summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips/code-stubs-mips.cc
blob: f3dd95b851453cff69a738b4d7fc52cf0ff89461 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_MIPS)

#include "bootstrapper.h"
#include "code-stubs.h"
#include "codegen.h"
#include "regexp-macro-assembler.h"

namespace v8 {
namespace internal {


#define __ ACCESS_MASM(masm)

static void EmitIdenticalObjectComparison(MacroAssembler* masm,
                                          Label* slow,
                                          Condition cc,
                                          bool never_nan_nan);
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
                                    Register lhs,
                                    Register rhs,
                                    Label* rhs_not_nan,
                                    Label* slow,
                                    bool strict);
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
                                           Register lhs,
                                           Register rhs);


// Check if the operand is a heap number.
static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
                                   Register scratch1, Register scratch2,
                                   Label* not_a_heap_number) {
  __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
  __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
  __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2));
}


void ToNumberStub::Generate(MacroAssembler* masm) {
  // The ToNumber stub takes one argument in a0.
  Label check_heap_number, call_builtin;
  __ JumpIfNotSmi(a0, &check_heap_number);
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);

  __ bind(&check_heap_number);
  EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin);
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);

  __ bind(&call_builtin);
  __ push(a0);
  __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
}


void FastNewClosureStub::Generate(MacroAssembler* masm) {
  // Create a new closure from the given function info in new
  // space. Set the context to the current context in cp.
  Label gc;

  // Pop the function info from the stack.
  __ pop(a3);

  // Attempt to allocate new JSFunction in new space.
  __ AllocateInNewSpace(JSFunction::kSize,
                        v0,
                        a1,
                        a2,
                        &gc,
                        TAG_OBJECT);

  int map_index = (language_mode_ == CLASSIC_MODE)
      ? Context::FUNCTION_MAP_INDEX
      : Context::STRICT_MODE_FUNCTION_MAP_INDEX;

  // Compute the function map in the current global context and set that
  // as the map of the allocated object.
  __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
  __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index)));
  __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));

  // Initialize the rest of the function. We don't have to update the
  // write barrier because the allocated object is in new space.
  __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
  __ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
  __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
  __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset));
  __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
  __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
  __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset));
  __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset));
  __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset));

  // Initialize the code pointer in the function to be the one
  // found in the shared function info object.
  __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset));
  __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag));

  // Return result. The argument function info has been popped already.
  __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset));
  __ Ret();

  // Create a new closure through the slower runtime call.
  __ bind(&gc);
  __ LoadRoot(t0, Heap::kFalseValueRootIndex);
  __ Push(cp, a3, t0);
  __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
}


void FastNewContextStub::Generate(MacroAssembler* masm) {
  // Try to allocate the context in new space.
  Label gc;
  int length = slots_ + Context::MIN_CONTEXT_SLOTS;

  // Attempt to allocate the context in new space.
  __ AllocateInNewSpace(FixedArray::SizeFor(length),
                        v0,
                        a1,
                        a2,
                        &gc,
                        TAG_OBJECT);

  // Load the function from the stack.
  __ lw(a3, MemOperand(sp, 0));

  // Set up the object header.
  __ LoadRoot(a1, Heap::kFunctionContextMapRootIndex);
  __ li(a2, Operand(Smi::FromInt(length)));
  __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
  __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));

  // Set up the fixed slots, copy the global object from the previous context.
  __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ li(a1, Operand(Smi::FromInt(0)));
  __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX)));
  __ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
  __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX)));
  __ sw(a2, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX)));

  // Initialize the rest of the slots to undefined.
  __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
  for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
    __ sw(a1, MemOperand(v0, Context::SlotOffset(i)));
  }

  // Remove the on-stack argument and return.
  __ mov(cp, v0);
  __ DropAndRet(1);

  // Need to collect. Call into runtime system.
  __ bind(&gc);
  __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
}


void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
  // Stack layout on entry:
  //
  // [sp]: function.
  // [sp + kPointerSize]: serialized scope info

  // Try to allocate the context in new space.
  Label gc;
  int length = slots_ + Context::MIN_CONTEXT_SLOTS;
  __ AllocateInNewSpace(FixedArray::SizeFor(length),
                        v0, a1, a2, &gc, TAG_OBJECT);

  // Load the function from the stack.
  __ lw(a3, MemOperand(sp, 0));

  // Load the serialized scope info from the stack.
  __ lw(a1, MemOperand(sp, 1 * kPointerSize));

  // Set up the object header.
  __ LoadRoot(a2, Heap::kBlockContextMapRootIndex);
  __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
  __ li(a2, Operand(Smi::FromInt(length)));
  __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));

