1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Transformation of Mach code into a list of pseudo-instructions. *)
open Reg
open Mach
type label = int
let label_counter = ref 99
let new_label() = incr label_counter; !label_counter
type instruction =
{ mutable desc: instruction_desc;
next: instruction;
arg: Reg.t array;
res: Reg.t array;
live: Reg.Set.t }
and instruction_desc =
Lend
| Lop of operation
| Lreloadretaddr
| Lreturn
| Llabel of label
| Lbranch of label
| Lcondbranch of test * label
| Lcondbranch3 of label option * label option * label option
| Lswitch of label array
| Lsetuptrap of label
| Lpushtrap
| Lpoptrap
| Lraise
let has_fallthrough = function
| Lreturn | Lbranch _ | Lswitch _ | Lraise
| Lop Itailcall_ind | Lop (Itailcall_imm _) -> false
| _ -> true
type fundecl =
{ fun_name: string;
fun_body: instruction;
fun_fast: bool }
(* Invert a test *)
let invert_integer_test = function
Isigned cmp -> Isigned(Cmm.negate_comparison cmp)
| Iunsigned cmp -> Iunsigned(Cmm.negate_comparison cmp)
let invert_test = function
Itruetest -> Ifalsetest
| Ifalsetest -> Itruetest
| Iinttest(cmp) -> Iinttest(invert_integer_test cmp)
| Iinttest_imm(cmp, n) -> Iinttest_imm(invert_integer_test cmp, n)
| Ifloattest(cmp, neg) -> Ifloattest(cmp, not neg)
| Ieventest -> Ioddtest
| Ioddtest -> Ieventest
(* The "end" instruction *)
let rec end_instr =
{ desc = Lend;
next = end_instr;
arg = [||];
res = [||];
live = Reg.Set.empty }
(* Cons an instruction (live empty) *)
let instr_cons d a r n =
{ desc = d; next = n; arg = a; res = r; live = Reg.Set.empty }
(* Cons a simple instruction (arg, res, live empty) *)
let cons_instr d n =
{ desc = d; next = n; arg = [||]; res = [||]; live = Reg.Set.empty }
(* Build an instruction with arg, res, live taken from
the given Mach.instruction *)
let copy_instr d i n =
{ desc = d; next = n;
arg = i.Mach.arg; res = i.Mach.res; live = i.Mach.live }
(*
Label the beginning of the given instruction sequence.
- If the sequence starts with a branch, jump over it.
- If the sequence is the end, (tail call position), just do nothing
*)
let get_label n = match n.desc with
Lbranch lbl -> (lbl, n)
| Llabel lbl -> (lbl, n)
| Lend -> (-1, n)
| _ -> let lbl = new_label() in (lbl, cons_instr (Llabel lbl) n)
(* Check the fallthrough label *)
let check_label n = match n.desc with
| Lbranch lbl -> lbl
| Llabel lbl -> lbl
| _ -> -1
(* Discard all instructions up to the next label.
This function is to be called before adding a non-terminating
instruction. *)
let rec discard_dead_code n =
match n.desc with
Lend -> n
| Llabel _ -> n
(* Do not discard Lpoptrap or Istackoffset instructions,
as this may cause a stack imbalance later during assembler generation. *)
| Lpoptrap -> n
| Lop(Istackoffset _) -> n
| _ -> discard_dead_code n.next
(*
Add a branch in front of a continuation.
Discard dead code in the continuation.
