summaryrefslogtreecommitdiff
path: root/mozilla/security/nss/lib/freebl/mpi/mpmontg.c
diff options
context:
space:
mode:
authorLorry <lorry@roadtrain.codethink.co.uk>2012-07-18 20:31:20 +0100
committerLorry <lorry@roadtrain.codethink.co.uk>2012-07-18 20:31:20 +0100
commite43ad1f4ce7f1504e6f01fc8a90d5c0398013383 (patch)
tree03504d9d81336081b899c9f34cc0f66801caf67c /mozilla/security/nss/lib/freebl/mpi/mpmontg.c
downloadnss-e43ad1f4ce7f1504e6f01fc8a90d5c0398013383.tar.gz
Tarball conversion
Diffstat (limited to 'mozilla/security/nss/lib/freebl/mpi/mpmontg.c')
-rw-r--r--mozilla/security/nss/lib/freebl/mpi/mpmontg.c1209
1 files changed, 1209 insertions, 0 deletions
diff --git a/mozilla/security/nss/lib/freebl/mpi/mpmontg.c b/mozilla/security/nss/lib/freebl/mpi/mpmontg.c
new file mode 100644
index 0000000..528b94d
--- /dev/null
+++ b/mozilla/security/nss/lib/freebl/mpi/mpmontg.c
@@ -0,0 +1,1209 @@
+/* ***** BEGIN LICENSE BLOCK *****
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is the Netscape security libraries.
+ *
+ * The Initial Developer of the Original Code is
+ * Netscape Communications Corporation.
+ * Portions created by the Initial Developer are Copyright (C) 2000
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ * Sheueling Chang Shantz <sheueling.chang@sun.com>,
+ * Stephen Fung <stephen.fung@sun.com>, and
+ * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either the GNU General Public License Version 2 or later (the "GPL"), or
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ * ***** END LICENSE BLOCK ***** */
+/* $Id: mpmontg.c,v 1.22 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */
+
+/* This file implements moduluar exponentiation using Montgomery's
+ * method for modular reduction. This file implements the method
+ * described as "Improvement 1" in the paper "A Cryptogrpahic Library for
+ * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
+ * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
+ * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
+ * published by Springer Verlag.
+ */
+
+#define MP_USING_CACHE_SAFE_MOD_EXP 1
+#include <string.h>
+#include "mpi-priv.h"
+#include "mplogic.h"
+#include "mpprime.h"
+#ifdef MP_USING_MONT_MULF
+#include "montmulf.h"
+#endif
+#include <stddef.h> /* ptrdiff_t */
+
+/* if MP_CHAR_STORE_SLOW is defined, we */
+/* need to know endianness of this platform. */
+#ifdef MP_CHAR_STORE_SLOW
+#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
+#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
+ " if you define MP_CHAR_STORE_SLOW."
+#endif
+#endif
+
+#define STATIC
+
+#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
+
+#if defined(_WIN32_WCE)
+#define ABORT res = MP_UNDEF; goto CLEANUP
+#else
+#define ABORT abort()
+#endif
+
+/* computes T = REDC(T), 2^b == R */
+mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
+{
+ mp_err res;
+ mp_size i;
+
+ i = MP_USED(T) + MP_USED(&mmm->N) + 2;
+ MP_CHECKOK( s_mp_pad(T, i) );
+ for (i = 0; i < MP_USED(&mmm->N); ++i ) {
+ mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
+ /* T += N * m_i * (MP_RADIX ** i); */
+ MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
+ }
+ s_mp_clamp(T);
+
+ /* T /= R */
+ s_mp_div_2d(T, mmm->b);
+
+ if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
+ /* T = T - N */
+ MP_CHECKOK( s_mp_sub(T, &mmm->N) );
+#ifdef DEBUG
+ if ((res = mp_cmp(T, &mmm->N)) >= 0) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+#endif
+ }
+ res = MP_OKAY;
+CLEANUP:
+ return res;
+}
+
+#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
+mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
+ mp_mont_modulus *mmm)
+{
+ mp_digit *pb;
+ mp_digit m_i;
+ mp_err res;
+ mp_size ib;
+ mp_size useda, usedb;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if (MP_USED(a) < MP_USED(b)) {
+ const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
+ b = a;
+ a = xch;
+ }
+
+ MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
+ ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
+ if((res = s_mp_pad(c, ib)) != MP_OKAY)
+ goto CLEANUP;
+
+ useda = MP_USED(a);
