summaryrefslogtreecommitdiff
path: root/deps/v8/src/serialize.h
blob: 958f20e24f3d45e84e939c4cf2aea7200dc7e212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_SERIALIZE_H_
#define V8_SERIALIZE_H_

#include "hashmap.h"

namespace v8 {
namespace internal {

// A TypeCode is used to distinguish different kinds of external reference.
// It is a single bit to make testing for types easy.
enum TypeCode {
  UNCLASSIFIED,        // One-of-a-kind references.
  BUILTIN,
  RUNTIME_FUNCTION,
  IC_UTILITY,
  DEBUG_ADDRESS,
  STATS_COUNTER,
  TOP_ADDRESS,
  C_BUILTIN,
  EXTENSION,
  ACCESSOR,
  RUNTIME_ENTRY,
  STUB_CACHE_TABLE,
  LAZY_DEOPTIMIZATION
};

const int kTypeCodeCount = LAZY_DEOPTIMIZATION + 1;
const int kFirstTypeCode = UNCLASSIFIED;

const int kReferenceIdBits = 16;
const int kReferenceIdMask = (1 << kReferenceIdBits) - 1;
const int kReferenceTypeShift = kReferenceIdBits;
const int kDebugRegisterBits = 4;
const int kDebugIdShift = kDebugRegisterBits;

const int kDeoptTableSerializeEntryCount = 12;

// ExternalReferenceTable is a helper class that defines the relationship
// between external references and their encodings. It is used to build
// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
class ExternalReferenceTable {
 public:
  static ExternalReferenceTable* instance(Isolate* isolate);

  ~ExternalReferenceTable() { }

  int size() const { return refs_.length(); }

  Address address(int i) { return refs_[i].address; }

  uint32_t code(int i) { return refs_[i].code; }

  const char* name(int i) { return refs_[i].name; }

  int max_id(int code) { return max_id_[code]; }

 private:
  explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
      PopulateTable(isolate);
  }

  struct ExternalReferenceEntry {
    Address address;
    uint32_t code;
    const char* name;
  };

  void PopulateTable(Isolate* isolate);

  // For a few types of references, we can get their address from their id.
  void AddFromId(TypeCode type,
                 uint16_t id,
                 const char* name,
                 Isolate* isolate);

  // For other types of references, the caller will figure out the address.
  void Add(Address address, TypeCode type, uint16_t id, const char* name);

  List<ExternalReferenceEntry> refs_;
  int max_id_[kTypeCodeCount];
};


class ExternalReferenceEncoder {
 public:
  explicit ExternalReferenceEncoder(Isolate* isolate);

  uint32_t Encode(Address key) const;

  const char* NameOfAddress(Address key) const;

 private:
  HashMap encodings_;
  static uint32_t Hash(Address key) {
    return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >> 2);
  }

  int IndexOf(Address key) const;

  void Put(Address key, int index);

  Isolate* isolate_;
};


class ExternalReferenceDecoder {
 public:
  explicit ExternalReferenceDecoder(Isolate* isolate);
  ~ExternalReferenceDecoder();

  Address Decode(uint32_t key) const {
    if (key == 0) return NULL;
    return *Lookup(key);
  }

 private:
  Address** encodings_;

  Address* Lookup(uint32_t key) const {
    int type = key >> kReferenceTypeShift;
    ASSERT(kFirstTypeCode <= type && type < kTypeCodeCount);
    int id = key & kReferenceIdMask;
    return &encodings_[type][id];
  }

  void Put(uint32_t key, Address value) {
    *Lookup(key) = value;
  }

  Isolate* isolate_;
};


class SnapshotByteSource {
 public:
  SnapshotByteSource(const byte* array, int length)
    : data_(array), length_(length), position_(0) { }

  bool HasMore() { return position_ < length_; }

  int Get() {
    ASSERT(position_ < length_);
    return data_[position_++];
  }

  int32_t GetUnalignedInt() {
#if defined(V8_HOST_CAN_READ_UNALIGNED) &&  __BYTE_ORDER == __LITTLE_ENDIAN
    int32_t answer;
    ASSERT(position_ + sizeof(answer) <= length_ + 0u);
    answer = *reinterpret_cast<const int32_t*>(data_ + position_);
#else
    int32_t answer = data_[position_];
    answer |= data_[position_ + 1] << 8;
    answer |= data_[position_ + 2] << 16;
    answer |= data_[position_ + 3] << 24;
#endif
    return answer;
  }

  void Advance(int by) { position_ += by; }

  inline void CopyRaw(byte* to, int number_of_bytes);

  inline int GetInt();

  bool AtEOF();

  int position() { return position_; }

 private:
  const byte* data_;
  int length_;
  int position_;
};


