summaryrefslogtreecommitdiff
path: root/drm/nouveau/nvkm/subdev/clk/gm20b.c
blob: 8ee6c4cb688ab21c29c16a0b16d88822eee11a81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
/*
 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <subdev/clk.h>
#include <subdev/timer.h>
#include <subdev/volt.h>

#include <core/device.h>

#define gm20b_clk(p) container_of((p), struct gm20b_clk, base)
#include "priv.h"
#include "gk20a.h"

#ifdef __KERNEL__
#include <nouveau_platform.h>
#include <soc/tegra/fuse.h>
#endif

#define KHZ (1000)

#define MASK(w)	((1 << w) - 1)


#define GPCPLL_DVFS0		(SYS_GPCPLL_CFG_BASE + 0x10)
#define GPCPLL_DVFS0_DFS_COEFF_SHIFT	0
#define GPCPLL_DVFS0_DFS_COEFF_WIDTH	7
#define GPCPLL_DVFS0_DFS_DET_MAX_SHIFT	8
#define GPCPLL_DVFS0_DFS_DET_MAX_WIDTH	7

#define GPCPLL_DVFS1		(SYS_GPCPLL_CFG_BASE + 0x14)
#define GPCPLL_DVFS1_DFS_EXT_DET_SHIFT		0
#define GPCPLL_DVFS1_DFS_EXT_DET_WIDTH		7
#define GPCPLL_DVFS1_DFS_EXT_STRB_SHIFT	7
#define GPCPLL_DVFS1_DFS_EXT_STRB_WIDTH	1
#define GPCPLL_DVFS1_DFS_EXT_CAL_SHIFT		8
#define GPCPLL_DVFS1_DFS_EXT_CAL_WIDTH		7
#define GPCPLL_DVFS1_DFS_EXT_SEL_SHIFT		15
#define GPCPLL_DVFS1_DFS_EXT_SEL_WIDTH		1
#define GPCPLL_DVFS1_DFS_CTRL_SHIFT		16
#define GPCPLL_DVFS1_DFS_CTRL_WIDTH		12
#define GPCPLL_DVFS1_EN_SDM_SHIFT		28
#define GPCPLL_DVFS1_EN_SDM_WIDTH		1
#define GPCPLL_DVFS1_EN_SDM_BIT		BIT(28)
#define GPCPLL_DVFS1_EN_DFS_SHIFT		29
#define GPCPLL_DVFS1_EN_DFS_WIDTH		1
#define GPCPLL_DVFS1_EN_DFS_BIT		BIT(29)
#define GPCPLL_DVFS1_EN_DFS_CAL_SHIFT		30
#define GPCPLL_DVFS1_EN_DFS_CAL_WIDTH		1
#define GPCPLL_DVFS1_EN_DFS_CAL_BIT		BIT(30)
#define GPCPLL_DVFS1_DFS_CAL_DONE_SHIFT	31
#define GPCPLL_DVFS1_DFS_CAL_DONE_WIDTH	1
#define GPCPLL_DVFS1_DFS_CAL_DONE_BIT	BIT(31)

#define BYPASSCTRL_SYS	(SYS_GPCPLL_CFG_BASE + 0x340)
#define BYPASSCTRL_SYS_GPCPLL_SHIFT	0
#define BYPASSCTRL_SYS_GPCPLL_WIDTH	1

#define GPC_BCAST_GPCPLL_DVFS2	(GPC_BCASE_GPCPLL_CFG_BASE + 0x20)
#define GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT	BIT(16)

/* FUSE register */
#define FUSE_RESERVED_CALIB0	0x204
#define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT	0
#define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH	4
#define FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT	4
#define FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH	10
#define FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT		14
#define FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH		10
#define FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT		24
#define FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH		6
#define FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT		30
#define FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH		2

#define DFS_DET_RANGE	6	/* -2^6 ... 2^6-1 */
#define SDM_DIN_RANGE	12	/* -2^12 ... 2^12-1 */

static inline u32 pl_to_div(u32 pl)
{
	return pl;
}

static inline u32 div_to_pl(u32 div)
{
	return div;
}

/* All frequencies in Khz */
struct gm20b_pllg_params {
	u32 min_vco, max_vco;
	u32 min_u, max_u;
	u32 min_m, max_m;
	u32 min_n, max_n;
	u32 min_pl, max_pl;
	/* NA mode parameters */
	int coeff_slope, coeff_offs;
	u32 vco_ctrl;
};

static const struct gm20b_pllg_params gm20b_pllg_params = {
	.min_vco = 1300000, .max_vco = 2600000,
	.min_u = 12000, .max_u = 38400,
	.min_m = 1, .max_m = 255,
	.min_n = 8, .max_n = 255,
	.min_pl = 1, .max_pl = 31,
	.coeff_slope = -165230, .coeff_offs = 214007,
	.vco_ctrl = 0x7 << 3,
};

struct gm20b_pllg_fused_params {
	int uvdet_slope, uvdet_offs;
};

struct gm20b_pll {
	u32 m;
	u32 n;
	u32 pl;
};

struct gm20b_na_dvfs {
	u32 n_int;
	u32 sdm_din;
	u32 dfs_coeff;
	int dfs_det_max;
	int dfs_ext_cal;
	int uv_cal;
	int uv;
};

struct gm20b_gpcpll {
	struct gm20b_pll pll;
	struct gm20b_na_dvfs dvfs;
	u32 rate;	/* gpc2clk */
};

struct gm20b_clk {
	struct nvkm_clk base;
	const struct gm20b_pllg_params *params;
	struct gm20b_pllg_fused_params fused_params;
	struct gm20b_gpcpll gpcpll;
	struct gm20b_gpcpll last_gpcpll;
	u32 parent_rate;
	int vid;
	bool napll_enabled;
	bool pldiv_glitchless_supported;
	u32 safe_fmax_vmin; /* in KHz */
};