+ pb = MP_DIGITS(b);
+ s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
+ s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
+ m_i = MP_DIGIT(c, 0) * mmm->n0prime;
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
+
+ /* Outer loop: Digits of b */
+ usedb = MP_USED(b);
+ for (ib = 1; ib < usedb; ib++) {
+ mp_digit b_i = *pb++;
+
+ /* Inner product: Digits of a */
+ if (b_i)
+ s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
+ m_i = MP_DIGIT(c, ib) * mmm->n0prime;
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
+ }
+ if (usedb < MP_USED(&mmm->N)) {
+ for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
+ m_i = MP_DIGIT(c, ib) * mmm->n0prime;
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
+ }
+ }
+ s_mp_clamp(c);
+ s_mp_div_2d(c, mmm->b);
+ if (s_mp_cmp(c, &mmm->N) >= 0) {
+ MP_CHECKOK( s_mp_sub(c, &mmm->N) );
+ }
+ res = MP_OKAY;
+
+CLEANUP:
+ return res;
+}
+#endif
+
+STATIC
+mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
+{
+ mp_err res;
+
+ /* xMont = x * R mod N where N is modulus */
+ MP_CHECKOK( mpl_lsh(x, xMont, mmm->b) ); /* xMont = x << b */
+ MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */
+CLEANUP:
+ return res;
+}
+
+#ifdef MP_USING_MONT_MULF
+
+/* the floating point multiply is already cache safe,
+ * don't turn on cache safe unless we specifically
+ * force it */
+#ifndef MP_FORCE_CACHE_SAFE
+#undef MP_USING_CACHE_SAFE_MOD_EXP
+#endif
+
+unsigned int mp_using_mont_mulf = 1;
+
+/* computes montgomery square of the integer in mResult */
+#define SQR \
+ conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
+ mont_mulf_noconv(mResult, dm1, d16Tmp, \
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
+
+/* computes montgomery product of x and the integer in mResult */
+#define MUL(x) \
+ conv_i32_to_d32(dm1, mResult, nLen); \
+ mont_mulf_noconv(mResult, dm1, oddPowers[x], \
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
+
+/* Do modular exponentiation using floating point multiply code. */
+mp_err mp_exptmod_f(const mp_int * montBase,
+ const mp_int * exponent,
+ const mp_int * modulus,
+ mp_int * result,
+ mp_mont_modulus *mmm,
+ int nLen,
+ mp_size bits_in_exponent,
+ mp_size window_bits,
+ mp_size odd_ints)
+{
+ mp_digit *mResult;
+ double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
+ double dn0;
+ mp_size i;
+ mp_err res;
+ int expOff;
+ int dSize = 0, oddPowSize, dTmpSize;
+ mp_int accum1;
+ double *oddPowers[MAX_ODD_INTS];
+
+ /* function for computing n0prime only works if n0 is odd */
+
+ MP_DIGITS(&accum1) = 0;
+
+ for (i = 0; i < MAX_ODD_INTS; ++i)
+ oddPowers[i] = 0;
+
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+
+ mp_set(&accum1, 1);
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+ MP_CHECKOK( s_mp_pad(&accum1, nLen) );
+
+ oddPowSize = 2 * nLen + 1;
+ dTmpSize = 2 * oddPowSize;
+ dSize = sizeof(double) * (nLen * 4 + 1 +
+ ((odd_ints + 1) * oddPowSize) + dTmpSize);
+ dBuf = (double *)malloc(dSize);
+ dm1 = dBuf; /* array of d32 */
+ dn = dBuf + nLen; /* array of d32 */
+ dSqr = dn + nLen; /* array of d32 */
+ d16Tmp = dSqr + nLen; /* array of d16 */
+ dTmp = d16Tmp + oddPowSize;
+
+ for (i = 0; i < odd_ints; ++i) {
+ oddPowers[i] = dTmp;
+ dTmp += oddPowSize;
+ }
+ mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */
+
+ /* Make dn and dn0 */
+ conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
+ dn0 = (double)(mmm->n0prime & 0xffff);
+
+ /* Make dSqr */
+ conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
+ mont_mulf_noconv(mResult, dm1, oddPowers[0],
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
+ conv_i32_to_d32(dSqr, mResult, nLen);
+
+ for (i = 1; i < odd_ints; ++i) {
+ mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
+ conv_i32_to_d16(oddPowers[i], mResult, nLen);
+ }
+
+ s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
+
+ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
+ mp_size smallExp;
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+ smallExp = (mp_size)res;
+
+ if (window_bits == 1) {
+ if (!smallExp) {
+ SQR;
+ } else if (smallExp & 1) {
+ SQR; MUL(0);
