summaryrefslogtreecommitdiff
path: root/mozilla/security/nss/lib/freebl/ecl/ecl-priv.h
blob: 05abb4dff2dd7c6730181d4dbf40282898b96c88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/* 
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the elliptic curve math library.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Stephen Fung <fungstep@hotmail.com> and
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef __ecl_priv_h_
#define __ecl_priv_h_

#include "ecl.h"
#include "mpi.h"
#include "mplogic.h"

/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
/* the following needs to go away... */
#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
#define ECL_SIXTY_FOUR_BIT
#else
#define ECL_THIRTY_TWO_BIT
#endif

#define ECL_CURVE_DIGITS(curve_size_in_bits) \
	(((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8))
#define ECL_BITS (sizeof(mp_digit)*8)
#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit))

/* Gets the i'th bit in the binary representation of a. If i >= length(a), 
 * then return 0. (The above behaviour differs from mpl_get_bit, which
 * causes an error if i >= length(a).) */
#define MP_GET_BIT(a, i) \
	((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))

#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
#define MP_ADD_CARRY(a1, a2, s, cin, cout)   \
    { mp_word w; \
    w = ((mp_word)(cin)) + (a1) + (a2); \
    s = ACCUM(w); \
    cout = CARRYOUT(w); }

#define MP_SUB_BORROW(a1, a2, s, bin, bout)   \
    { mp_word w; \
    w = ((mp_word)(a1)) - (a2) - (bin); \
    s = ACCUM(w); \
    bout = (w >> MP_DIGIT_BIT) & 1; }

#else
/* NOTE, 
 * cin and cout could be the same variable.
 * bin and bout could be the same variable.
 * a1 or a2 and s could be the same variable.
 * don't trash those outputs until their respective inputs have
 * been read. */
#define MP_ADD_CARRY(a1, a2, s, cin, cout)   \
    { mp_digit tmp,sum; \
    tmp = (a1); \
    sum = tmp + (a2); \
    tmp = (sum < tmp);                     /* detect overflow */ \
    s = sum += (cin); \
    cout = tmp + (sum < (cin)); }

#define MP_SUB_BORROW(a1, a2, s, bin, bout)   \
    { mp_digit tmp; \
    tmp = (a1); \
    s = tmp - (a2); \
    tmp = (s > tmp);                    /* detect borrow */ \
    if ((bin) && !s--) tmp++;	\
    bout = tmp; }
#endif


struct GFMethodStr;
typedef struct GFMethodStr GFMethod;
struct GFMethodStr {
	/* Indicates whether the structure was constructed from dynamic memory 
	 * or statically created. */
	int constructed;
	/* Irreducible that defines the field. For prime fields, this is the
	 * prime p. For binary polynomial fields, this is the bitstring
	 * representation of the irreducible polynomial. */
	mp_int irr;
	/* For prime fields, the value irr_arr[0] is the number of bits in the 
	 * field. For binary polynomial fields, the irreducible polynomial
	 * f(t) is represented as an array of unsigned int[], where f(t) is
	 * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
	 * > p[1] > ... > p[4] = 0. */
	unsigned int irr_arr[5];
	/* Field arithmetic methods. All methods (except field_enc and
	 * field_dec) are assumed to take field-encoded parameters and return
	 * field-encoded values. All methods (except field_enc and field_dec)
	 * are required to be implemented. */
	mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r,
						 const GFMethod *meth);
	mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth);
	mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r,
						 const GFMethod *meth);
	mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth);
	mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r,
						 const GFMethod *meth);
	mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth);
	mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r,
						 const GFMethod *meth);
	mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth);
	mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth);
	/* Extra storage for implementation-specific data.  Any memory
	 * allocated to these extra fields will be cleared by extra_free. */
	void *extra1;
	void *extra2;
	void (*extra_free) (GFMethod *meth);
};

/* Construct generic GFMethods. */
GFMethod *GFMethod_consGFp(const mp_int *irr);
GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
GFMethod *GFMethod_consGF2m(const mp_int *irr,
							const unsigned int irr_arr[5]);
/* Free the memory allocated (if any) to a GFMethod object. */
void GFMethod_free(GFMethod *meth);

struct ECGroupStr {
	/* Indicates whether the structure was constructed from dynamic memory 
	 * or statically created. */
	int constructed;
	/* Field definition and arithmetic. */
	GFMethod *meth;
	/* Textual representation of curve name, if any. */
	char *text;
	/* Curve parameters, field-encoded. */
	mp_int curvea, curveb;
	/* x and y coordinates of the base point, field-encoded. */
	mp_int genx, geny;
	/* Order and cofactor of the base point. */
	mp_int order;
	int cofactor;
	/* Point arithmetic methods. All methods are assumed to take
	 * field-encoded parameters and return field-encoded values. All
	 * methods (except base_point_mul and points_mul) are required to be
	 * implemented. */
	mp_err (*point_add) (const mp_int *px, const mp_int *py,
						 const mp_int *qx, const mp_int *qy, mp_int *rx,
						 mp_int *ry, const ECGroup *group);
	mp_err (*point_sub) (const mp_int *px, const mp_int *py,
						 const mp_int *qx, const mp_int *qy, mp_int *rx,
						 mp_int *ry, const ECGroup *group);
	mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx,
						 mp_int *ry, const ECGroup *group);
	mp_err (*point_mul) (const mp_int *n, const mp_int *px,
						 const mp_int *py, mp_int *rx, mp_int *ry,
						 const ECGroup *group);
	mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry,
							  const ECGroup *group);
	mp_err (*points_mul) (const mp_int *k1, const mp_int *k2,
						  const mp_int *px, const mp_int *py, mp_int *rx,
						  mp_int *ry, const ECGroup *group);
	mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group);
	/* Extra storage for implementation-specific data.  Any memory
	 * allocated to these extra fields will be cleared by extra_free. */
	void *extra1;
	void *extra2;
	void (*extra_free) (ECGroup *group);
};

/* Wrapper functions for generic prime field arithmetic. */
mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);

/* fixed length in-line adds. Count is in words */
mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);

mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
				  const GFMethod *meth);
/* Wrapper functions for generic binary polynomial field arithmetic. */
mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
				   const GFMethod *meth);
mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
				   const GFMethod *meth);
mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
				   const GFMethod *meth);

/* Montgomery prime field arithmetic. */
mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
					   const GFMethod *meth);
mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
					   const GFMethod *meth);
mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
void ec_GFp_extra_free_mont(GFMethod *meth);

/* point multiplication */
mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
						const mp_int *px, const mp_int *py, mp_int *rx,
						mp_int *ry, const ECGroup *group);
mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
						   const mp_int *px, const mp_int *py, mp_int *rx,
						   mp_int *ry, const ECGroup *group);

/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
 * be an array of signed char's to output to, bitsize should be the number 
 * of bits of out, in is the original scalar, and w is the window size.
 * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
 * Menezes, "Software implementation of elliptic curve cryptography over
 * binary fields", Proc. CHES 2000. */
mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
					   int w);

/* Optimized field arithmetic */
mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);

/* Optimized floating-point arithmetic */
#ifdef ECL_USE_FP
mp_err ec_group_set_secp160r1_fp(ECGroup *group);
mp_err ec_group_set_nistp192_fp(ECGroup *group);
mp_err ec_group_set_nistp224_fp(ECGroup *group);
#endif

#endif							/* __ecl_priv_h_ */