// The Serializer/Deserializer class is a common superclass for Serializer and
// Deserializer which is used to store common constants and methods used by
// both.
class SerializerDeserializer: public ObjectVisitor {
 public:
  static void Iterate(Isolate* isolate, ObjectVisitor* visitor);

  static int nop() { return kNop; }

 protected:
  // Where the pointed-to object can be found:
  enum Where {
    kNewObject = 0,                 // Object is next in snapshot.
    // 1-6                             One per space.
    kRootArray = 0x9,               // Object is found in root array.
    kPartialSnapshotCache = 0xa,    // Object is in the cache.
    kExternalReference = 0xb,       // Pointer to an external reference.
    kSkip = 0xc,                    // Skip n bytes.
    kNop = 0xd,                     // Does nothing, used to pad.
    // 0xe-0xf                         Free.
    kBackref = 0x10,                // Object is described relative to end.
    // 0x11-0x16                       One per space.
    kBackrefWithSkip = 0x18,        // Object is described relative to end.
    // 0x19-0x1e                       One per space.
    // 0x20-0x3f                       Used by misc. tags below.
    kPointedToMask = 0x3f
  };

  // How to code the pointer to the object.
  enum HowToCode {
    kPlain = 0,                          // Straight pointer.
    // What this means depends on the architecture:
    kFromCode = 0x40,                    // A pointer inlined in code.
    kHowToCodeMask = 0x40
  };

  // For kRootArrayConstants
  enum WithSkip {
    kNoSkipDistance = 0,
    kHasSkipDistance = 0x40,
    kWithSkipMask = 0x40
  };

  // Where to point within the object.
  enum WhereToPoint {
    kStartOfObject = 0,
    kInnerPointer = 0x80,  // First insn in code object or payload of cell.
    kWhereToPointMask = 0x80
  };

  // Misc.
  // Raw data to be copied from the snapshot.  This byte code does not advance
  // the current pointer, which is used for code objects, where we write the
  // entire code in one memcpy, then fix up stuff with kSkip and other byte
  // codes that overwrite data.
  static const int kRawData = 0x20;
  // Some common raw lengths: 0x21-0x3f.  These autoadvance the current pointer.
  // A tag emitted at strategic points in the snapshot to delineate sections.
  // If the deserializer does not find these at the expected moments then it
  // is an indication that the snapshot and the VM do not fit together.
  // Examine the build process for architecture, version or configuration
  // mismatches.
  static const int kSynchronize = 0x70;
  // Used for the source code of the natives, which is in the executable, but
  // is referred to from external strings in the snapshot.
  static const int kNativesStringResource = 0x71;
  static const int kRepeat = 0x72;
  static const int kConstantRepeat = 0x73;
  // 0x73-0x7f            Repeat last word (subtract 0x72 to get the count).
  static const int kMaxRepeats = 0x7f - 0x72;
  static int CodeForRepeats(int repeats) {
    ASSERT(repeats >= 1 && repeats <= kMaxRepeats);
    return 0x72 + repeats;
  }
  static int RepeatsForCode(int byte_code) {
    ASSERT(byte_code >= kConstantRepeat && byte_code <= 0x7f);
    return byte_code - 0x72;
  }
  static const int kRootArrayConstants = 0xa0;
  // 0xa0-0xbf            Things from the first 32 elements of the root array.
  static const int kRootArrayNumberOfConstantEncodings = 0x20;
  static int RootArrayConstantFromByteCode(int byte_code) {
    return byte_code & 0x1f;
  }

  static const int kNumberOfSpaces = LO_SPACE;
  static const int kAnyOldSpace = -1;