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 4) {
+ if (!smallExp) {
+ SQR; SQR; SQR; SQR;
+ } else if (smallExp & 1) {
+ SQR; SQR; SQR; SQR; MUL(smallExp/2);
+ } else if (smallExp & 2) {
+ SQR; SQR; SQR; MUL(smallExp/4); SQR;
+ } else if (smallExp & 4) {
+ SQR; SQR; MUL(smallExp/8); SQR; SQR;
+ } else if (smallExp & 8) {
+ SQR; MUL(smallExp/16); SQR; SQR; SQR;
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 5) {
+ if (!smallExp) {
+ SQR; SQR; SQR; SQR; SQR;
+ } else if (smallExp & 1) {
+ SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
+ } else if (smallExp & 2) {
+ SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
+ } else if (smallExp & 4) {
+ SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
+ } else if (smallExp & 8) {
+ SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
+ } else if (smallExp & 0x10) {
+ SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 6) {
+ if (!smallExp) {
+ SQR; SQR; SQR; SQR; SQR; SQR;
+ } else if (smallExp & 1) {
+ SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
+ } else if (smallExp & 2) {
+ SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
+ } else if (smallExp & 4) {
+ SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
+ } else if (smallExp & 8) {
+ SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
+ } else if (smallExp & 0x10) {
+ SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
+ } else if (smallExp & 0x20) {
+ SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR;
+ } else {
+ ABORT;
+ }
+ } else {
+ ABORT;
+ }
+ }
+
+ s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
+
+ res = s_mp_redc(&accum1, mmm);
+ mp_exch(&accum1, result);
+
+CLEANUP:
+ mp_clear(&accum1);
+ if (dBuf) {
+ if (dSize)
+ memset(dBuf, 0, dSize);
+ free(dBuf);
+ }
+
+ return res;
+}
+#undef SQR
+#undef MUL
+#endif
+
+#define SQR(a,b) \
+ MP_CHECKOK( mp_sqr(a, b) );\
+ MP_CHECKOK( s_mp_redc(b, mmm) )
+
+#if defined(MP_MONT_USE_MP_MUL)
+#define MUL(x,a,b) \
+ MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
+ MP_CHECKOK( s_mp_redc(b, mmm) )
+#else
+#define MUL(x,a,b) \
+ MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
+#endif
+
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
+
+/* Do modular exponentiation using integer multiply code. */
+mp_err mp_exptmod_i(const mp_int * montBase,
+ const mp_int * exponent,
+ const mp_int * modulus,
+ mp_int * result,
+ mp_mont_modulus *mmm,
+ int nLen,
+ mp_size bits_in_exponent,
+ mp_size window_bits,
+ mp_size odd_ints)
+{
+ mp_int *pa1, *pa2, *ptmp;
+ mp_size i;
+ mp_err res;
+ int expOff;
+ mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
+
+ /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
+ /* oddPowers[i] = base ** (2*i + 1); */
+
+ MP_DIGITS(&accum1) = 0;
+ MP_DIGITS(&accum2) = 0;
+ MP_DIGITS(&power2) = 0;
+ for (i = 0; i < MAX_ODD_INTS; ++i) {
+ MP_DIGITS(oddPowers + i) = 0;
+ }
+
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
+
+ MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
+
+ mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
+ MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */
+ MP_CHECKOK( s_mp_redc(&power2, mmm) );
+
+ for (i = 1; i < odd_ints; ++i) {
+ mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
+ MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
+ MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
+ }
+
+ /* set accumulator to montgomery residue of 1 */
+ mp_set(&accum1, 1);
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+ pa1 = &accum1;
+ pa2 = &accum2;
+
+ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
+ mp_size smallExp;
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+ smallExp = (mp_size)res;
+
+ if (window_bits == 1) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); MUL(0,pa2,pa1);
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 4) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp/2, pa1,pa2); SWAPPA;
+ } else if (smallExp & 2) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
+ MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 4) {
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 8) {
+ SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 5) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
+ } else if (smallExp & 2) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 4) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
+ MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 8) {
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 0x10) {
+ SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ } else {
+ ABORT;
+ }
+ } else if (window_bits == 6) {
+ if (!smallExp) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SQR(pa2,pa1);
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
+ } else if (smallExp & 2) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 4) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 8) {
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
+ MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 0x10) {
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 0x20) {
+ SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2);
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+ } else {
+ ABORT;
+ }
+ } else {
+ ABORT;
+ }
+ }
+
+ res = s_mp_redc(pa1, mmm);
+ mp_exch(pa1, result);
+
+CLEANUP:
+ mp_clear(&accum1);
+ mp_clear(&accum2);
+ mp_clear(&power2);
+ for (i = 0; i < odd_ints; ++i) {
+ mp_clear(oddPowers + i);
+ }
+ return res;
+}
+#undef SQR
+#undef MUL
+
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+unsigned int mp_using_cache_safe_exp = 1;
+#endif
+
+mp_err mp_set_safe_modexp(int value)
+{
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+ mp_using_cache_safe_exp = value;
+ return MP_OKAY;
+#else
+ if (value == 0) {
+ return MP_OKAY;
+ }
+ return MP_BADARG;
+#endif
+}
+
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+#define WEAVE_WORD_SIZE 4
+
+#ifndef MP_CHAR_STORE_SLOW
+/*
+ * mpi_to_weave takes an array of bignums, a matrix in which each bignum
+ * occupies all the columns of a row, and transposes it into a matrix in
+ * which each bignum occupies a column of every row. The first row of the
+ * input matrix becomes the first column of the output matrix. The n'th
+ * row of input becomes the n'th column of output. The input data is said
+ * to be "interleaved" or "woven" into the output matrix.
+ *
+ * The array of bignums is left in this woven form. Each time a single
+ * bignum value is needed, it is recreated by fetching the n'th column,
+ * forming a single row which is the new bignum.
+ *
+ * The purpose of this interleaving is make it impossible to determine which
+ * of the bignums is being used in any one operation by examining the pattern
+ * of cache misses.
+ *
+ * The weaving function does not transpose the entire input matrix in one call.
+ * It transposes 4 rows of mp_ints into their respective columns of output.
+ *
+ * There are two different implementations of the weaving and unweaving code
+ * in this file. One uses byte loads and stores. The second uses loads and
+ * stores of mp_weave_word size values. The weaved forms of these two
+ * implementations differ. Consequently, each one has its own explanation.
+ *
+ * Here is the explanation for the byte-at-a-time implementation.
+ *
+ * This implementation treats each mp_int bignum as an array of bytes,
+ * rather than as an array of mp_digits. It stores those bytes as a
+ * column of bytes in the output matrix. It doesn't care if the machine
+ * uses big-endian or little-endian byte ordering within mp_digits.
+ * The first byte of the mp_digit array becomes the first byte in the output
+ * column, regardless of whether that byte is the MSB or LSB of the mp_digit.
+ *
+ * "bignums" is an array of mp_ints.
+ * It points to four rows, four mp_ints, a subset of a larger array of mp_ints.
+ *
+ * "weaved" is the weaved output matrix.
+ * The first byte of bignums[0] is stored in weaved[0].
+ *
+ * "nBignums" is the total number of bignums in the array of which "bignums"
+ * is a part.
+ *
+ * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array.
+ * mp_ints that use less than nDigits digits are logically padded with zeros
+ * while being stored in the weaved array.
