1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "store-buffer.h"
#include "store-buffer-inl.h"
#include "v8-counters.h"
namespace v8 {
namespace internal {
StoreBuffer::StoreBuffer(Heap* heap)
: heap_(heap),
start_(NULL),
limit_(NULL),
old_start_(NULL),
old_limit_(NULL),
old_top_(NULL),
old_reserved_limit_(NULL),
old_buffer_is_sorted_(false),
old_buffer_is_filtered_(false),
during_gc_(false),
store_buffer_rebuilding_enabled_(false),
callback_(NULL),
may_move_store_buffer_entries_(true),
virtual_memory_(NULL),
hash_set_1_(NULL),
hash_set_2_(NULL),
hash_sets_are_empty_(true) {
}
void StoreBuffer::SetUp() {
virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
uintptr_t start_as_int =
reinterpret_cast<uintptr_t>(virtual_memory_->address());
start_ =
reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
limit_ = start_ + (kStoreBufferSize / kPointerSize);
old_virtual_memory_ =
new VirtualMemory(kOldStoreBufferLength * kPointerSize);
old_top_ = old_start_ =
reinterpret_cast<Address*>(old_virtual_memory_->address());
// Don't know the alignment requirements of the OS, but it is certainly not
// less than 0xfff.
ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
ASSERT(initial_length > 0);
ASSERT(initial_length <= kOldStoreBufferLength);
old_limit_ = old_start_ + initial_length;
old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
CHECK(old_virtual_memory_->Commit(
reinterpret_cast<void*>(old_start_),
(old_limit_ - old_start_) * kPointerSize,
false));
ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
Address* vm_limit = reinterpret_cast<Address*>(
reinterpret_cast<char*>(virtual_memory_->address()) +
virtual_memory_->size());
ASSERT(start_ <= vm_limit);
ASSERT(limit_ <= vm_limit);
USE(vm_limit);
ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
0);
CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
kStoreBufferSize,
false)); // Not executable.
heap_->public_set_store_buffer_top(start_);
hash_set_1_ = new uintptr_t[kHashSetLength];
hash_set_2_ = new uintptr_t[kHashSetLength];
hash_sets_are_empty_ = false;
ClearFilteringHashSets();
}
void StoreBuffer::TearDown() {
delete virtual_memory_;
delete old_virtual_memory_;
delete[] hash_set_1_;
delete[] hash_set_2_;
old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
start_ = limit_ = NULL;
heap_->public_set_store_buffer_top(start_);
}
void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
isolate->heap()->store_buffer()->Compact();
}
#if V8_TARGET_ARCH_X64
static int CompareAddresses(const void* void_a, const void* void_b) {
intptr_t a =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
intptr_t b =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
// Unfortunately if int is smaller than intptr_t there is no branch-free
// way to return a number with the same sign as the difference between the
// pointers.
if (a == b) return 0;
if (a < b) return -1;
ASSERT(a > b);
return 1;
}
#else
static int CompareAddresses(const void* void_a, const void* void_b) {
intptr_t a =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
intptr_t b =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
ASSERT(sizeof(1) == sizeof(a));
// Shift down to avoid wraparound.
return (a >> kPointerSizeLog2) - (b >> kPointerSizeLog2);
}
#endif
void StoreBuffer::Uniq() {
// Remove adjacent duplicates and cells that do not point at new space.
Address previous = NULL;
Address* write = old_start_;
ASSERT(may_move_store_buffer_entries_);
for (Address* read = old_start_; read < old_top_; read++) {
Address current = *read;
if (current != previous) {
if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
*write++ = current;
}
}
previous = current;
}
old_top_ = write;
}
void StoreBuffer::EnsureSpace(intptr_t space_needed) {
while (old_limit_ - old_top_ < space_needed &&
old_limit_ < old_reserved_limit_) {
size_t grow = old_limit_ - old_start_; // Double size.
CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
grow * kPointerSize,
false));
old_limit_ += grow;
}
if (old_limit_ - old_top_ >= space_needed) return;
if (old_buffer_is_filtered_) return;
ASSERT(may_move_store_buffer_entries_);
Compact();
old_buffer_is_filtered_ = true;
bool page_has_scan_on_scavenge_flag = false;
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
}
if (page_has_scan_on_scavenge_flag) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
// If filtering out the entries from scan_on_scavenge pages got us down to
// less than half full, then we are satisfied with that.
if (old_limit_ - old_top_ > old_top_ - old_start_) return;
// Sample 1 entry in 97 and filter out the pages where we estimate that more
// than 1 in 8 pointers are to new space.
static const int kSampleFinenesses = 5;
static const struct Samples {
int prime_sample_step;
int threshold;
} samples[kSampleFinenesses] = {
{ 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
{ 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
{ 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
{ 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
{ 1, 0}
};
for (int i = kSampleFinenesses - 1; i >= 0; i--) {
ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
// As a last resort we mark all pages as being exempt from the store buffer.