/*
 * Post divider tarnsition is glitchless only if there is common "1" in
 * binary representation of old and new settings.
 */
static u32 gm20b_pllg_get_interim_pldiv(u32 old, u32 new)
{
	if (old & new)
		return 0;

	/* pl never 0 */
	return min(old | BIT(ffs(new) - 1), new | BIT(ffs(old) - 1));
}

static void
gm20b_gpcpll_read_mnp(struct gm20b_clk *clk, struct gm20b_pll *pll)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 val;

	if (!pll) {
		WARN(1, "%s() - invalid PLL\n", __func__);
		return;
	}

	val = nvkm_rd32(device, GPCPLL_COEFF);
	pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
	pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
	pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
}

static void
gm20b_pllg_read_mnp(struct gm20b_clk *clk)
{
	gm20b_gpcpll_read_mnp(clk, &clk->gpcpll.pll);
}

static u32
gm20b_pllg_calc_rate(u32 ref_rate, struct gm20b_pll *pll)
{
	u32 rate;
	u32 divider;

	rate = ref_rate * pll->n;
	divider = pll->m * pl_to_div(pll->pl);
	do_div(rate, divider);

	return rate / 2;
}

static int
gm20b_pllg_calc_mnp(struct gm20b_clk *clk, unsigned long rate)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	u32 target_clk_f, ref_clk_f, target_freq;
	u32 min_vco_f, max_vco_f;
	u32 low_pl, high_pl, best_pl;
	u32 target_vco_f, vco_f;
	u32 best_m, best_n;
	u32 u_f;
	u32 m, n, n2;
	u32 delta, lwv, best_delta = ~0;
	u32 pl;

	target_clk_f = rate * 2 / KHZ;
	ref_clk_f = clk->parent_rate / KHZ;

	max_vco_f = clk->params->max_vco;
	min_vco_f = clk->params->min_vco;
	best_m = clk->params->max_m;
	best_n = clk->params->min_n;
	best_pl = clk->params->min_pl;

	target_vco_f = target_clk_f + target_clk_f / 50;
	if (max_vco_f < target_vco_f)
		max_vco_f = target_vco_f;

	/* min_pl <= high_pl <= max_pl */
	high_pl = div_to_pl((max_vco_f + target_vco_f - 1) / target_vco_f);
	high_pl = min(high_pl, clk->params->max_pl);
	high_pl = max(high_pl, clk->params->min_pl);

	/* min_pl <= low_pl <= max_pl */
	low_pl = div_to_pl(min_vco_f / target_vco_f);
	low_pl = min(low_pl, clk->params->max_pl);
	low_pl = max(low_pl, clk->params->min_pl);

	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
		   pl_to_div(low_pl), high_pl, pl_to_div(high_pl));

	/* Select lowest possible VCO */
	for (pl = low_pl; pl <= high_pl; pl++) {
		target_vco_f = target_clk_f * pl_to_div(pl);
		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
			u_f = ref_clk_f / m;

			/* NA mode is supported only at max update rate 38.4 MHz */
			if (clk->napll_enabled && u_f != clk->params->max_u)
				continue;
			if (u_f < clk->params->min_u)
				break;
			if (u_f > clk->params->max_u)
				continue;

			n = (target_vco_f * m) / ref_clk_f;
			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;

			if (n > clk->params->max_n)
				break;

			for (; n <= n2; n++) {
				if (n < clk->params->min_n)
					continue;
				if (n > clk->params->max_n)
					break;

				vco_f = ref_clk_f * n / m;

				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
					lwv = (vco_f + (pl_to_div(pl) / 2))
						/ pl_to_div(pl);
					delta = abs(lwv - target_clk_f);

					if (delta < best_delta) {
						best_delta = delta;
						best_m = m;
						best_n = n;
						best_pl = pl;

						if (best_delta == 0)
							goto found_match;
					}
					nvkm_debug(subdev, "delta %d @ M %d, N %d, PL %d",
							delta, m, n, pl);
				}
			}
		}
	}

found_match:
	WARN_ON(best_delta == ~0);

	if (best_delta != 0)
		nvkm_debug(subdev,
			   "no best match for target @ %dKHz on gpc_pll",
			   target_clk_f);

	   clk->gpcpll.pll.m = best_m;
	   clk->gpcpll.pll.n = best_n;
	   clk->gpcpll.pll.pl = best_pl;

	target_freq = gm20b_pllg_calc_rate(clk->parent_rate,
			&clk->gpcpll.pll);
	target_freq /= KHZ;
	   clk->gpcpll.rate = target_freq * 2;

	nvkm_debug(subdev, "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
		 target_freq, clk->gpcpll.pll.m, clk->gpcpll.pll.n,
		           clk->gpcpll.pll.pl, pl_to_div(clk->gpcpll.pll.pl));
	return 0;
}

static void
gm20b_clk_calc_dfs_det_coeff(struct gm20b_clk *clk, int uv)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	const struct gm20b_pllg_params *p = clk->params;
	struct gm20b_pllg_fused_params *fp = &clk->fused_params;
	struct gm20b_na_dvfs *d = &clk->gpcpll.dvfs;
	u32 coeff;