  // A bitmask for getting the space out of an instruction.
  static const int kSpaceMask = 7;
};


int SnapshotByteSource::GetInt() {
  // This way of variable-length encoding integers does not suffer from branch
  // mispredictions.
  uint32_t answer = GetUnalignedInt();
  int bytes = answer & 3;
  Advance(bytes);
  uint32_t mask = 0xffffffffu;
  mask >>= 32 - (bytes << 3);
  answer &= mask;
  answer >>= 2;
  return answer;
}


void SnapshotByteSource::CopyRaw(byte* to, int number_of_bytes) {
  OS::MemCopy(to, data_ + position_, number_of_bytes);
  position_ += number_of_bytes;
}


// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
class Deserializer: public SerializerDeserializer {
 public:
  // Create a deserializer from a snapshot byte source.
  explicit Deserializer(SnapshotByteSource* source);

  virtual ~Deserializer();

  // Deserialize the snapshot into an empty heap.
  void Deserialize(Isolate* isolate);

  // Deserialize a single object and the objects reachable from it.
  void DeserializePartial(Isolate* isolate, Object** root);

  void set_reservation(int space_number, int reservation) {
    ASSERT(space_number >= 0);
    ASSERT(space_number <= LAST_SPACE);
    reservations_[space_number] = reservation;
  }

 private:
  virtual void VisitPointers(Object** start, Object** end);

  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {
    UNREACHABLE();
  }

  // Allocation sites are present in the snapshot, and must be linked into
  // a list at deserialization time.
  void RelinkAllocationSite(AllocationSite* site);

  // Fills in some heap data in an area from start to end (non-inclusive).  The
  // space id is used for the write barrier.  The object_address is the address
  // of the object we are writing into, or NULL if we are not writing into an
  // object, i.e. if we are writing a series of tagged values that are not on
  // the heap.
  void ReadChunk(
      Object** start, Object** end, int space, Address object_address);
  void ReadObject(int space_number, Object** write_back);

  // This routine both allocates a new object, and also keeps
  // track of where objects have been allocated so that we can
  // fix back references when deserializing.
  Address Allocate(int space_index, int size) {
    Address address = high_water_[space_index];
    high_water_[space_index] = address + size;
    HeapProfiler* profiler = isolate_->heap_profiler();
    if (profiler->is_tracking_allocations()) {
      profiler->AllocationEvent(address, size);
    }
    return address;
  }

  // This returns the address of an object that has been described in the
  // snapshot as being offset bytes back in a particular space.
  HeapObject* GetAddressFromEnd(int space) {
    int offset = source_->GetInt();
    offset <<= kObjectAlignmentBits;
    return HeapObject::FromAddress(high_water_[space] - offset);
  }

  void FlushICacheForNewCodeObjects();

  // Cached current isolate.
  Isolate* isolate_;

  SnapshotByteSource* source_;
  // This is the address of the next object that will be allocated in each
  // space.  It is used to calculate the addresses of back-references.
  Address high_water_[LAST_SPACE + 1];

  int reservations_[LAST_SPACE + 1];
  static const intptr_t kUninitializedReservation = -1;

  ExternalReferenceDecoder* external_reference_decoder_;

  DISALLOW_COPY_AND_ASSIGN(Deserializer);
};


class SnapshotByteSink {
 public:
  virtual ~SnapshotByteSink() { }
  virtual void Put(int byte, const char* description) = 0;
  virtual void PutSection(int byte, const char* description) {
    Put(byte, description);
  }
  void PutInt(uintptr_t integer, const char* description);
  virtual int Position() = 0;
};


// Mapping objects to their location after deserialization.
// This is used during building, but not at runtime by V8.
class SerializationAddressMapper {
 public:
  SerializationAddressMapper()
      : no_allocation_(),
        serialization_map_(new HashMap(HashMap::PointersMatch)) { }

