summaryrefslogtreecommitdiff
path: root/deps/v8/src/unicode-inl.h
blob: a0142d2259f69e67f2c401be7389b575535f7278 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright 2007-2010 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_UNICODE_INL_H_
#define V8_UNICODE_INL_H_

#include "unicode.h"
#include "checks.h"
#include "platform.h"

namespace unibrow {

template <class T, int s> bool Predicate<T, s>::get(uchar code_point) {
  CacheEntry entry = entries_[code_point & kMask];
  if (entry.code_point_ == code_point) return entry.value_;
  return CalculateValue(code_point);
}

template <class T, int s> bool Predicate<T, s>::CalculateValue(
    uchar code_point) {
  bool result = T::Is(code_point);
  entries_[code_point & kMask] = CacheEntry(code_point, result);
  return result;
}

template <class T, int s> int Mapping<T, s>::get(uchar c, uchar n,
    uchar* result) {
  CacheEntry entry = entries_[c & kMask];
  if (entry.code_point_ == c) {
    if (entry.offset_ == 0) {
      return 0;
    } else {
      result[0] = c + entry.offset_;
      return 1;
    }
  } else {
    return CalculateValue(c, n, result);
  }
}

template <class T, int s> int Mapping<T, s>::CalculateValue(uchar c, uchar n,
    uchar* result) {
  bool allow_caching = true;
  int length = T::Convert(c, n, result, &allow_caching);
  if (allow_caching) {
    if (length == 1) {
      entries_[c & kMask] = CacheEntry(c, result[0] - c);
      return 1;
    } else {
      entries_[c & kMask] = CacheEntry(c, 0);
      return 0;
    }
  } else {
    return length;
  }
}


uint16_t Latin1::ConvertNonLatin1ToLatin1(uint16_t c) {
  ASSERT(c > Latin1::kMaxChar);
  switch (c) {
    // This are equivalent characters in unicode.
    case 0x39c:
    case 0x3bc:
      return 0xb5;
    // This is an uppercase of a Latin-1 character
    // outside of Latin-1.
    case 0x178:
      return 0xff;
  }
  return 0;
}


unsigned Utf8::EncodeOneByte(char* str, uint8_t c) {
  static const int kMask = ~(1 << 6);
  if (c <= kMaxOneByteChar) {
    str[0] = c;
    return 1;
  }
  str[0] = 0xC0 | (c >> 6);
  str[1] = 0x80 | (c & kMask);
  return 2;
}

// Encode encodes the UTF-16 code units c and previous into the given str
// buffer, and combines surrogate code units into single code points. If
// replace_invalid is set to true, orphan surrogate code units will be replaced
// with kBadChar.
unsigned Utf8::Encode(char* str,
                      uchar c,
                      int previous,
                      bool replace_invalid) {
  static const int kMask = ~(1 << 6);
  if (c <= kMaxOneByteChar) {
    str[0] = c;
    return 1;
  } else if (c <= kMaxTwoByteChar) {
    str[0] = 0xC0 | (c >> 6);
    str[1] = 0x80 | (c & kMask);
    return 2;
  } else if (c <= kMaxThreeByteChar) {
    if (Utf16::IsSurrogatePair(previous, c)) {
      const int kUnmatchedSize = kSizeOfUnmatchedSurrogate;
      return Encode(str - kUnmatchedSize,
                    Utf16::CombineSurrogatePair(previous, c),
                    Utf16::kNoPreviousCharacter,
                    replace_invalid) - kUnmatchedSize;
    } else if (replace_invalid &&
               (Utf16::IsLeadSurrogate(c) ||
               Utf16::IsTrailSurrogate(c))) {
      c = kBadChar;
    }
    str[0] = 0xE0 | (c >> 12);
    str[1] = 0x80 | ((c >> 6) & kMask);
    str[2] = 0x80 | (c & kMask);
    return 3;
  } else {
    str[0] = 0xF0 | (c >> 18);
    str[1] = 0x80 | ((c >> 12) & kMask);
    str[2] = 0x80 | ((c >> 6) & kMask);
    str[3] = 0x80 | (c & kMask);
    return 4;
  }
}


uchar Utf8::ValueOf(const byte* bytes, unsigned length, unsigned* cursor) {
  if (length <= 0) return kBadChar;
  byte first = bytes[0];
  // Characters between 0000 and 0007F are encoded as a single character
  if (first <= kMaxOneByteChar) {
    *cursor += 1;
    return first;
  }
  return CalculateValue(bytes, length, cursor);
}

unsigned Utf8::Length(uchar c, int previous) {
  if (c <= kMaxOneByteChar) {
    return 1;
  } else if (c <= kMaxTwoByteChar) {
    return 2;
  } else if (c <= kMaxThreeByteChar) {
    if (Utf16::IsTrailSurrogate(c) &&
        Utf16::IsLeadSurrogate(previous)) {
      return kSizeOfUnmatchedSurrogate - kBytesSavedByCombiningSurrogates;
    }
    return 3;
  } else {
    return 4;
  }
}

Utf8DecoderBase::Utf8DecoderBase()
  : unbuffered_start_(NULL),
    utf16_length_(0),
    last_byte_of_buffer_unused_(false) {}

Utf8DecoderBase::Utf8DecoderBase(uint16_t* buffer,
                                 unsigned buffer_length,
                                 const uint8_t* stream,
                                 unsigned stream_length) {
  Reset(buffer, buffer_length, stream, stream_length);
}

template<unsigned kBufferSize>
Utf8Decoder<kBufferSize>::Utf8Decoder(const char* stream, unsigned length)
  : Utf8DecoderBase(buffer_,
                    kBufferSize,
                    reinterpret_cast<const uint8_t*>(stream),
                    length) {
}

template<unsigned kBufferSize>
void Utf8Decoder<kBufferSize>::Reset(const char* stream, unsigned length) {
  Utf8DecoderBase::Reset(buffer_,
                         kBufferSize,
                         reinterpret_cast<const uint8_t*>(stream),
                         length);
}

template <unsigned kBufferSize>
unsigned Utf8Decoder<kBufferSize>::WriteUtf16(uint16_t* data,
                                              unsigned length) const {
  ASSERT(length > 0);
  if (length > utf16_length_) length = utf16_length_;
  // memcpy everything in buffer.
  unsigned buffer_length =
      last_byte_of_buffer_unused_ ? kBufferSize - 1 : kBufferSize;
  unsigned memcpy_length = length <= buffer_length  ? length : buffer_length;
  v8::internal::OS::MemCopy(data, buffer_, memcpy_length*sizeof(uint16_t));
  if (length <= buffer_length) return length;
  ASSERT(unbuffered_start_ != NULL);
  // Copy the rest the slow way.
  WriteUtf16Slow(unbuffered_start_,
                 data + buffer_length,
                 length - buffer_length);
  return length;
}

}  // namespace unibrow

#endif  // V8_UNICODE_INL_H_