	/* coeff = slope * voltage + offset */
	coeff = DIV_ROUND_CLOSEST(uv * p->coeff_slope, 1000 * 1000) +
			p->coeff_offs;
	coeff = DIV_ROUND_CLOSEST(coeff, 1000);
	coeff = min(coeff, (u32)MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH));
	d->dfs_coeff = coeff;

	d->dfs_ext_cal =
		DIV_ROUND_CLOSEST(uv - fp->uvdet_offs, fp->uvdet_slope);
	/* voltage = slope * det + offset */
	d->uv_cal = d->dfs_ext_cal * fp->uvdet_slope + fp->uvdet_offs;
	d->dfs_det_max = 0;

	nvkm_debug(subdev, "%s(): coeff=%u, ext_cal=%u, uv_cal=%u, det_max=%u\n",
			__func__, d->dfs_coeff, d->dfs_ext_cal, d->uv_cal,
			d->dfs_det_max);
}

/*
 * n_eff = n_int + 1/2 + SDM_DIN / 2^(SDM_DIN_RANGE + 1) +
 *         DVFS_COEFF * DVFS_DET_DELTA / 2^DFS_DET_RANGE
 */
static void
gm20b_clk_calc_dfs_ndiv(struct gm20b_clk *clk, struct
		gm20b_na_dvfs *d, int uv, int n_eff)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	int n, det_delta;
	u32 rem, rem_range;
	const struct gm20b_pllg_params *p = clk->params;
	struct gm20b_pllg_fused_params *fp = &clk->fused_params;

	det_delta = DIV_ROUND_CLOSEST(uv - fp->uvdet_offs, fp->uvdet_slope);
	det_delta -= d->dfs_ext_cal;
	det_delta = min(det_delta, d->dfs_det_max);
	det_delta = det_delta * d->dfs_coeff;

	n = (int)(n_eff << DFS_DET_RANGE) - det_delta;
	BUG_ON((n < 0) || (n > (p->max_n << DFS_DET_RANGE)));
	d->n_int = ((u32)n) >> DFS_DET_RANGE;

	rem = ((u32)n) & MASK(DFS_DET_RANGE);
	rem_range = SDM_DIN_RANGE + 1 - DFS_DET_RANGE;
	d->sdm_din = (rem << rem_range) - (1 << SDM_DIN_RANGE);
	d->sdm_din = (d->sdm_din >> 8) & MASK(GPCPLL_CFG2_SDM_DIN_WIDTH);

	nvkm_debug(subdev, "%s(): det_delta=%d, n_eff=%d, n_int=%u, sdm_din=%u\n",
			__func__, det_delta, n_eff, d->n_int, d->sdm_din);
}

static void
gm20b_clk_program_dfs_coeff(struct gm20b_clk *clk, u32 coeff)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 mask = MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH) <<
		GPCPLL_DVFS0_DFS_COEFF_SHIFT;
	u32 val = (coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT) & mask;

	/* strobe to read external DFS coefficient */
	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
			GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT,
			GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT);

	nvkm_mask(device, GPCPLL_DVFS0, mask, val);

	val = nvkm_rd32(device, GPC_BCAST_GPCPLL_DVFS2);
	udelay(1);
	val &= ~GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT;
	nvkm_wr32(device, GPC_BCAST_GPCPLL_DVFS2, val);
}

static void
gm20b_clk_program_dfs_ext_cal(struct gm20b_clk *clk, u32 dfs_det_cal)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val;

	val = nvkm_rd32(device, GPC_BCAST_GPCPLL_DVFS2);
	val &= ~(BIT(DFS_DET_RANGE + 1) - 1);
	val |= dfs_det_cal;
	nvkm_wr32(device, GPC_BCAST_GPCPLL_DVFS2, val);

	val = nvkm_rd32(device, GPCPLL_DVFS1);
	val >>= GPCPLL_DVFS1_DFS_CTRL_SHIFT;
	val &= MASK(GPCPLL_DVFS1_DFS_CTRL_WIDTH);
	udelay(1);
	if (!(val & BIT(9))) {
		/* Use external value to overwide calibration value */
		val |= BIT(9);
		nvkm_wr32(device, GPCPLL_DVFS1, val << GPCPLL_DVFS1_DFS_CTRL_SHIFT);
	}
}

static void
gm20b_clk_program_dfs_detection(struct gm20b_clk *clk,
		struct gm20b_gpcpll *gpcpll)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	struct gm20b_na_dvfs *d = &gpcpll->dvfs;
	u32 val;

	/* strobe to read external DFS coefficient */
	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
			GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT,
			GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT);

	val = nvkm_rd32(device, GPCPLL_DVFS0);
	val &= ~(MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH) <<
		GPCPLL_DVFS0_DFS_COEFF_SHIFT);
	val &= ~(MASK(GPCPLL_DVFS0_DFS_DET_MAX_WIDTH) <<
			GPCPLL_DVFS0_DFS_DET_MAX_SHIFT);
	val |= d->dfs_coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT;
	val |= d->dfs_det_max  << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT;
	nvkm_wr32(device, GPCPLL_DVFS0, val);

	val = nvkm_rd32(device, GPC_BCAST_GPCPLL_DVFS2);
	udelay(1);
	val &= ~GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT;
	nvkm_wr32(device, GPC_BCAST_GPCPLL_DVFS2, val);

	gm20b_clk_program_dfs_ext_cal(clk, d->dfs_ext_cal);
}

static int
gm20b_clk_setup_slide(struct gm20b_clk *clk, u32 rate)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 step_a, step_b;