+ */
+mp_err mpi_to_weave(const mp_int *bignums,
+ unsigned char *weaved,
+ mp_size nDigits, /* in each mp_int of input */
+ mp_size nBignums) /* in the entire source array */
+{
+ mp_size i;
+ unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit));
+
+ for (i=0; i < WEAVE_WORD_SIZE; i++) {
+ mp_size used = MP_USED(&bignums[i]);
+ unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]);
+ unsigned char *endSrc = pSrc + (used * sizeof(mp_digit));
+ unsigned char *pDest = weaved + i;
+
+ ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);
+ ARGCHK(used <= nDigits, MP_BADARG);
+
+ for (; pSrc < endSrc; pSrc++) {
+ *pDest = *pSrc;
+ pDest += nBignums;
+ }
+ while (pDest < endDest) {
+ *pDest = 0;
+ pDest += nBignums;
+ }
+ }
+
+ return MP_OKAY;
+}
+
+/* Reverse the operation above for one mp_int.
+ * Reconstruct one mp_int from its column in the weaved array.
+ * "pSrc" points to the offset into the weave array of the bignum we
+ * are going to reconstruct.
+ */
+mp_err weave_to_mpi(mp_int *a, /* output, result */
+ const unsigned char *pSrc, /* input, byte matrix */
+ mp_size nDigits, /* per mp_int output */
+ mp_size nBignums) /* bignums in weaved matrix */
+{
+ unsigned char *pDest = (unsigned char *)MP_DIGITS(a);
+ unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit));
+
+ MP_SIGN(a) = MP_ZPOS;
+ MP_USED(a) = nDigits;
+
+ for (; pDest < endDest; pSrc += nBignums, pDest++) {
+ *pDest = *pSrc;
+ }
+ s_mp_clamp(a);
+ return MP_OKAY;
+}
+
+#else
+
+/* Need a primitive that we know is 32 bits long... */
+/* this is true on all modern processors we know of today*/
+typedef unsigned int mp_weave_word;
+
+/*
+ * on some platforms character stores into memory is very expensive since they
+ * generate a read/modify/write operation on the bus. On those platforms
+ * we need to do integer writes to the bus. Because of some unrolled code,
+ * in this current code the size of mp_weave_word must be four. The code that
+ * makes this assumption explicity is called out. (on some platforms a write
+ * of 4 bytes still requires a single read-modify-write operation.
+ *
+ * This function is takes the identical parameters as the function above,
+ * however it lays out the final array differently. Where the previous function
+ * treats the mpi_int as an byte array, this function treats it as an array of
+ * mp_digits where each digit is stored in big endian order.
+ *
+ * since we need to interleave on a byte by byte basis, we need to collect
+ * several mpi structures together into a single uint32 before we write. We
+ * also need to make sure the uint32 is arranged so that the first value of
+ * the first array winds up in b[0]. This means construction of that uint32
+ * is endian specific (even though the layout of the mp_digits in the array
+ * is always big endian).
+ *
+ * The final data is stored as follows :
+ *
+ * Our same logical array p array, m is sizeof(mp_digit),
+ * N is still count and n is now b_size. If we define p[i].digit[j]0 as the
+ * most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
+ * the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
+ * is the least significant byte.
+ * Our array would look like:
+ * p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0
+ * p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1
+ * . .
+ * p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1
+ * p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0
+ * . .
+ * . .
+ * p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
+ * p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1
+ *
+ */
+mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
+ mp_size b_size, mp_size count)
+{
+ mp_size i;
+ mp_digit *digitsa0;
+ mp_digit *digitsa1;
+ mp_digit *digitsa2;
+ mp_digit *digitsa3;
+ mp_size useda0;
+ mp_size useda1;
+ mp_size useda2;
+ mp_size useda3;
+ mp_weave_word *weaved = (mp_weave_word *)b;
+
+ count = count/sizeof(mp_weave_word);
+
+ /* this code pretty much depends on this ! */
+#if MP_ARGCHK == 2
+ assert(WEAVE_WORD_SIZE == 4);
+ assert(sizeof(mp_weave_word) == 4);
+#endif
+
+ digitsa0 = MP_DIGITS(&a[0]);
+ digitsa1 = MP_DIGITS(&a[1]);
+ digitsa2 = MP_DIGITS(&a[2]);
+ digitsa3 = MP_DIGITS(&a[3]);
+ useda0 = MP_USED(&a[0]);
+ useda1 = MP_USED(&a[1]);
+ useda2 = MP_USED(&a[2]);
+ useda3 = MP_USED(&a[3]);
+
+ ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
+ ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
+ ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
+ ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
+ ARGCHK(useda0 <= b_size, MP_BADARG);
+ ARGCHK(useda1 <= b_size, MP_BADARG);
+ ARGCHK(useda2 <= b_size, MP_BADARG);
+ ARGCHK(useda3 <= b_size, MP_BADARG);
+
+#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
+
+ for (i=0; i < b_size; i++) {
+ mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
+ mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
+ mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
+ mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
+ register mp_weave_word acc;
+
+/*
+ * ONE_STEP takes the MSB of each of our current digits and places that
+ * byte in the appropriate position for writing to the weaved array.
