summaryrefslogtreecommitdiff
path: root/nss/lib/freebl/ecl/ecp_fp160.c
blob: f462f3ba188554bdca8b9d8b9bf9580926ad7ab9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ecp_fp.h"
#include <stdlib.h>

#define ECFP_BSIZE 160
#define ECFP_NUMDOUBLES 7

#include "ecp_fpinc.c"

/* Performs a single step of reduction, just on the uppermost float
 * (assumes already tidied), and then retidies. Note, this does not
 * guarantee that the result will be less than p, but truncates the number 
 * of bits. */
void
ecfp160_singleReduce(double *d, const EC_group_fp * group)
{
	double q;

	ECFP_ASSERT(group->doubleBitSize == 24);
	ECFP_ASSERT(group->primeBitSize == 160);
	ECFP_ASSERT(ECFP_NUMDOUBLES == 7);

	q = d[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
	q += group->bitSize_alpha;
	q -= group->bitSize_alpha;

	d[ECFP_NUMDOUBLES - 1] -= q;
	d[0] += q * ecfp_twom160;
	d[1] += q * ecfp_twom129;
	ecfp_positiveTidy(d, group);

	/* Assertions for the highest order term */
	ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] / ecfp_exp[ECFP_NUMDOUBLES - 1] ==
				(unsigned long long) (d[ECFP_NUMDOUBLES - 1] /
									  ecfp_exp[ECFP_NUMDOUBLES - 1]));
	ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] >= 0);
}

/* Performs imperfect reduction.  This might leave some negative terms,
 * and one more reduction might be required for the result to be between 0 
 * and p-1. x should not already be reduced, i.e. should have
 * 2*ECFP_NUMDOUBLES significant terms. x and r can be the same, but then
 * the upper parts of r are not zeroed */
void
ecfp160_reduce(double *r, double *x, const EC_group_fp * group)
{

	double x7, x8, q;

	ECFP_ASSERT(group->doubleBitSize == 24);
	ECFP_ASSERT(group->primeBitSize == 160);
	ECFP_ASSERT(ECFP_NUMDOUBLES == 7);

	/* Tidy just the upper bits, the lower bits can wait. */
	ecfp_tidyUpper(x, group);

	/* Assume that this is already tidied so that we have enough extra
	 * bits */
	x7 = x[7] + x[13] * ecfp_twom129;	/* adds bits 15-39 */

	/* Tidy x7, or we won't have enough bits later to add it in */
	q = x7 + group->alpha[8];
	q -= group->alpha[8];
	x7 -= q;					/* holds bits 0-24 */
	x8 = x[8] + q;				/* holds bits 0-25 */

	r[6] = x[6] + x[13] * ecfp_twom160 + x[12] * ecfp_twom129;	/* adds
																 * bits
																 * 8-39 */
	r[5] = x[5] + x[12] * ecfp_twom160 + x[11] * ecfp_twom129;
	r[4] = x[4] + x[11] * ecfp_twom160 + x[10] * ecfp_twom129;
	r[3] = x[3] + x[10] * ecfp_twom160 + x[9] * ecfp_twom129;
	r[2] = x[2] + x[9] * ecfp_twom160 + x8 * ecfp_twom129;	/* adds bits
															 * 8-40 */
	r[1] = x[1] + x8 * ecfp_twom160 + x7 * ecfp_twom129;	/* adds bits
															 * 8-39 */
	r[0] = x[0] + x7 * ecfp_twom160;

	/* Tidy up just r[ECFP_NUMDOUBLES-2] so that the number of reductions
	 * is accurate plus or minus one.  (Rather than tidy all to make it
	 * totally accurate, which is more costly.) */
	q = r[ECFP_NUMDOUBLES - 2] + group->alpha[ECFP_NUMDOUBLES - 1];
	q -= group->alpha[ECFP_NUMDOUBLES - 1];
	r[ECFP_NUMDOUBLES - 2] -= q;
	r[ECFP_NUMDOUBLES - 1] += q;

	/* Tidy up the excess bits on r[ECFP_NUMDOUBLES-1] using reduction */
	/* Use ecfp_beta so we get a positive result */
	q = r[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
	q += group->bitSize_alpha;
	q -= group->bitSize_alpha;

	r[ECFP_NUMDOUBLES - 1] -= q;
	r[0] += q * ecfp_twom160;
	r[1] += q * ecfp_twom129;

	/* Tidy the result */
	ecfp_tidyShort(r, group);
}

/* Sets group to use optimized calculations in this file */
mp_err
ec_group_set_secp160r1_fp(ECGroup *group)
{

	EC_group_fp *fpg = NULL;

	/* Allocate memory for floating point group data */
	fpg = (EC_group_fp *) malloc(sizeof(EC_group_fp));
	if (fpg == NULL) {
		return MP_MEM;
	}

	fpg->numDoubles = ECFP_NUMDOUBLES;
	fpg->primeBitSize = ECFP_BSIZE;
	fpg->orderBitSize = 161;
	fpg->doubleBitSize = 24;
	fpg->numInts = (ECFP_BSIZE + ECL_BITS - 1) / ECL_BITS;
	fpg->aIsM3 = 1;
	fpg->ecfp_singleReduce = &ecfp160_singleReduce;
	fpg->ecfp_reduce = &ecfp160_reduce;
	fpg->ecfp_tidy = &ecfp_tidy;

	fpg->pt_add_jac_aff = &ecfp160_pt_add_jac_aff;
	fpg->pt_add_jac = &ecfp160_pt_add_jac;
	fpg->pt_add_jm_chud = &ecfp160_pt_add_jm_chud;
	fpg->pt_add_chud = &ecfp160_pt_add_chud;
	fpg->pt_dbl_jac = &ecfp160_pt_dbl_jac;
	fpg->pt_dbl_jm = &ecfp160_pt_dbl_jm;
	fpg->pt_dbl_aff2chud = &ecfp160_pt_dbl_aff2chud;
	fpg->precompute_chud = &ecfp160_precompute_chud;
	fpg->precompute_jac = &ecfp160_precompute_jac;

	group->point_mul = &ec_GFp_point_mul_wNAF_fp;
	group->points_mul = &ec_pts_mul_basic;
	group->extra1 = fpg;
	group->extra_free = &ec_GFp_extra_free_fp;

	ec_set_fp_precision(fpg);
	fpg->bitSize_alpha = ECFP_TWO160 * fpg->alpha[0];
	return MP_OKAY;
}