	/* setup */
	switch (rate) {
	case 12000:
	case 12800:
	case 13000:
		step_a = 0x2b;
		step_b = 0x0b;
		break;
	case 19200:
		step_a = 0x12;
		step_b = 0x08;
		break;
	case 38400:
		step_a = 0x04;
		step_b = 0x05;
		break;
	default:
		nvkm_error(subdev, "invalid updated clock rate %u KHz", rate);
		return -EINVAL;
	}
	nvkm_trace(subdev, "%s() updated clk rate=%u, step_a=%u, step_b=%u\n",
			__func__, rate, step_a, step_b);

	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
		step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
		step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);

	return 0;
}

static int
gm20b_pllg_slide(struct gm20b_clk *clk, struct gm20b_gpcpll *gpcpll)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	struct gm20b_pll pll = gpcpll->pll;
	u32 val;
	u32 nold, sdmold;
	int ramp_timeout;
	int ret;

	/* get old coefficients */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	nold = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);

	/* do nothing if NDIV is the same */
	if (clk->napll_enabled) {
		val = nvkm_rd32(device, GPCPLL_CFG2);
		sdmold = (val >>  GPCPLL_CFG2_SDM_DIN_SHIFT) &
			MASK(GPCPLL_CFG2_SDM_DIN_WIDTH);
		if (gpcpll->dvfs.n_int == nold &&
				gpcpll->dvfs.sdm_din == sdmold)
			return 0;
	} else {
		if (pll.n == nold)
			return 0;

		ret = gm20b_clk_setup_slide(clk,
				(clk->parent_rate / KHZ) / pll.m);
		if (ret)
			return ret;
	}

	/* pll slowdown mode */
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));

	/* new ndiv ready for ramp */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
	val |= pll.n  << GPCPLL_COEFF_N_SHIFT;
	udelay(1);
	nvkm_wr32(device, GPCPLL_COEFF, val);

	/* dynamic ramp to new ndiv */
	val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
	udelay(1);
	nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);

	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
		udelay(1);
		val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
			break;
	}

	/* exit slowdown mode */
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);

	if (ramp_timeout <= 0) {
		nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static void
_gm20b_pllg_enable(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;

	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
	nvkm_rd32(device, GPCPLL_CFG);
}

static void
_gm20b_pllg_disable(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;

	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
	nvkm_rd32(device, GPCPLL_CFG);
}

static int
gm20b_clk_program_pdiv_under_bypass(struct gm20b_clk *clk,
		struct gm20b_gpcpll *gpcpll)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val;

	/* put PLL in bypass before programming it */
	val = nvkm_rd32(device, SEL_VCO);
	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
	nvkm_wr32(device, SEL_VCO, val);

	/* change PDIV */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	udelay(1);
	val &= ~(MASK(GPCPLL_COEFF_P_WIDTH) << GPCPLL_COEFF_P_SHIFT);
	val |= gpcpll->pll.pl << GPCPLL_COEFF_P_SHIFT;
	nvkm_wr32(device, GPCPLL_COEFF, val);

	/* switch to VCO mode */
	val = nvkm_rd32(device, SEL_VCO);
	udelay(1);
	val |= BIT(SEL_VCO_GPC2CLK_OUT_SHIFT);
	nvkm_wr32(device, SEL_VCO, val);

	nvkm_trace(subdev, "%s(): pdiv=%u\n", __func__, gpcpll->pll.pl);
	return 0;
}

static int
gm20b_lock_gpcpll_under_bypass(struct gm20b_clk *clk,
		struct gm20b_gpcpll *gpcpll)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val;

	/* put PLL in bypass before programming it */
	val = nvkm_rd32(device, SEL_VCO);
	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
	nvkm_wr32(device, SEL_VCO, val);

	/* get out from IDDQ */
	val = nvkm_rd32(device, GPCPLL_CFG);
	if (val & GPCPLL_CFG_IDDQ) {
		val &= ~GPCPLL_CFG_IDDQ;
		nvkm_wr32(device, GPCPLL_CFG, val);
		nvkm_rd32(device, GPCPLL_CFG);
		udelay(5);
	} else {
		/* clear SYNC_MODE before disabling PLL */
		val &= ~(0x1 << GPCPLL_CFG_SYNC_MODE);
		nvkm_wr32(device, GPCPLL_CFG, val);
		nvkm_rd32(device, GPCPLL_CFG);

		/* disable running PLL before changing coefficients */
		_gm20b_pllg_disable(clk);
	}

	nvkm_trace(subdev, "%s(): m=%d n=%d pl=%d\n", __func__,
			gpcpll->pll.m, gpcpll->pll.n, gpcpll->pll.pl);