  // If this block context is nested in the global context we get a smi
  // sentinel instead of a function. The block context should get the
  // canonical empty function of the global context as its closure which
  // we still have to look up.
  Label after_sentinel;
  __ JumpIfNotSmi(a3, &after_sentinel);
  if (FLAG_debug_code) {
    const char* message = "Expected 0 as a Smi sentinel";
    __ Assert(eq, message, a3, Operand(zero_reg));
  }
  __ lw(a3, GlobalObjectOperand());
  __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
  __ lw(a3, ContextOperand(a3, Context::CLOSURE_INDEX));
  __ bind(&after_sentinel);

  // Set up the fixed slots, copy the global object from the previous context.
  __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
  __ sw(a3, ContextOperand(v0, Context::CLOSURE_INDEX));
  __ sw(cp, ContextOperand(v0, Context::PREVIOUS_INDEX));
  __ sw(a1, ContextOperand(v0, Context::EXTENSION_INDEX));
  __ sw(a2, ContextOperand(v0, Context::GLOBAL_INDEX));

  // Initialize the rest of the slots to the hole value.
  __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
  for (int i = 0; i < slots_; i++) {
    __ sw(a1, ContextOperand(v0, i + Context::MIN_CONTEXT_SLOTS));
  }

  // Remove the on-stack argument and return.
  __ mov(cp, v0);
  __ DropAndRet(2);

  // Need to collect. Call into runtime system.
  __ bind(&gc);
  __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
}


static void GenerateFastCloneShallowArrayCommon(
    MacroAssembler* masm,
    int length,
    FastCloneShallowArrayStub::Mode mode,
    Label* fail) {
  // Registers on entry:
  // a3: boilerplate literal array.
  ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);

  // All sizes here are multiples of kPointerSize.
  int elements_size = 0;
  if (length > 0) {
    elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
        ? FixedDoubleArray::SizeFor(length)
        : FixedArray::SizeFor(length);
  }
  int size = JSArray::kSize + elements_size;

  // Allocate both the JS array and the elements array in one big
  // allocation. This avoids multiple limit checks.
  __ AllocateInNewSpace(size,
                        v0,
                        a1,
                        a2,
                        fail,
                        TAG_OBJECT);

  // Copy the JS array part.
  for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
    if ((i != JSArray::kElementsOffset) || (length == 0)) {
      __ lw(a1, FieldMemOperand(a3, i));
      __ sw(a1, FieldMemOperand(v0, i));
    }
  }

  if (length > 0) {
    // Get hold of the elements array of the boilerplate and setup the
    // elements pointer in the resulting object.
    __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
    __ Addu(a2, v0, Operand(JSArray::kSize));
    __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset));

    // Copy the elements array.
    ASSERT((elements_size % kPointerSize) == 0);
    __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize);
  }
}

void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
  // Stack layout on entry:
  //
  // [sp]: constant elements.
  // [sp + kPointerSize]: literal index.
  // [sp + (2 * kPointerSize)]: literals array.

  // Load boilerplate object into r3 and check if we need to create a
  // boilerplate.
  Label slow_case;
  __ lw(a3, MemOperand(sp, 2 * kPointerSize));
  __ lw(a0, MemOperand(sp, 1 * kPointerSize));
  __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(t0, a3, t0);
  __ lw(a3, MemOperand(t0));
  __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
  __ Branch(&slow_case, eq, a3, Operand(t1));

  FastCloneShallowArrayStub::Mode mode = mode_;
  if (mode == CLONE_ANY_ELEMENTS) {
    Label double_elements, check_fast_elements;
    __ lw(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
    __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
    __ LoadRoot(t1, Heap::kFixedCOWArrayMapRootIndex);
    __ Branch(&check_fast_elements, ne, v0, Operand(t1));
    GenerateFastCloneShallowArrayCommon(masm, 0,
                                        COPY_ON_WRITE_ELEMENTS, &slow_case);
    // Return and remove the on-stack parameters.
    __ DropAndRet(3);

    __ bind(&check_fast_elements);
    __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
    __ Branch(&double_elements, ne, v0, Operand(t1));
    GenerateFastCloneShallowArrayCommon(masm, length_,
                                        CLONE_ELEMENTS, &slow_case);
    // Return and remove the on-stack parameters.
    __ DropAndRet(3);

    __ bind(&double_elements);
    mode = CLONE_DOUBLE_ELEMENTS;
    // Fall through to generate the code to handle double elements.
  }

  if (FLAG_debug_code) {
    const char* message;
    Heap::RootListIndex expected_map_index;
    if (mode == CLONE_ELEMENTS) {
      message = "Expected (writable) fixed array";
      expected_map_index = Heap::kFixedArrayMapRootIndex;
    } else if (mode == CLONE_DOUBLE_ELEMENTS) {
      message = "Expected (writable) fixed double array";
      expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
    } else {
      ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
      message = "Expected copy-on-write fixed array";
      expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
    }
    __ push(a3);
    __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
    __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset));
    __ LoadRoot(at, expected_map_index);
    __ Assert(eq, message, a3, Operand(at));
    __ pop(a3);
  }

  GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);

  // Return and remove the on-stack parameters.
  __ DropAndRet(3);

  __ bind(&slow_case);
  __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}


void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
  // Stack layout on entry:
  //
  // [sp]: object literal flags.
  // [sp + kPointerSize]: constant properties.
  // [sp + (2 * kPointerSize)]: literal index.
  // [sp + (3 * kPointerSize)]: literals array.