ASSERT(i != 0 || old_top_ == old_start_);
if (old_limit_ - old_top_ > old_top_ - old_start_) return;
}
UNREACHABLE();
}
// Sample the store buffer to see if some pages are taking up a lot of space
// in the store buffer.
void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
chunk->set_store_buffer_counter(0);
}
bool created_new_scan_on_scavenge_pages = false;
MemoryChunk* previous_chunk = NULL;
for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
Address addr = *p;
MemoryChunk* containing_chunk = NULL;
if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
containing_chunk = previous_chunk;
} else {
containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
}
int old_counter = containing_chunk->store_buffer_counter();
if (old_counter == threshold) {
containing_chunk->set_scan_on_scavenge(true);
created_new_scan_on_scavenge_pages = true;
}
containing_chunk->set_store_buffer_counter(old_counter + 1);
previous_chunk = containing_chunk;
}
if (created_new_scan_on_scavenge_pages) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
old_buffer_is_filtered_ = true;
}
void StoreBuffer::Filter(int flag) {
Address* new_top = old_start_;
MemoryChunk* previous_chunk = NULL;
for (Address* p = old_start_; p < old_top_; p++) {
Address addr = *p;
MemoryChunk* containing_chunk = NULL;
if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
containing_chunk = previous_chunk;
} else {
containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
previous_chunk = containing_chunk;
}
if (!containing_chunk->IsFlagSet(flag)) {
*new_top++ = addr;
}
}
old_top_ = new_top;
// Filtering hash sets are inconsistent with the store buffer after this
// operation.
ClearFilteringHashSets();
}
void StoreBuffer::SortUniq() {
Compact();
if (old_buffer_is_sorted_) return;
qsort(reinterpret_cast<void*>(old_start_),
old_top_ - old_start_,
sizeof(*old_top_),
&CompareAddresses);
Uniq();
old_buffer_is_sorted_ = true;
// Filtering hash sets are inconsistent with the store buffer after this
// operation.
ClearFilteringHashSets();
}
bool StoreBuffer::PrepareForIteration() {
Compact();
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
bool page_has_scan_on_scavenge_flag = false;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
}
if (page_has_scan_on_scavenge_flag) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
// Filtering hash sets are inconsistent with the store buffer after
// iteration.
ClearFilteringHashSets();
return page_has_scan_on_scavenge_flag;
}
#ifdef DEBUG
void StoreBuffer::Clean() {
ClearFilteringHashSets();
Uniq(); // Also removes things that no longer point to new space.
CheckForFullBuffer();
}
static Address* in_store_buffer_1_element_cache = NULL;
bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
if (!FLAG_enable_slow_asserts) return true;
if (in_store_buffer_1_element_cache != NULL &&
*in_store_buffer_1_element_cache == cell_address) {
return true;
}
Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
for (Address* current = top - 1; current >= start_; current--) {
if (*current == cell_address) {
in_store_buffer_1_element_cache = current;
return true;
}
}
for (Address* current = old_top_ - 1; current >= old_start_; current--) {
if (*current == cell_address) {
in_store_buffer_1_element_cache = current;
return true;
}
}
return false;
}
#endif
void StoreBuffer::ClearFilteringHashSets() {
if (!hash_sets_are_empty_) {
memset(reinterpret_cast<void*>(hash_set_1_),
0,
sizeof(uintptr_t) * kHashSetLength);
memset(reinterpret_cast<void*>(hash_set_2_),
0,
sizeof(uintptr_t) * kHashSetLength);
hash_sets_are_empty_ = true;
}
}
void StoreBuffer::GCPrologue() {
ClearFilteringHashSets();
during_gc_ = true;
}
#ifdef DEBUG
static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
// Do nothing.
}
void StoreBuffer::VerifyPointers(PagedSpace* space,
RegionCallback region_callback) {
PageIterator it(space);
while (it.has_next()) {
Page* page = it.next();
FindPointersToNewSpaceOnPage(
reinterpret_cast<PagedSpace*>(page->owner()),
page,
region_callback,
&DummyScavengePointer);
}
}
void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
LargeObjectIterator it(space);
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
if (object->IsFixedArray()) {
Address slot_address = object->address();
Address end = object->address() + object->Size();
while (slot_address < end) {
HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
// When we are not in GC the Heap::InNewSpace() predicate
// checks that pointers which satisfy predicate point into
// the active semispace.