	/* change coefficients */
	if (clk->napll_enabled) {
		gm20b_clk_program_dfs_detection(clk, gpcpll);

		nvkm_mask(device, GPCPLL_CFG2,
				MASK(GPCPLL_CFG2_SDM_DIN_WIDTH) <<
				GPCPLL_CFG2_SDM_DIN_SHIFT,
				gpcpll->dvfs.sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT);

		val = gpcpll->pll.m << GPCPLL_COEFF_M_SHIFT;
		val |= gpcpll->dvfs.n_int << GPCPLL_COEFF_N_SHIFT;
		val |= gpcpll->pll.pl << GPCPLL_COEFF_P_SHIFT;
		nvkm_wr32(device, GPCPLL_COEFF, val);
	} else {
		val = gpcpll->pll.m << GPCPLL_COEFF_M_SHIFT;
		val |= gpcpll->pll.n << GPCPLL_COEFF_N_SHIFT;
		val |= gpcpll->pll.pl << GPCPLL_COEFF_P_SHIFT;
		nvkm_wr32(device, GPCPLL_COEFF, val);
	}

	_gm20b_pllg_enable(clk);

	if (clk->napll_enabled) {
		/* just delay in DVFS mode (lock cannot be used) */
		nvkm_rd32(device, GPCPLL_CFG);
		udelay(40);
		goto pll_locked;
	}

	/* lock pll */
	val = nvkm_rd32(device, GPCPLL_CFG);
	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
		nvkm_wr32(device, GPCPLL_CFG, val);
	}

	if (!nvkm_wait_nsec(device, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
				GPCPLL_CFG_LOCK)) {
		nvkm_error(subdev, "%s: timeout waiting for pllg lock\n", __func__);
		return -ETIMEDOUT;
	}

pll_locked:
	/* set SYNC_MODE for glitchless switch out of bypass */
	val = nvkm_rd32(device, GPCPLL_CFG);
	val |= 0x1 << GPCPLL_CFG_SYNC_MODE;
	nvkm_wr32(device, GPCPLL_CFG, val);
	nvkm_rd32(device, GPCPLL_CFG);

	/* switch to VCO mode */
	nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));

	return 0;
}

static int
_gm20b_pllg_program_mnp(struct gm20b_clk *clk,
		struct gm20b_gpcpll *gpcpll, bool allow_slide)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val, cfg;
	struct gm20b_gpcpll gpll;
	bool pdiv_only = false;
	int ret;

	/* get old coefficients */
	gm20b_gpcpll_read_mnp(clk, &gpll.pll);

	gpll.dvfs = gpcpll->dvfs;

	/* do NDIV slide if there is no change in M and PL */
	cfg = nvkm_rd32(device, GPCPLL_CFG);
	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE) &&
			gpcpll->pll.m == gpll.pll.m &&
			gpcpll->pll.pl == gpll.pll.pl) {
		return gm20b_pllg_slide(clk, gpcpll);
	}

	/* slide down to NDIV_LO */
	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
		gpll.pll.n = DIV_ROUND_UP(gpll.pll.m * clk->params->min_vco,
				                              clk->parent_rate / KHZ);
		if (clk->napll_enabled)
			gm20b_clk_calc_dfs_ndiv(clk, &gpll.dvfs, gpll.dvfs.uv,
					gpll.pll.n);

		ret = gm20b_pllg_slide(clk, &gpll);
		if (ret)
			return ret;

		pdiv_only = gpll.pll.m == gpcpll->pll.m;
	}

	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);

	/*
	 * If the pldiv is glitchless and is the only coeff change compared
	 * with the current coeff after sliding down to min VCO, then we can
	 * ignore the bypass step.
	 */
	if (clk->pldiv_glitchless_supported && pdiv_only) {
		u32 interim_pl = gm20b_pllg_get_interim_pldiv(gpll.pll.pl,
				gpcpll->pll.pl);
		if (interim_pl)  {
			val = nvkm_rd32(device, GPCPLL_COEFF);
			val &= ~(MASK(GPCPLL_COEFF_P_WIDTH) << GPCPLL_COEFF_P_SHIFT);
			val |= interim_pl << GPCPLL_COEFF_P_SHIFT;
			nvkm_wr32(device, GPCPLL_COEFF, val);
			nvkm_rd32(device, GPCPLL_COEFF);
		}
	} else {
		gpll = *gpcpll;
		if (allow_slide) {
			gpll.pll.n = DIV_ROUND_UP(gpcpll->pll.m * clk->params->min_vco,
					                                 clk->parent_rate / KHZ);
			if (clk->napll_enabled)
				gm20b_clk_calc_dfs_ndiv(clk, &gpll.dvfs,
						gpll.dvfs.uv, gpll.pll.n);
		}

		if (pdiv_only)
			ret = gm20b_clk_program_pdiv_under_bypass(clk, &gpll);
		else
			ret = gm20b_lock_gpcpll_under_bypass(clk, &gpll);

		if (ret)
			return ret;
	}

	/* make sure we have the correct pdiv */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	if (((val & MASK(GPCPLL_COEFF_P_WIDTH)) >> GPCPLL_COEFF_P_SHIFT) !=
			gpcpll->pll.pl) {
		val &= ~(MASK(GPCPLL_COEFF_P_WIDTH) << GPCPLL_COEFF_P_SHIFT);
		val |= gpcpll->pll.pl << GPCPLL_COEFF_P_SHIFT;
		nvkm_wr32(device, GPCPLL_COEFF, val);
	}

	/* restore out divider 1:1 */
	val = nvkm_rd32(device, GPC2CLK_OUT);
	if ((val & GPC2CLK_OUT_VCODIV_MASK) !=
			(GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT)) {
		val &= ~GPC2CLK_OUT_VCODIV_MASK;
		val |= GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT;
		udelay(2);
		nvkm_wr32(device, GPC2CLK_OUT, val);
		/* Intentional 2nd write to assure linear divider operation */
		nvkm_wr32(device, GPC2CLK_OUT, val);
		nvkm_rd32(device, GPC2CLK_OUT);
	}