+ * On little endian:
+ * b3 b2 b1 b0
+ * On big endian:
+ * b0 b1 b2 b3
+ * When the data is written it would always wind up:
+ * b[0] = b0
+ * b[1] = b1
+ * b[2] = b2
+ * b[3] = b3
+ *
+ * Once we've written the MSB, we shift the whole digit up left one
+ * byte, putting the Next Most Significant Byte in the MSB position,
+ * so we we repeat the next one step that byte will be written.
+ * NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
+ * is 4.
+ */
+#ifdef MP_IS_LITTLE_ENDIAN
+#define MPI_WEAVE_ONE_STEP \
+ acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
+ acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
+ acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
+ acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
+ *weaved = acc; weaved += count;
+#else
+#define MPI_WEAVE_ONE_STEP \
+ acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
+ acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
+ acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
+ acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
+ *weaved = acc; weaved += count;
+#endif
+ switch (sizeof(mp_digit)) {
+ case 32:
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ case 16:
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ case 8:
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ case 4:
+ MPI_WEAVE_ONE_STEP
+ MPI_WEAVE_ONE_STEP
+ case 2:
+ MPI_WEAVE_ONE_STEP
+ case 1:
+ MPI_WEAVE_ONE_STEP
+ break;
+ }
+ }
+
+ return MP_OKAY;
+}
+
+/* reverse the operation above for one entry.
+ * b points to the offset into the weave array of the power we are
+ * calculating */
+mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
+ mp_size b_size, mp_size count)
+{
+ mp_digit *pb = MP_DIGITS(a);
+ mp_digit *end = &pb[b_size];
+
+ MP_SIGN(a) = MP_ZPOS;
+ MP_USED(a) = b_size;
+
+ for (; pb < end; pb++) {
+ register mp_digit digit;
+
+ digit = *b << 8; b += count;
+#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
+ switch (sizeof(mp_digit)) {
+ case 32:
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ case 16:
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ case 8:
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ case 4:
+ MPI_UNWEAVE_ONE_STEP
+ MPI_UNWEAVE_ONE_STEP
+ case 2:
+ break;
+ }
+ digit |= *b; b += count;
+
+ *pb = digit;
+ }
+ s_mp_clamp(a);
+ return MP_OKAY;
+}
+#endif
+
+
+#define SQR(a,b) \
+ MP_CHECKOK( mp_sqr(a, b) );\
+ MP_CHECKOK( s_mp_redc(b, mmm) )
+
+#if defined(MP_MONT_USE_MP_MUL)
+#define MUL_NOWEAVE(x,a,b) \
+ MP_CHECKOK( mp_mul(a, x, b) ); \
+ MP_CHECKOK( s_mp_redc(b, mmm) )
+#else
+#define MUL_NOWEAVE(x,a,b) \
+ MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
+#endif
+
+#define MUL(x,a,b) \
+ MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
+ MUL_NOWEAVE(&tmp,a,b)
+
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
+#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y)))
+
+/* Do modular exponentiation using integer multiply code. */
+mp_err mp_exptmod_safe_i(const mp_int * montBase,
+ const mp_int * exponent,
+ const mp_int * modulus,
+ mp_int * result,
+ mp_mont_modulus *mmm,
+ int nLen,
+ mp_size bits_in_exponent,
+ mp_size window_bits,
+ mp_size num_powers)
+{
+ mp_int *pa1, *pa2, *ptmp;
+ mp_size i;
+ mp_size first_window;
+ mp_err res;
+ int expOff;
+ mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
+ mp_int tmp;
+ unsigned char *powersArray;
+ unsigned char *powers;
+
+ MP_DIGITS(&accum1) = 0;
+ MP_DIGITS(&accum2) = 0;
+ MP_DIGITS(&accum[0]) = 0;
+ MP_DIGITS(&accum[1]) = 0;
+ MP_DIGITS(&accum[2]) = 0;
+ MP_DIGITS(&accum[3]) = 0;
+ MP_DIGITS(&tmp) = 0;
+
+ powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
+ if (powersArray == NULL) {
+ res = MP_MEM;
+ goto CLEANUP;
+ }
+
+ /* powers[i] = base ** (i); */
+ powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
+