heap_->InNewSpace(*slot);
slot_address += kPointerSize;
}
}
}
}
#endif
void StoreBuffer::Verify() {
#ifdef DEBUG
VerifyPointers(heap_->old_pointer_space(),
&StoreBuffer::FindPointersToNewSpaceInRegion);
VerifyPointers(heap_->map_space(),
&StoreBuffer::FindPointersToNewSpaceInMapsRegion);
VerifyPointers(heap_->lo_space());
#endif
}
void StoreBuffer::GCEpilogue() {
during_gc_ = false;
if (FLAG_verify_heap) {
Verify();
}
}
void StoreBuffer::FindPointersToNewSpaceInRegion(
Address start, Address end, ObjectSlotCallback slot_callback) {
for (Address slot_address = start;
slot_address < end;
slot_address += kPointerSize) {
Object** slot = reinterpret_cast<Object**>(slot_address);
if (heap_->InNewSpace(*slot)) {
HeapObject* object = reinterpret_cast<HeapObject*>(*slot);
ASSERT(object->IsHeapObject());
slot_callback(reinterpret_cast<HeapObject**>(slot), object);
if (heap_->InNewSpace(*slot)) {
EnterDirectlyIntoStoreBuffer(slot_address);
}
}
}
}
// Compute start address of the first map following given addr.
static inline Address MapStartAlign(Address addr) {
Address page = Page::FromAddress(addr)->area_start();
return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
}
// Compute end address of the first map preceding given addr.
static inline Address MapEndAlign(Address addr) {
Address page = Page::FromAllocationTop(addr)->area_start();
return page + ((addr - page) / Map::kSize * Map::kSize);
}
void StoreBuffer::FindPointersToNewSpaceInMaps(
Address start,
Address end,
ObjectSlotCallback slot_callback) {
ASSERT(MapStartAlign(start) == start);
ASSERT(MapEndAlign(end) == end);
Address map_address = start;
while (map_address < end) {
ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
ASSERT(Memory::Object_at(map_address)->IsMap());
Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
FindPointersToNewSpaceInRegion(pointer_fields_start,
pointer_fields_end,
slot_callback);
map_address += Map::kSize;
}
}
void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
Address start,
Address end,
ObjectSlotCallback slot_callback) {
Address map_aligned_start = MapStartAlign(start);
Address map_aligned_end = MapEndAlign(end);
ASSERT(map_aligned_start == start);
ASSERT(map_aligned_end == end);
FindPointersToNewSpaceInMaps(map_aligned_start,
map_aligned_end,
slot_callback);
}
// This function iterates over all the pointers in a paged space in the heap,
// looking for pointers into new space. Within the pages there may be dead
// objects that have not been overwritten by free spaces or fillers because of
// lazy sweeping. These dead objects may not contain pointers to new space.
// The garbage areas that have been swept properly (these will normally be the
// large ones) will be marked with free space and filler map words. In
// addition any area that has never been used at all for object allocation must
// be marked with a free space or filler. Because the free space and filler
// maps do not move we can always recognize these even after a compaction.
// Normal objects like FixedArrays and JSObjects should not contain references
// to these maps. The special garbage section (see comment in spaces.h) is
// skipped since it can contain absolutely anything. Any objects that are
// allocated during iteration may or may not be visited by the iteration, but
// they will not be partially visited.
void StoreBuffer::FindPointersToNewSpaceOnPage(
PagedSpace* space,
Page* page,
RegionCallback region_callback,
ObjectSlotCallback slot_callback) {
Address visitable_start = page->area_start();
Address end_of_page = page->area_end();
Address visitable_end = visitable_start;
Object* free_space_map = heap_->free_space_map();
Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
while (visitable_end < end_of_page) {
Object* o = *reinterpret_cast<Object**>(visitable_end);
// Skip fillers but not things that look like fillers in the special
// garbage section which can contain anything.
if (o == free_space_map ||
o == two_pointer_filler_map ||
(visitable_end == space->top() && visitable_end != space->limit())) {
if (visitable_start != visitable_end) {
// After calling this the special garbage section may have moved.
(this->*region_callback)(visitable_start,
visitable_end,
slot_callback);
if (visitable_end >= space->top() && visitable_end < space->limit()) {
visitable_end = space->limit();
visitable_start = visitable_end;
continue;
}
}
if (visitable_end == space->top() && visitable_end != space->limit()) {
visitable_start = visitable_end = space->limit();
} else {
// At this point we are either at the start of a filler or we are at
// the point where the space->top() used to be before the
// visit_pointer_region call above. Either way we can skip the
// object at the current spot: We don't promise to visit objects
// allocated during heap traversal, and if space->top() moved then it
// must be because an object was allocated at this point.