	/* slide up to new NDIV */
	return allow_slide ? gm20b_pllg_slide(clk, gpcpll) : 0;
}

/*
 * Configure/calculate the DVFS coefficients and ndiv based on the desired
 * voltage level
 */
static void
gm20b_clk_config_dvfs(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_volt *volt = device->volt;
	int uv = nvkm_volt_get_voltage_by_id(volt, clk->vid);

	gm20b_clk_calc_dfs_det_coeff(clk, uv);
	gm20b_clk_calc_dfs_ndiv(clk, &clk->gpcpll.dvfs, uv,
			                         clk->gpcpll.pll.n);
	   clk->gpcpll.dvfs.uv = uv;
	nvkm_trace(subdev, "%s(): uv=%d\n", __func__, uv);
}

static void
gm20b_clk_calc_safe_dvfs(struct gm20b_clk *priv,
		struct gm20b_gpcpll *gpcpll)
{
	int nsafe, nmin;

	if (gpcpll->rate > priv->safe_fmax_vmin)
		/* margin is 10% */
		gpcpll->rate = gpcpll->rate * (100 - 10) / 100;

	nmin = DIV_ROUND_UP(gpcpll->pll.m * priv->params->min_vco,
			priv->parent_rate / KHZ);
	nsafe = gpcpll->pll.m * gpcpll->rate / (priv->parent_rate / KHZ);
	if (nsafe < nmin) {
		gpcpll->pll.pl = DIV_ROUND_UP(nmin * (priv->parent_rate / KHZ),
				gpcpll->pll.m * gpcpll->rate);
		nsafe = nmin;
	}
	gpcpll->pll.n = nsafe;
	gm20b_clk_calc_dfs_ndiv(priv, &gpcpll->dvfs, gpcpll->dvfs.uv,
			gpcpll->pll.n);
}

static int
_gm20b_pllg_program_na_mnp(struct gm20b_clk *clk,
		struct gm20b_gpcpll *gpcpll, bool allow_slide)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_volt *volt = device->volt;
	int cur_uv = nvkm_volt_get(volt);
	int new_uv = nvkm_volt_get_voltage_by_id(volt, clk->vid);
	u32 cur_rate = clk->last_gpcpll.rate;

	gm20b_clk_config_dvfs(clk);

	/*
	 * We don't have to re-program the DVFS because the voltage keeps the
	 * same value (and we already have the same coeffients in hardware).
	 */
	if (!allow_slide || clk->last_gpcpll.dvfs.uv == gpcpll->dvfs.uv)
		return _gm20b_pllg_program_mnp(clk, &clk->gpcpll, allow_slide);

	/* Before setting coefficient to 0, switch to safe frequency first */
	if (cur_rate > clk->safe_fmax_vmin) {
		struct gm20b_gpcpll safe_gpcpll;
		int ret;

		/* voltage is increasing */
		if (cur_uv < new_uv) {
			safe_gpcpll = clk->last_gpcpll;
			safe_gpcpll.dvfs.uv = clk->gpcpll.dvfs.uv;
		}
		/* voltage is decreasing */
		else {
			safe_gpcpll = clk->gpcpll;
			safe_gpcpll.dvfs = clk->last_gpcpll.dvfs;
		}

		gm20b_clk_calc_safe_dvfs(clk, &safe_gpcpll);
		ret = _gm20b_pllg_program_mnp(clk, &safe_gpcpll, true);
		if (ret) {
			nvkm_error(subdev, "failed to switch to Fsafe@Vmin\n");
			return ret;
		}
	}

	/*
	 * DVFS detection settings transition:
	 * - Set DVFS coefficient zero
	 * - Set calibration level to new voltage
	 * - Set DVFS coefficient to match new voltage
	 */
	gm20b_clk_program_dfs_coeff(clk, 0);
	gm20b_clk_program_dfs_ext_cal(clk, gpcpll->dvfs.dfs_ext_cal);
	gm20b_clk_program_dfs_coeff(clk, gpcpll->dvfs.dfs_coeff);

	return _gm20b_pllg_program_mnp(clk, gpcpll, true);
}

static int
gm20b_clk_program_gpcpll(struct gm20b_clk *clk)
{
	int err;

	err = _gm20b_pllg_program_mnp(clk, &clk->gpcpll, true);
	if (err)
		err = _gm20b_pllg_program_mnp(clk, &clk->gpcpll, false);

	return err;
}

static int
gm20b_clk_program_na_gpcpll(struct gm20b_clk *clk)
{
	int err;

	err = _gm20b_pllg_program_na_mnp(clk, &clk->gpcpll, true);
	if (err)
		err = _gm20b_pllg_program_na_mnp(clk, &clk->gpcpll, false);

	return err;

}

static int
gm20b_napll_setup(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	const struct gm20b_pllg_params *p = clk->params;
	struct gm20b_pllg_fused_params *fp = &clk->fused_params;
	bool calibrated = fp->uvdet_slope && fp->uvdet_offs;
	u32 val;

	/* Enable NA DVFS */
	nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_BIT,
			GPCPLL_DVFS1_EN_DFS_BIT);