+ /* grab the first window value. This allows us to preload accumulator1
+ * and save a conversion, some squares and a multiple*/
+ MP_CHECKOK( mpl_get_bits(exponent,
+ bits_in_exponent-window_bits, window_bits) );
+ first_window = (mp_size)res;
+
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
+
+ /* build the first WEAVE_WORD powers inline */
+ /* if WEAVE_WORD_SIZE is not 4, this code will have to change */
+ if (num_powers > 2) {
+ MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
+ MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
+ mp_set(&accum[0], 1);
+ MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
+ MP_CHECKOK( mp_copy(montBase, &accum[1]) );
+ SQR(montBase, &accum[2]);
+ MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
+ MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
+ if (first_window < 4) {
+ MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
+ first_window = num_powers;
+ }
+ } else {
+ if (first_window == 0) {
+ mp_set(&accum1, 1);
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+ } else {
+ /* assert first_window == 1? */
+ MP_CHECKOK( mp_copy(montBase, &accum1) );
+ }
+ }
+
+ /*
+ * calculate all the powers in the powers array.
+ * this adds 2**(k-1)-2 square operations over just calculating the
+ * odd powers where k is the window size in the two other mp_modexpt
+ * implementations in this file. We will get some of that
+ * back by not needing the first 'k' squares and one multiply for the
+ * first window */
+ for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
+ int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
+ if ( i & 1 ) {
+ MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
+ /* we've filled the array do our 'per array' processing */
+ if (acc_index == (WEAVE_WORD_SIZE-1)) {
+ MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
+ nLen, num_powers) );
+
+ if (first_window <= i) {
+ MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
+ &accum1) );
+ first_window = num_powers;
+ }
+ }
+ } else {
+ /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
+ * and target are the same so we need to copy.. After that, the
+ * value is overwritten, so we need to fetch it from the stored
+ * weave array */
+ if (i > 2* WEAVE_WORD_SIZE) {
+ MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
+ SQR(&accum2, &accum[acc_index]);
+ } else {
+ int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
+ if (half_power_index == acc_index) {
+ /* copy is cheaper than weave_to_mpi */
+ MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
+ SQR(&accum2,&accum[acc_index]);
+ } else {
+ SQR(&accum[half_power_index],&accum[acc_index]);
+ }
+ }
+ }
+ }
+ /* if the accum1 isn't set, Then there is something wrong with our logic
+ * above and is an internal programming error.
+ */
+#if MP_ARGCHK == 2
+ assert(MP_USED(&accum1) != 0);
+#endif
+
+ /* set accumulator to montgomery residue of 1 */
+ pa1 = &accum1;
+ pa2 = &accum2;
+
+ for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
+ mp_size smallExp;
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+ smallExp = (mp_size)res;
+
+ /* handle unroll the loops */
+ switch (window_bits) {
+ case 1:
+ if (!smallExp) {
+ SQR(pa1,pa2); SWAPPA;
+ } else if (smallExp & 1) {
+ SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
+ } else {
+ ABORT;
+ }
+ break;
+ case 6:
+ SQR(pa1,pa2); SQR(pa2,pa1);
+ /* fall through */
+ case 4:
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ MUL(smallExp, pa1,pa2); SWAPPA;
+ break;
+ case 5:
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+ SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
+ break;
+ default:
+ ABORT; /* could do a loop? */
+ }
+ }
+
+ res = s_mp_redc(pa1, mmm);
+ mp_exch(pa1, result);
+
+CLEANUP:
+ mp_clear(&accum1);
+ mp_clear(&accum2);
+ mp_clear(&accum[0]);
+ mp_clear(&accum[1]);
