (fun x -> [x]) xs
| xs::rem ->
let rem = explode rem in
List.fold_right
(fun x r ->
List.fold_right
(fun xs r -> (x::xs)::r)
rem r)
xs
[]
(* 3.10 -> 3.11, a third argument 'Location.t' appeared here,
just pretend it is not useful at the moment *)
let lapply (f,args) = Lapply (f,args,Location.none)
(* gs is a list of compiled guarded processes *)
let create_table auto gs r =
let n_chans = auto.jauto_nchans in
if n_chans =0 then r
else
let name,_ = auto.jauto_name (* wrapped name of automaton *)
and names = auto.jauto_names in (* all channels *)
let rec do_guard (Reac reac) (_, sync, _) k =
let (g, _, actual, _, _) = reac in
let create_reaction jpats r =
let ipri = match sync with
| None -> -1
| Some _ ->
let rec find_rec = function
| [] -> -1
| jpat::rem ->
if !(jpat.jpat_kont) = sync then
let jid,_ = jpat.jpat_desc in
get_num "(real_ipri)" names jid.jident_desc
else
find_rec rem in
find_rec jpats in
let bds = List.map (get_queue names) jpats in
let args =
List.fold_right2
(fun bd jpat r -> match bd with
| None,lam -> lam::r
| Some y,_ ->
if !(jpat.jpat_kont) = sync then
Lprim (Pfield 1, [Lvar y])::r
else
Lprim (Pfield 0, [Lvar y])::
Lprim (Pfield 1, [Lvar y])::r)
bds jpats [] in
let goid = Ident.create "_go" in
let real_g =
if ipri < 0 then
Lfunction
(Curried, [goid],
build_lets bds
(lapply
(Lvar goid, [Lvar name ; lapply (Lvar g, args)])))
else
let pri_kont =
let rec find_rec bds jpats = match bds, jpats with
| (Some y,_)::bds, jpat::jpats
when !(jpat.jpat_kont) = sync ->
Lprim (Pfield 0, [Lvar y])
| _::bds, _::jpats ->
find_rec bds jpats
| _, _ -> assert false in
find_rec bds jpats in
Lfunction
(Curried, [goid],
build_lets bds
(lapply
(Lvar goid, [pri_kont ; lapply (Lvar g, args)]))) in
Lprim
(Pmakeblock (0, Immutable),
[build_mask n_chans names jpats ;
lambda_int ipri ; real_g])::r in
let pats = explode actual in
List.fold_right create_reaction pats k in
let _, reacs, _ = auto.jauto_desc in
Lsequence
(patch_table name
(List.fold_right2 do_guard reacs gs []) Location.none,
r)
(*********************)
(* Global exceptions *)
(*********************)
let lambda_exn_global = mk_lambda env_join "exn_global"
(* "exn_global" takes a location as a first argument,
so as give a source position in case of failure *)
let transl_exn_global loc path =
mk_apply
lambda_exn_global [transl_location loc ; transl_path path]
Location.none
|