	/* Set VCO_CTRL */
	if (p->vco_ctrl)
		nvkm_mask(device, GPCPLL_CFG3, MASK(GPCPLL_CFG3_VCO_CTRL_WIDTH) <<
				GPCPLL_CFG3_VCO_CTRL_SHIFT,
				p->vco_ctrl << GPCPLL_CFG3_VCO_CTRL_SHIFT);

	if (calibrated)
		/* Start internal calibration, but ignore the result */
		nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT,
				GPCPLL_DVFS1_EN_DFS_CAL_BIT);

	/* Exit IDDQ mode */
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
	nvkm_rd32(device, GPCPLL_CFG);
	udelay(5);

	/*
	 * Dynamic ramp setup based on update rate, which in DVFS mode on
	 * GM20b is always 38.4 MHz, the same as reference clock rate.
	 */
	gm20b_clk_setup_slide(clk, clk->parent_rate / KHZ);

	if (calibrated)
		goto calibration_done;

	/*
	 * No fused calibration data available. Need to do internal
	 * calibration.
	 */
	if (!nvkm_wait_nsec(device, 5000, GPCPLL_DVFS1,
				GPCPLL_DVFS1_DFS_CAL_DONE_BIT,
				GPCPLL_DVFS1_DFS_CAL_DONE_BIT)) {
		nvkm_error(subdev, "%s: DVFS calibration timeout\n", __func__);
		//return -ETIMEDOUT;
	}

	val = nvkm_rd32(device, GPCPLL_CFG3);
	val >>= GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT;
	val &= MASK(GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH);
	/* default ADC detection slope 10mV */
	fp->uvdet_slope = 10000;
	/* gpu rail boot voltage 1.0V = 1000000uV */
	fp->uvdet_offs = 1000000 - val * fp->uvdet_slope;

calibration_done:
	nvkm_trace(subdev, "%s(): %s calibration slope=%d, intercept=%d\n",
			__func__, calibrated ? "external" : "internal",
			fp->uvdet_slope, fp->uvdet_offs);
	return 0;
}

static void
gm20b_pllg_disable(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val;

	/* slide to VCO min */
	val = nvkm_rd32(device, GPCPLL_CFG);
	if (val & GPCPLL_CFG_ENABLE) {
		struct gm20b_gpcpll gpcpll = clk->gpcpll;

		gm20b_gpcpll_read_mnp(clk, &gpcpll.pll);
		gpcpll.pll.n = DIV_ROUND_UP(gpcpll.pll.m * clk->params->min_vco,
				                                clk->parent_rate / KHZ);
		if (clk->napll_enabled)
			gm20b_clk_calc_dfs_ndiv(clk, &gpcpll.dvfs, gpcpll.dvfs.uv,
					gpcpll.pll.n);
		gm20b_pllg_slide(clk, &gpcpll);
	}

	/* put PLL in bypass before disabling it */
	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);

	/* clear SYNC_MODE before disabling PLL */
	nvkm_mask(device, GPCPLL_CFG, ~(0x1 << GPCPLL_CFG_SYNC_MODE), 0);

	_gm20b_pllg_disable(clk);
}

#define GM20B_CLK_GPC_MDIV 1000

static struct nvkm_pstate
gm20b_pstates[] = {
	{
		.base = {
			.domain[nv_clk_src_gpc] = 76800,
			.voltage = 0,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 153600,
			.voltage = 1,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 230400,
			.voltage = 2,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 307200,
			.voltage = 3,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 384000,
			.voltage = 4,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 460800,
			.voltage = 5,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 537600,
			.voltage = 6,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 614400,
			.voltage = 7,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 691200,
			.voltage = 8,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 768000,
			.voltage = 9,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 844800,
			.voltage = 10,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 921600,
			.voltage = 11,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 998400,
			.voltage = 12,
		},
	},

};

static int
gm20b_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;

	switch (src) {
	case nv_clk_src_crystal:
		return device->crystal;
	case nv_clk_src_gpc:
		gm20b_pllg_read_mnp(clk);
		return gm20b_pllg_calc_rate(clk->parent_rate, &clk->gpcpll.pll) /
			GM20B_CLK_GPC_MDIV;
	default:
		nvkm_error(subdev, "invalid clock source %d\n", src);
		return -EINVAL;
	}
}

static int
gm20b_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	int ret;

	ret = gm20b_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
					 GM20B_CLK_GPC_MDIV);
	if (!ret)
		clk->vid = cstate->voltage;

	return ret;
}

static int
gm20b_clk_prog(struct nvkm_clk *base)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	int ret;

	if (clk->napll_enabled)
		ret = gm20b_clk_program_na_gpcpll(clk);
	else
		ret = gm20b_clk_program_gpcpll(clk);

	clk->last_gpcpll = clk->gpcpll;

	return ret;
}

static void
gm20b_clk_tidy(struct nvkm_clk *clk)
{
}

static void
gm20b_clk_fini(struct nvkm_clk *base)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	gm20b_pllg_disable(clk);
}

static int
gm20b_clk_init(struct nvkm_clk *base)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	struct gm20b_gpcpll *gpcpll = &clk->gpcpll;
	struct gm20b_pll *pll = &gpcpll->pll;
	u32 val;
	int ret;