+ mp_clear(&accum[2]);
+ mp_clear(&accum[3]);
+ mp_clear(&tmp);
+ /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
+ free(powersArray);
+ return res;
+}
+#undef SQR
+#undef MUL
+#endif
+
+mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
+ const mp_int *modulus, mp_int *result)
+{
+ const mp_int *base;
+ mp_size bits_in_exponent, i, window_bits, odd_ints;
+ mp_err res;
+ int nLen;
+ mp_int montBase, goodBase;
+ mp_mont_modulus mmm;
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+ static unsigned int max_window_bits;
+#endif
+
+ /* function for computing n0prime only works if n0 is odd */
+ if (!mp_isodd(modulus))
+ return s_mp_exptmod(inBase, exponent, modulus, result);
+
+ MP_DIGITS(&montBase) = 0;
+ MP_DIGITS(&goodBase) = 0;
+
+ if (mp_cmp(inBase, modulus) < 0) {
+ base = inBase;
+ } else {
+ MP_CHECKOK( mp_init(&goodBase) );
+ base = &goodBase;
+ MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
+ }
+
+ nLen = MP_USED(modulus);
+ MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
+
+ mmm.N = *modulus; /* a copy of the mp_int struct */
+ i = mpl_significant_bits(modulus);
+ i += MP_DIGIT_BIT - 1;
+ mmm.b = i - i % MP_DIGIT_BIT;
+
+ /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
+ ** where n0 = least significant mp_digit of N, the modulus.
+ */
+ mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
+
+ MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
+
+ bits_in_exponent = mpl_significant_bits(exponent);
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+ if (mp_using_cache_safe_exp) {
+ if (bits_in_exponent > 780)
+ window_bits = 6;
+ else if (bits_in_exponent > 256)
+ window_bits = 5;
+ else if (bits_in_exponent > 20)
+ window_bits = 4;
+ /* RSA public key exponents are typically under 20 bits (common values
+ * are: 3, 17, 65537) and a 4-bit window is inefficient
+ */
+ else
+ window_bits = 1;
+ } else
+#endif
+ if (bits_in_exponent > 480)
+ window_bits = 6;
+ else if (bits_in_exponent > 160)
+ window_bits = 5;
+ else if (bits_in_exponent > 20)
+ window_bits = 4;
+ /* RSA public key exponents are typically under 20 bits (common values
+ * are: 3, 17, 65537) and a 4-bit window is inefficient
+ */
+ else
+ window_bits = 1;
+
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+ /*
+ * clamp the window size based on
+ * the cache line size.
+ */
+ if (!max_window_bits) {
+ unsigned long cache_size = s_mpi_getProcessorLineSize();
+ /* processor has no cache, use 'fast' code always */
+ if (cache_size == 0) {
+ mp_using_cache_safe_exp = 0;
+ }
+ if ((cache_size == 0) || (cache_size >= 64)) {
+ max_window_bits = 6;
+ } else if (cache_size >= 32) {
+ max_window_bits = 5;
+ } else if (cache_size >= 16) {
+ max_window_bits = 4;
+ } else max_window_bits = 1; /* should this be an assert? */
+ }
+
+ /* clamp the window size down before we caclulate bits_in_exponent */
+ if (mp_using_cache_safe_exp) {
+ if (window_bits > max_window_bits) {
+ window_bits = max_window_bits;
+ }
+ }
+#endif
+
+ odd_ints = 1 << (window_bits - 1);
+ i = bits_in_exponent % window_bits;
+ if (i != 0) {
+ bits_in_exponent += window_bits - i;
+ }
+
+#ifdef MP_USING_MONT_MULF
+ if (mp_using_mont_mulf) {
+ MP_CHECKOK( s_mp_pad(&montBase, nLen) );
+ res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
+ bits_in_exponent, window_bits, odd_ints);
+ } else
+#endif
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+ if (mp_using_cache_safe_exp) {
+ res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
+ bits_in_exponent, window_bits, 1 << window_bits);
+ } else
+#endif
+ res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
+ bits_in_exponent, window_bits, odd_ints);
+
+CLEANUP:
+ mp_clear(&montBase);
+ mp_clear(&goodBase);
+ /* Don't mp_clear mmm.N because it is merely a copy of modulus.
+ ** Just zap it.
+ */
+ memset(&mmm, 0, sizeof mmm);
+ return res;
+}