  ~SerializationAddressMapper() {
    delete serialization_map_;
  }

  bool IsMapped(HeapObject* obj) {
    return serialization_map_->Lookup(Key(obj), Hash(obj), false) != NULL;
  }

  int MappedTo(HeapObject* obj) {
    ASSERT(IsMapped(obj));
    return static_cast<int>(reinterpret_cast<intptr_t>(
        serialization_map_->Lookup(Key(obj), Hash(obj), false)->value));
  }

  void AddMapping(HeapObject* obj, int to) {
    ASSERT(!IsMapped(obj));
    HashMap::Entry* entry =
        serialization_map_->Lookup(Key(obj), Hash(obj), true);
    entry->value = Value(to);
  }

 private:
  static uint32_t Hash(HeapObject* obj) {
    return static_cast<int32_t>(reinterpret_cast<intptr_t>(obj->address()));
  }

  static void* Key(HeapObject* obj) {
    return reinterpret_cast<void*>(obj->address());
  }

  static void* Value(int v) {
    return reinterpret_cast<void*>(v);
  }

  DisallowHeapAllocation no_allocation_;
  HashMap* serialization_map_;
  DISALLOW_COPY_AND_ASSIGN(SerializationAddressMapper);
};


class CodeAddressMap;

// There can be only one serializer per V8 process.
class Serializer : public SerializerDeserializer {
 public:
  Serializer(Isolate* isolate, SnapshotByteSink* sink);
  ~Serializer();
  void VisitPointers(Object** start, Object** end);
  // You can call this after serialization to find out how much space was used
  // in each space.
  int CurrentAllocationAddress(int space) const {
    ASSERT(space < kNumberOfSpaces);
    return fullness_[space];
  }

  Isolate* isolate() const { return isolate_; }
  static void RequestEnable(Isolate* isolate);
  static void InitializeOncePerProcess();
  static void TearDown();

  static bool enabled(Isolate* isolate) {
    SerializationState state = static_cast<SerializationState>(
        NoBarrier_Load(&serialization_state_));
    ASSERT(state != SERIALIZER_STATE_UNINITIALIZED);
    return state == SERIALIZER_STATE_ENABLED;
  }
  SerializationAddressMapper* address_mapper() { return &address_mapper_; }
  void PutRoot(int index,
               HeapObject* object,
               HowToCode how,
               WhereToPoint where,
               int skip);

 protected:
  static const int kInvalidRootIndex = -1;

  int RootIndex(HeapObject* heap_object, HowToCode from);
  virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) = 0;
  intptr_t root_index_wave_front() { return root_index_wave_front_; }
  void set_root_index_wave_front(intptr_t value) {
    ASSERT(value >= root_index_wave_front_);
    root_index_wave_front_ = value;
  }

  class ObjectSerializer : public ObjectVisitor {
   public:
    ObjectSerializer(Serializer* serializer,
                     Object* o,
                     SnapshotByteSink* sink,
                     HowToCode how_to_code,
                     WhereToPoint where_to_point)
      : serializer_(serializer),
        object_(HeapObject::cast(o)),
        sink_(sink),
        reference_representation_(how_to_code + where_to_point),
        bytes_processed_so_far_(0),
        code_object_(o->IsCode()),
        code_has_been_output_(false) { }
    void Serialize();
    void VisitPointers(Object** start, Object** end);
    void VisitEmbeddedPointer(RelocInfo* target);
    void VisitExternalReference(Address* p);
    void VisitExternalReference(RelocInfo* rinfo);
    void VisitCodeTarget(RelocInfo* target);
    void VisitCodeEntry(Address entry_address);
    void VisitCell(RelocInfo* rinfo);
    void VisitRuntimeEntry(RelocInfo* reloc);
    // Used for seralizing the external strings that hold the natives source.
    void VisitExternalAsciiString(
        v8::String::ExternalAsciiStringResource** resource);
    // We can't serialize a heap with external two byte strings.
    void VisitExternalTwoByteString(
        v8::String::ExternalStringResource** resource) {
      UNREACHABLE();
    }

   private:
    enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
    // This function outputs or skips the raw data between the last pointer and
    // up to the current position.  It optionally can just return the number of
    // bytes to skip instead of performing a skip instruction, in case the skip
    // can be merged into the next instruction.
    int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);

