summaryrefslogtreecommitdiff
path: root/deps/v8/third_party/fdlibm/fdlibm.js
blob: d5dbb72990a5adecafd3697393ca86928ba31970 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunSoft, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
//
// The following is a straightforward translation of fdlibm routines for
// sin, cos, and tan, by Raymond Toy (rtoy@google.com).


var kTrig;  // Initialized to a Float64Array during genesis and is not writable.

const INVPIO2 = kTrig[0];
const PIO2_1  = kTrig[1];
const PIO2_1T = kTrig[2];
const PIO2_2  = kTrig[3];
const PIO2_2T = kTrig[4];
const PIO2_3  = kTrig[5];
const PIO2_3T = kTrig[6];
const PIO4    = kTrig[32];
const PIO4LO  = kTrig[33];

// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
// precision, r is returned as two values y0 and y1 such that r = y0 + y1
// to more than double precision.
macro REMPIO2(X)
  var n, y0, y1;
  var hx = %_DoubleHi(X);
  var ix = hx & 0x7fffffff;

  if (ix < 0x4002d97c) {
    // |X| ~< 3*pi/4, special case with n = +/- 1
    if (hx > 0) {
      var z = X - PIO2_1;
      if (ix != 0x3ff921fb) {
        // 33+53 bit pi is good enough
        y0 = z - PIO2_1T;
        y1 = (z - y0) - PIO2_1T;
      } else {
        // near pi/2, use 33+33+53 bit pi
        z -= PIO2_2;
        y0 = z - PIO2_2T;
        y1 = (z - y0) - PIO2_2T;
      }
      n = 1;
    } else {
      // Negative X
      var z = X + PIO2_1;
      if (ix != 0x3ff921fb) {
        // 33+53 bit pi is good enough
        y0 = z + PIO2_1T;
        y1 = (z - y0) + PIO2_1T;
      } else {
        // near pi/2, use 33+33+53 bit pi
        z += PIO2_2;
        y0 = z + PIO2_2T;
        y1 = (z - y0) + PIO2_2T;
      }
      n = -1;
    }
  } else if (ix <= 0x413921fb) {
    // |X| ~<= 2^19*(pi/2), medium size
    var t = MathAbs(X);
    n = (t * INVPIO2 + 0.5) | 0;
    var r = t - n * PIO2_1;
    var w = n * PIO2_1T;
    // First round good to 85 bit
    y0 = r - w;
    if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
      // 2nd iteration needed, good to 118
      t = r;
      w = n * PIO2_2;
      r = t - w;
      w = n * PIO2_2T - ((t - r) - w);
      y0 = r - w;
      if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
        // 3rd iteration needed. 151 bits accuracy
        t = r;
        w = n * PIO2_3;
        r = t - w;
        w = n * PIO2_3T - ((t - r) - w);
        y0 = r - w;
      }
    }
    y1 = (r - y0) - w;
    if (hx < 0) {
      n = -n;
      y0 = -y0;
      y1 = -y1;
    }
  } else {
    // Need to do full Payne-Hanek reduction here.
    var r = %RemPiO2(X);
    n = r[0];
    y0 = r[1];
    y1 = r[2];
  }
endmacro


// __kernel_sin(X, Y, IY)
// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
// Input X is assumed to be bounded by ~pi/4 in magnitude.
// Input Y is the tail of X so that x = X + Y.
//
// Algorithm
//  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
//  2. ieee_sin(x) is approximated by a polynomial of degree 13 on
//     [0,pi/4]
//                           3            13
//          sin(x) ~ x + S1*x + ... + S6*x
//     where
//
//    |ieee_sin(x)    2     4     6     8     10     12  |     -58
//    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
//    |  x                                               |
//
//  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
//              ~ ieee_sin(X) + (1-X*X/2)*Y
//     For better accuracy, let
//               3      2      2      2      2
//          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
//     then                   3    2
//          sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
//
macro KSIN(x)
kTrig[7+x]
endmacro

macro RETURN_KERNELSIN(X, Y, SIGN)
  var z = X * X;
  var v = z * X;
  var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
                    z * (KSIN(4) + z * KSIN(5))));
  return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
endmacro

// __kernel_cos(X, Y)
// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
// Input X is assumed to be bounded by ~pi/4 in magnitude.
// Input Y is the tail of X so that x = X + Y.
//
// Algorithm
//  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
//  2. ieee_cos(x) is approximated by a polynomial of degree 14 on
//     [0,pi/4]
//                                   4            14
//          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
//     where the remez error is
//
//  |                   2     4     6     8     10    12     14 |     -58
//  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
//  |                                                           |
//
//                 4     6     8     10    12     14
//  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
//         ieee_cos(x) = 1 - x*x/2 + r
//     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
//                    ~ ieee_cos(X) - X*Y,
//     a correction term is necessary in ieee_cos(x) and hence
//         cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
//     For better accuracy when x > 0.3, let qx = |x|/4 with
//     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
//     Then
//         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
//     Note that 1-qx and (X*X/2-qx) is EXACT here, and the
//     magnitude of the latter is at least a quarter of X*X/2,
//     thus, reducing the rounding error in the subtraction.
//
macro KCOS(x)
kTrig[13+x]
endmacro