visitable_start =
visitable_end + HeapObject::FromAddress(visitable_end)->Size();
visitable_end = visitable_start;
}
} else {
ASSERT(o != free_space_map);
ASSERT(o != two_pointer_filler_map);
ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
visitable_end += kPointerSize;
}
}
ASSERT(visitable_end == end_of_page);
if (visitable_start != visitable_end) {
(this->*region_callback)(visitable_start,
visitable_end,
slot_callback);
}
}
void StoreBuffer::IteratePointersInStoreBuffer(
ObjectSlotCallback slot_callback) {
Address* limit = old_top_;
old_top_ = old_start_;
{
DontMoveStoreBufferEntriesScope scope(this);
for (Address* current = old_start_; current < limit; current++) {
#ifdef DEBUG
Address* saved_top = old_top_;
#endif
Object** slot = reinterpret_cast<Object**>(*current);
Object* object = *slot;
if (heap_->InFromSpace(object)) {
HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
if (heap_->InNewSpace(*slot)) {
EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
}
}
ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
}
}
}
void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
// We do not sort or remove duplicated entries from the store buffer because
// we expect that callback will rebuild the store buffer thus removing
// all duplicates and pointers to old space.
bool some_pages_to_scan = PrepareForIteration();
// TODO(gc): we want to skip slots on evacuation candidates
// but we can't simply figure that out from slot address
// because slot can belong to a large object.
IteratePointersInStoreBuffer(slot_callback);
// We are done scanning all the pointers that were in the store buffer, but
// there may be some pages marked scan_on_scavenge that have pointers to new
// space that are not in the store buffer. We must scan them now. As we
// scan, the surviving pointers to new space will be added to the store
// buffer. If there are still a lot of pointers to new space then we will
// keep the scan_on_scavenge flag on the page and discard the pointers that
// were added to the store buffer. If there are not many pointers to new
// space left on the page we will keep the pointers in the store buffer and
// remove the flag from the page.
if (some_pages_to_scan) {
if (callback_ != NULL) {
(*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
}
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) {
chunk->set_scan_on_scavenge(false);
if (callback_ != NULL) {
(*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
}
if (chunk->owner() == heap_->lo_space()) {
LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
HeapObject* array = large_page->GetObject();
ASSERT(array->IsFixedArray());
Address start = array->address();
Address end = start + array->Size();
FindPointersToNewSpaceInRegion(start, end, slot_callback);
} else {
Page* page = reinterpret_cast<Page*>(chunk);
PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
FindPointersToNewSpaceOnPage(
owner,
page,
(owner == heap_->map_space() ?
&StoreBuffer::FindPointersToNewSpaceInMapsRegion :
&StoreBuffer::FindPointersToNewSpaceInRegion),
slot_callback);
}
}
}
if (callback_ != NULL) {
(*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
}
}
}
void StoreBuffer::Compact() {
Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
if (top == start_) return;
// There's no check of the limit in the loop below so we check here for
// the worst case (compaction doesn't eliminate any pointers).
ASSERT(top <= limit_);
heap_->public_set_store_buffer_top(start_);
EnsureSpace(top - start_);
ASSERT(may_move_store_buffer_entries_);
// Goes through the addresses in the store buffer attempting to remove
// duplicates. In the interest of speed this is a lossy operation. Some
// duplicates will remain. We have two hash sets with different hash
// functions to reduce the number of unnecessary clashes.
hash_sets_are_empty_ = false; // Hash sets are in use.
for (Address* current = start_; current < top; current++) {
ASSERT(!heap_->cell_space()->Contains(*current));
ASSERT(!heap_->code_space()->Contains(*current));
ASSERT(!heap_->old_data_space()->Contains(*current));
uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
// Shift out the last bits including any tags.
int_addr >>= kPointerSizeLog2;
int hash1 =
((int_addr ^ (int_addr >> kHashSetLengthLog2)) & (kHashSetLength - 1));
if (hash_set_1_[hash1] == int_addr) continue;
uintptr_t hash2 = (int_addr - (int_addr >> kHashSetLengthLog2));
hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
hash2 &= (kHashSetLength - 1);
if (hash_set_2_[hash2] == int_addr) continue;
if (hash_set_1_[hash1] == 0) {
hash_set_1_[hash1] = int_addr;
} else if (hash_set_2_[hash2] == 0) {
hash_set_2_[hash2] = int_addr;
} else {
// Rather than slowing down we just throw away some entries. This will
// cause some duplicates to remain undetected.
hash_set_1_[hash1] = int_addr;
hash_set_2_[hash2] = 0;
}
old_buffer_is_sorted_ = false;
old_buffer_is_filtered_ = false;
*old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
ASSERT(old_top_ <= old_limit_);
}
heap_->isolate()->counters()->store_buffer_compactions()->Increment();
CheckForFullBuffer();
}
void StoreBuffer::CheckForFullBuffer() {
EnsureSpace(kStoreBufferSize * 2);
}
} } // namespace v8::internal
|