Does not insert anything if we're just falling through
or if we jump to dead code after the end of function (lbl=-1)
*)
let add_branch lbl n =
if lbl >= 0 then
let n1 = discard_dead_code n in
match n1.desc with
| Llabel lbl1 when lbl1 = lbl -> n1
| _ -> cons_instr (Lbranch lbl) n1
else
discard_dead_code n
(* Current labels for exit handler *)
let exit_label = ref []
let find_exit_label k =
try
List.assoc k !exit_label
with
| Not_found -> Misc.fatal_error "Linearize.find_exit_label"
let is_next_catch n = match !exit_label with
| (n0,_)::_ when n0=n -> true
| _ -> false
(* Linearize an instruction [i]: add it in front of the continuation [n] *)
let rec linear i n =
match i.Mach.desc with
Iend -> n
| Iop(Itailcall_ind | Itailcall_imm _ as op) ->
copy_instr (Lop op) i (discard_dead_code n)
| Iop(Imove | Ireload | Ispill)
when i.Mach.arg.(0).loc = i.Mach.res.(0).loc ->
linear i.Mach.next n
| Iop op ->
copy_instr (Lop op) i (linear i.Mach.next n)
| Ireturn ->
let n1 = copy_instr Lreturn i (discard_dead_code n) in
if !Proc.contains_calls
then cons_instr Lreloadretaddr n1
else n1
| Iifthenelse(test, ifso, ifnot) ->
let n1 = linear i.Mach.next n in
begin match (ifso.Mach.desc, ifnot.Mach.desc, n1.desc) with
Iend, _, Lbranch lbl ->
copy_instr (Lcondbranch(test, lbl)) i (linear ifnot n1)
| _, Iend, Lbranch lbl ->
copy_instr (Lcondbranch(invert_test test, lbl)) i (linear ifso n1)
| Iexit nfail1, Iexit nfail2, _
when is_next_catch nfail1 ->
let lbl2 = find_exit_label nfail2 in
copy_instr
(Lcondbranch (invert_test test, lbl2)) i (linear ifso n1)
| Iexit nfail, _, _ ->
let n2 = linear ifnot n1
and lbl = find_exit_label nfail in
copy_instr (Lcondbranch(test, lbl)) i n2
| _, Iexit nfail, _ ->
let n2 = linear ifso n1 in
let lbl = find_exit_label nfail in
copy_instr (Lcondbranch(invert_test test, lbl)) i n2
| Iend, _, _ ->
let (lbl_end, n2) = get_label n1 in
copy_instr (Lcondbranch(test, lbl_end)) i (linear ifnot n2)
| _, Iend, _ ->
let (lbl_end, n2) = get_label n1 in
copy_instr (Lcondbranch(invert_test test, lbl_end)) i
(linear ifso n2)
| _, _, _ ->
(* Should attempt branch prediction here *)
let (lbl_end, n2) = get_label n1 in
let (lbl_else, nelse) = get_label (linear ifnot n2) in
copy_instr (Lcondbranch(invert_test test, lbl_else)) i
(linear ifso (add_branch lbl_end nelse))
end
| Iswitch(index, cases) ->
let lbl_cases = Array.create (Array.length cases) 0 in
let (lbl_end, n1) = get_label(linear i.Mach.next n) in
let n2 = ref (discard_dead_code n1) in
for i = Array.length cases - 1 downto 0 do
let (lbl_case, ncase) =
get_label(linear cases.(i) (add_branch lbl_end !n2)) in
lbl_cases.(i) <- lbl_case;
n2 := discard_dead_code ncase
done;
(* Switches with 1 and 2 branches have been eliminated earlier.
Here, we do something for switches with 3 branches. *)
if Array.length index = 3 then begin
let fallthrough_lbl = check_label !n2 in
let find_label n =
let lbl = lbl_cases.(index.(n)) in
if lbl = fallthrough_lbl then None else Some lbl in
copy_instr (Lcondbranch3(find_label 0, find_label 1, find_label 2))
i !n2
end else
copy_instr (Lswitch(Array.map (fun n -> lbl_cases.(n)) index)) i !n2
| Iloop body ->
let lbl_head = new_label() in
let n1 = linear i.Mach.next n in
let n2 = linear body (cons_instr (Lbranch lbl_head) n1) in
cons_instr (Llabel lbl_head) n2
| Icatch(io, body, handler) ->
let (lbl_end, n1) = get_label(linear i.Mach.next n) in
let (lbl_handler, n2) = get_label(linear handler n1) in
exit_label := (io, lbl_handler) :: !exit_label ;
let n3 = linear body (add_branch lbl_end n2) in
exit_label := List.tl !exit_label;
n3
| Iexit nfail ->
let n1 = linear i.Mach.next n in
let lbl = find_exit_label nfail in
add_branch lbl n1
| Itrywith(body, handler) ->
let (lbl_join, n1) = get_label (linear i.Mach.next n) in
let (lbl_body, n2) =
get_label (cons_instr Lpushtrap
(linear body (cons_instr Lpoptrap n1))) in
cons_instr (Lsetuptrap lbl_body)
(linear handler (add_branch lbl_join n2))
| Iraise ->
copy_instr Lraise i (discard_dead_code n)
let fundecl f =
{ fun_name = f.Mach.fun_name;
fun_body = linear f.Mach.fun_body end_instr;
fun_fast = f.Mach.fun_fast }
|