macro RETURN_KERNELCOS(X, Y, SIGN)
  var ix = %_DoubleHi(X) & 0x7fffffff;
  var z = X * X;
  var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
          z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
  if (ix < 0x3fd33333) {  // |x| ~< 0.3
    return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
  } else {
    var qx;
    if (ix > 0x3fe90000) {  // |x| > 0.78125
      qx = 0.28125;
    } else {
      qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
    }
    var hz = 0.5 * z - qx;
    return (1 - qx - (hz - (z * r - X * Y))) SIGN;
  }
endmacro

// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
// Input x is assumed to be bounded by ~pi/4 in magnitude.
// Input y is the tail of x.
// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
// is returned.
//
// Algorithm
//  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
//  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
//  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
//     [0,0.67434]
//                           3             27
//          tan(x) ~ x + T1*x + ... + T13*x
//     where
//
//     |ieee_tan(x)    2     4            26   |     -59.2
//     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
//     |  x                                    |
//
//     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
//                    ~ ieee_tan(x) + (1+x*x)*y
//     Therefore, for better accuracy in computing ieee_tan(x+y), let
//               3      2      2       2       2
//          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
//     then
//                              3    2
//          tan(x+y) = x + (T1*x + (x *(r+y)+y))
//
//  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
//          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
//                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
//
// Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal
// and will cause incorrect results.
//
macro KTAN(x)
kTrig[19+x]
endmacro

function KernelTan(x, y, returnTan) {
  var z;
  var w;
  var hx = %_DoubleHi(x);
  var ix = hx & 0x7fffffff;

  if (ix < 0x3e300000) {  // |x| < 2^-28
    if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
      // x == 0 && returnTan = -1
      return 1 / MathAbs(x);
    } else {
      if (returnTan == 1) {
        return x;
      } else {
        // Compute -1/(x + y) carefully
        var w = x + y;
        var z = %_ConstructDouble(%_DoubleHi(w), 0);
        var v = y - (z - x);
        var a = -1 / w;
        var t = %_ConstructDouble(%_DoubleHi(a), 0);
        var s = 1 + t * z;
        return t + a * (s + t * v);
      }
    }
  }
  if (ix >= 0x3fe59429) {  // |x| > .6744
    if (x < 0) {
      x = -x;
      y = -y;
    }
    z = PIO4 - x;
    w = PIO4LO - y;
    x = z + w;
    y = 0;
  }
  z = x * x;
  w = z * z;

  // Break x^5 * (T1 + x^2*T2 + ...) into
  // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
  // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
  var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
                    w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
  var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
                         w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
  var s = z * x;
  r = y + z * (s * (r + v) + y);
  r = r + KTAN(0) * s;
  w = x + r;
  if (ix >= 0x3fe59428) {
    return (1 - ((hx >> 30) & 2)) *
      (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
  }
  if (returnTan == 1) {
    return w;
  } else {
    z = %_ConstructDouble(%_DoubleHi(w), 0);
    v = r - (z - x);
    var a = -1 / w;
    var t = %_ConstructDouble(%_DoubleHi(a), 0);
    s = 1 + t * z;
    return t + a * (s + t * v);
  }
}

function MathSinSlow(x) {
  REMPIO2(x);
  var sign = 1 - (n & 2);
  if (n & 1) {
    RETURN_KERNELCOS(y0, y1, * sign);
  } else {
    RETURN_KERNELSIN(y0, y1, * sign);
  }
}

function MathCosSlow(x) {
  REMPIO2(x);
  if (n & 1) {
    var sign = (n & 2) - 1;
    RETURN_KERNELSIN(y0, y1, * sign);
  } else {
    var sign = 1 - (n & 2);
    RETURN_KERNELCOS(y0, y1, * sign);
  }
}

// ECMA 262 - 15.8.2.16
function MathSin(x) {
  x = x * 1;  // Convert to number.
  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    // |x| < pi/4, approximately.  No reduction needed.
    RETURN_KERNELSIN(x, 0, /* empty */);
  }
  return MathSinSlow(x);
}

// ECMA 262 - 15.8.2.7
function MathCos(x) {
  x = x * 1;  // Convert to number.
  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    // |x| < pi/4, approximately.  No reduction needed.
    RETURN_KERNELCOS(x, 0, /* empty */);
  }
  return MathCosSlow(x);
}

// ECMA 262 - 15.8.2.18
function MathTan(x) {
  x = x * 1;  // Convert to number.
  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    // |x| < pi/4, approximately.  No reduction needed.
    return KernelTan(x, 0, 1);
  }
  REMPIO2(x);
  return KernelTan(y0, y1, (n & 1) ? -1 : 1);
}