summaryrefslogtreecommitdiff
path: root/nss/lib/freebl/ecl/ec2_mont.c
blob: 8d35f259bab9af5b3993288e1e7d8bb0ce79cdae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ec2.h"
#include "mplogic.h"
#include "mp_gf2m.h"
#include <stdlib.h>

/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
 * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J. 
 * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
 * without precomputation". modified to not require precomputation of
 * c=b^{2^{m-1}}. */
static mp_err
gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int t1;

	MP_DIGITS(&t1) = 0;
	MP_CHECKOK(mp_init(&t1));

	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
	MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
	MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
	MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
	MP_CHECKOK(group->meth->
			   field_mul(&group->curveb, &t1, &t1, group->meth));
	MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));

  CLEANUP:
	mp_clear(&t1);
	return res;
}

/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
 * Montgomery projective coordinates. Uses algorithm Madd in appendix of
 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
 * GF(2^m) without precomputation". */
static mp_err
gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
		  const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int t1, t2;

	MP_DIGITS(&t1) = 0;
	MP_DIGITS(&t2) = 0;
	MP_CHECKOK(mp_init(&t1));
	MP_CHECKOK(mp_init(&t2));

	MP_CHECKOK(mp_copy(x, &t1));
	MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
	MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
	MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
	MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
	MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
	MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));

  CLEANUP:
	mp_clear(&t1);
	mp_clear(&t2);
	return res;
}

/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
 * using Montgomery point multiplication algorithm Mxy() in appendix of
 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
 * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
 * should be the point at infinity 2 otherwise */
static int
gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
		 mp_int *x2, mp_int *z2, const ECGroup *group)
{
	mp_err res = MP_OKAY;
	int ret = 0;
	mp_int t3, t4, t5;

	MP_DIGITS(&t3) = 0;
	MP_DIGITS(&t4) = 0;
	MP_DIGITS(&t5) = 0;
	MP_CHECKOK(mp_init(&t3));
	MP_CHECKOK(mp_init(&t4));
	MP_CHECKOK(mp_init(&t5));

	if (mp_cmp_z(z1) == 0) {
		mp_zero(x2);
		mp_zero(z2);
		ret = 1;
		goto CLEANUP;
	}

	if (mp_cmp_z(z2) == 0) {
		MP_CHECKOK(mp_copy(x, x2));
		MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
		ret = 2;
		goto CLEANUP;
	}

	MP_CHECKOK(mp_set_int(&t5, 1));
	if (group->meth->field_enc) {
		MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
	}

	MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));

	MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
	MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
	MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
	MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));

	MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
	MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
	MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
	MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
	MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));

	MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
	MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
	MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
	MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
	MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));

	MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
	MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));

	ret = 2;

  CLEANUP:
	mp_clear(&t3);
	mp_clear(&t4);
	mp_clear(&t5);
	if (res == MP_OKAY) {
		return ret;
	} else {
		return 0;
	}
}

/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast 
 * multiplication on elliptic curves over GF(2^m) without
 * precomputation". Elliptic curve points P and R can be identical. Uses
 * Montgomery projective coordinates. */
mp_err
ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
					mp_int *rx, mp_int *ry, const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int x1, x2, z1, z2;
	int i, j;
	mp_digit top_bit, mask;

	MP_DIGITS(&x1) = 0;
	MP_DIGITS(&x2) = 0;
	MP_DIGITS(&z1) = 0;
	MP_DIGITS(&z2) = 0;
	MP_CHECKOK(mp_init(&x1));
	MP_CHECKOK(mp_init(&x2));
	MP_CHECKOK(mp_init(&z1));
	MP_CHECKOK(mp_init(&z2));

	/* if result should be point at infinity */
	if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
		goto CLEANUP;
	}

	MP_CHECKOK(mp_copy(px, &x1));	/* x1 = px */
	MP_CHECKOK(mp_set_int(&z1, 1));	/* z1 = 1 */
	MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));	/* z2 =
																 * x1^2 =
																 * px^2 */
	MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
	MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));	/* x2 
																				 * = 
																				 * px^4 
																				 * + 
																				 * b 
																				 */

	/* find top-most bit and go one past it */
	i = MP_USED(n) - 1;
	j = MP_DIGIT_BIT - 1;
	top_bit = 1;
	top_bit <<= MP_DIGIT_BIT - 1;
	mask = top_bit;
	while (!(MP_DIGITS(n)[i] & mask)) {
		mask >>= 1;
		j--;
	}
	mask >>= 1;
	j--;

	/* if top most bit was at word break, go to next word */
	if (!mask) {
		i--;
		j = MP_DIGIT_BIT - 1;
		mask = top_bit;
	}

	for (; i >= 0; i--) {
		for (; j >= 0; j--) {
			if (MP_DIGITS(n)[i] & mask) {
				MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group));
				MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group));
			} else {
				MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group));
				MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group));
			}
			mask >>= 1;
		}
		j = MP_DIGIT_BIT - 1;
		mask = top_bit;
	}

	/* convert out of "projective" coordinates */
	i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
	if (i == 0) {
		res = MP_BADARG;
		goto CLEANUP;
	} else if (i == 1) {
		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
	} else {
		MP_CHECKOK(mp_copy(&x2, rx));
		MP_CHECKOK(mp_copy(&z2, ry));
	}

  CLEANUP:
	mp_clear(&x1);
	mp_clear(&x2);
	mp_clear(&z1);
	mp_clear(&z2);
	return res;
}