	/*
	 * Initial frequency, low enough to be safe at Vmin (default 1/3
	 * VCO min)
	 */
	pll->m = 1;
	pll->n = DIV_ROUND_UP(clk->params->min_vco, clk->parent_rate / KHZ);
	pll->pl = DIV_ROUND_UP(clk->params->min_vco, clk->safe_fmax_vmin);
	pll->pl = max(clk->gpcpll.pll.pl, 3U);
	gpcpll->rate = (clk->parent_rate / KHZ) * clk->gpcpll.pll.n;
	gpcpll->rate /= pl_to_div(clk->gpcpll.pll.pl);
	val = pll->m << GPCPLL_COEFF_M_SHIFT;
	val |= pll->n << GPCPLL_COEFF_N_SHIFT;
	val |= pll->pl << GPCPLL_COEFF_P_SHIFT;
	nvkm_wr32(device, GPCPLL_COEFF, val);
	nvkm_trace(subdev, "Initial freq=%uKHz(gpc2clk), m=%u, n=%u, pl=%u\n",
			gpcpll->rate, pll->m, pll->n, pll->pl);

	/* Set the global bypass control to VCO */
	nvkm_mask(device, BYPASSCTRL_SYS,
		MASK(BYPASSCTRL_SYS_GPCPLL_WIDTH) << BYPASSCTRL_SYS_GPCPLL_SHIFT,
		0);

	/* Disable idle slow down */
	nvkm_mask(device, 0x20160, 0x003f0000, 0x0);

	if (clk->napll_enabled) {
		ret = gm20b_napll_setup(clk);
		if (ret)
			return ret;
	}

	ret = gm20b_clk_prog(&clk->base);
	if (ret) {
		nvkm_error(subdev, "cannot initialize clock\n");
		return ret;
	}

	return 0;
}

static int
gm20b_clk_init_fused_params(struct gm20b_clk *priv)
{
#ifdef CONFIG_TEGRA
	struct gm20b_pllg_fused_params *p = &priv->fused_params;
	u32 val;

	tegra_fuse_readl(FUSE_RESERVED_CALIB0, &val);
	if ((val >> FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH)) {
		/* Integer part in mV  * 1000 + fractional part in uV */
		p->uvdet_slope =
			((val >> FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH)) * 1000 +
			((val >> FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH));
		/* Integer part in mV  * 1000 + fractional part in 100uV */
		p->uvdet_offs =
			((val >> FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH)) * 1000 +
			((val >> FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT) &
			 MASK(FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH)) * 100;

		return 0;
	}
#endif

	/* If no fused parameters, we will try internal calibration later */
	return -EINVAL;
}

static int
gm20b_clk_init_safe_fmax(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_volt *volt = device->volt;
	int vmin, id = 0, fmax = 0;
	int i;

	vmin = volt->vid[0].uv;
	for (i = 1; i < volt->vid_nr; i++) {
		if (volt->vid[i].uv <= vmin) {
			vmin = volt->vid[i].uv;
			id =  volt->vid[i].vid;
		}
	}

	for (i = 0; i < ARRAY_SIZE(gm20b_pstates); i++) {
		if (gm20b_pstates[i].base.voltage == id)
			fmax = gm20b_pstates[i].base.domain[nv_clk_src_gpc];
	}

	if (!fmax) {
		nvkm_error(subdev, "failed to evaluate safe fmax\n");
		return -EINVAL;
	}

	/* margin is 10% */
	   clk->safe_fmax_vmin = fmax * (100 - 10) / 100;
	/* gpc2clk */
	   clk->safe_fmax_vmin *= 2;
	nvkm_trace(subdev, "safe famx @ vmin = %uKHz\n", clk->safe_fmax_vmin);

	return 0;
}

static const struct nvkm_clk_func
gm20b_clk = {
	.init = gm20b_clk_init,
	.fini = gm20b_clk_fini,
	.read = gm20b_clk_read,
	.calc = gm20b_clk_calc,
	.prog = gm20b_clk_prog,
	.tidy = gm20b_clk_tidy,
	.pstates = gm20b_pstates,
	.nr_pstates = ARRAY_SIZE(gm20b_pstates),
	.domains = {
		{ nv_clk_src_crystal, 0xff },
		{ nv_clk_src_gpc, 0xff, 0, "core", GM20B_CLK_GPC_MDIV },
		{ nv_clk_src_max },
	},
};

int
gm20b_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
	struct nvkm_device_tegra *tdev = device->func->tegra(device);
	struct gm20b_clk *clk;
	int ret, i;

	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
		return -ENOMEM;
	*pclk = &clk->base;

	/* Finish initializing the pstates */
	for (i = 0; i < ARRAY_SIZE(gm20b_pstates); i++) {
		INIT_LIST_HEAD(&gm20b_pstates[i].list);
		gm20b_pstates[i].pstate = i + 1;
	}

	clk->params = &gm20b_pllg_params;
	clk->parent_rate = clk_get_rate(tdev->clk);

	ret = nvkm_clk_ctor(&gm20b_clk, device, index, true, &clk->base);
	if (ret)
		return ret;
	nvkm_info(&clk->base.subdev, "parent clock rate: %d Khz\n",
		  clk->parent_rate / KHZ);


	ret = gm20b_clk_init_fused_params(clk);
	/* print error and use boot internal calibration later */
	if (ret)
		nvkm_error(&clk->base.subdev,
			 "missing fused ADC calibration parameters\n");

	ret = gm20b_clk_init_safe_fmax(clk);
	if (ret)
		return ret;

	clk->napll_enabled = tdev->gpu_speedo_id >= 1;
	clk->pldiv_glitchless_supported = true;

	return ret;
}