    Serializer* serializer_;
    HeapObject* object_;
    SnapshotByteSink* sink_;
    int reference_representation_;
    int bytes_processed_so_far_;
    bool code_object_;
    bool code_has_been_output_;
  };

  virtual void SerializeObject(Object* o,
                               HowToCode how_to_code,
                               WhereToPoint where_to_point,
                               int skip) = 0;
  void SerializeReferenceToPreviousObject(
      int space,
      int address,
      HowToCode how_to_code,
      WhereToPoint where_to_point,
      int skip);
  void InitializeAllocators();
  // This will return the space for an object.
  static int SpaceOfObject(HeapObject* object);
  int Allocate(int space, int size);
  int EncodeExternalReference(Address addr) {
    return external_reference_encoder_->Encode(addr);
  }

  int SpaceAreaSize(int space);

  // Some roots should not be serialized, because their actual value depends on
  // absolute addresses and they are reset after deserialization, anyway.
  bool ShouldBeSkipped(Object** current);

  Isolate* isolate_;
  // Keep track of the fullness of each space in order to generate
  // relative addresses for back references.
  int fullness_[LAST_SPACE + 1];
  SnapshotByteSink* sink_;
  ExternalReferenceEncoder* external_reference_encoder_;

  enum SerializationState {
    SERIALIZER_STATE_UNINITIALIZED = 0,
    SERIALIZER_STATE_DISABLED = 1,
    SERIALIZER_STATE_ENABLED = 2
  };

  static AtomicWord serialization_state_;

  SerializationAddressMapper address_mapper_;
  intptr_t root_index_wave_front_;
  void Pad();

  friend class ObjectSerializer;
  friend class Deserializer;

 private:
  static CodeAddressMap* code_address_map_;
  DISALLOW_COPY_AND_ASSIGN(Serializer);
};


class PartialSerializer : public Serializer {
 public:
  PartialSerializer(Isolate* isolate,
                    Serializer* startup_snapshot_serializer,
                    SnapshotByteSink* sink)
    : Serializer(isolate, sink),
      startup_serializer_(startup_snapshot_serializer) {
    set_root_index_wave_front(Heap::kStrongRootListLength);
  }

  // Serialize the objects reachable from a single object pointer.
  virtual void Serialize(Object** o);
  virtual void SerializeObject(Object* o,
                               HowToCode how_to_code,
                               WhereToPoint where_to_point,
                               int skip);

 protected:
  virtual int PartialSnapshotCacheIndex(HeapObject* o);
  virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
    // Scripts should be referred only through shared function infos.  We can't
    // allow them to be part of the partial snapshot because they contain a
    // unique ID, and deserializing several partial snapshots containing script
    // would cause dupes.
    ASSERT(!o->IsScript());
    return o->IsName() || o->IsSharedFunctionInfo() ||
           o->IsHeapNumber() || o->IsCode() ||
           o->IsScopeInfo() ||
           o->map() ==
               startup_serializer_->isolate()->heap()->fixed_cow_array_map();
  }

 private:
  Serializer* startup_serializer_;
  DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
};


class StartupSerializer : public Serializer {
 public:
  StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
    : Serializer(isolate, sink) {
    // Clear the cache of objects used by the partial snapshot.  After the
    // strong roots have been serialized we can create a partial snapshot
    // which will repopulate the cache with objects needed by that partial
    // snapshot.
    isolate->set_serialize_partial_snapshot_cache_length(0);
  }
  // Serialize the current state of the heap.  The order is:
  // 1) Strong references.
  // 2) Partial snapshot cache.
  // 3) Weak references (e.g. the string table).
  virtual void SerializeStrongReferences();
  virtual void SerializeObject(Object* o,
                               HowToCode how_to_code,
                               WhereToPoint where_to_point,
                               int skip);
  void SerializeWeakReferences();
  void Serialize() {
    SerializeStrongReferences();
    SerializeWeakReferences();
    Pad();
  }

 private:
  virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
    return false;
  }
};


} }  // namespace v8::internal

#endif  // V8_SERIALIZE_H_