  // Load boilerplate object into a3 and check if we need to create a
  // boilerplate.
  Label slow_case;
  __ lw(a3, MemOperand(sp, 3 * kPointerSize));
  __ lw(a0, MemOperand(sp, 2 * kPointerSize));
  __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(a3, t0, a3);
  __ lw(a3, MemOperand(a3));
  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
  __ Branch(&slow_case, eq, a3, Operand(t0));

  // Check that the boilerplate contains only fast properties and we can
  // statically determine the instance size.
  int size = JSObject::kHeaderSize + length_ * kPointerSize;
  __ lw(a0, FieldMemOperand(a3, HeapObject::kMapOffset));
  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceSizeOffset));
  __ Branch(&slow_case, ne, a0, Operand(size >> kPointerSizeLog2));

  // Allocate the JS object and copy header together with all in-object
  // properties from the boilerplate.
  __ AllocateInNewSpace(size, v0, a1, a2, &slow_case, TAG_OBJECT);
  for (int i = 0; i < size; i += kPointerSize) {
    __ lw(a1, FieldMemOperand(a3, i));
    __ sw(a1, FieldMemOperand(v0, i));
  }

  // Return and remove the on-stack parameters.
  __ DropAndRet(4);

  __ bind(&slow_case);
  __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
}


// Takes a Smi and converts to an IEEE 64 bit floating point value in two
// registers.  The format is 1 sign bit, 11 exponent bits (biased 1023) and
// 52 fraction bits (20 in the first word, 32 in the second).  Zeros is a
// scratch register.  Destroys the source register.  No GC occurs during this
// stub so you don't have to set up the frame.
class ConvertToDoubleStub : public CodeStub {
 public:
  ConvertToDoubleStub(Register result_reg_1,
                      Register result_reg_2,
                      Register source_reg,
                      Register scratch_reg)
      : result1_(result_reg_1),
        result2_(result_reg_2),
        source_(source_reg),
        zeros_(scratch_reg) { }

 private:
  Register result1_;
  Register result2_;
  Register source_;
  Register zeros_;

  // Minor key encoding in 16 bits.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 14> {};

  Major MajorKey() { return ConvertToDouble; }
  int MinorKey() {
    // Encode the parameters in a unique 16 bit value.
    return  result1_.code() +
           (result2_.code() << 4) +
           (source_.code() << 8) +
           (zeros_.code() << 12);
  }

  void Generate(MacroAssembler* masm);
};


void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
#ifndef BIG_ENDIAN_FLOATING_POINT
  Register exponent = result1_;
  Register mantissa = result2_;
#else
  Register exponent = result2_;
  Register mantissa = result1_;
#endif
  Label not_special;
  // Convert from Smi to integer.
  __ sra(source_, source_, kSmiTagSize);
  // Move sign bit from source to destination.  This works because the sign bit
  // in the exponent word of the double has the same position and polarity as
  // the 2's complement sign bit in a Smi.
  STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
  __ And(exponent, source_, Operand(HeapNumber::kSignMask));
  // Subtract from 0 if source was negative.
  __ subu(at, zero_reg, source_);
  __ Movn(source_, at, exponent);

  // We have -1, 0 or 1, which we treat specially. Register source_ contains
  // absolute value: it is either equal to 1 (special case of -1 and 1),
  // greater than 1 (not a special case) or less than 1 (special case of 0).
  __ Branch(&not_special, gt, source_, Operand(1));

  // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
  const uint32_t exponent_word_for_1 =
      HeapNumber::kExponentBias << HeapNumber::kExponentShift;
  // Safe to use 'at' as dest reg here.
  __ Or(at, exponent, Operand(exponent_word_for_1));
  __ Movn(exponent, at, source_);  // Write exp when source not 0.
  // 1, 0 and -1 all have 0 for the second word.
  __ Ret(USE_DELAY_SLOT);
  __ mov(mantissa, zero_reg);

  __ bind(&not_special);
  // Count leading zeros.
  // Gets the wrong answer for 0, but we already checked for that case above.
  __ Clz(zeros_, source_);
  // Compute exponent and or it into the exponent register.
  // We use mantissa as a scratch register here.
  __ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
  __ subu(mantissa, mantissa, zeros_);
  __ sll(mantissa, mantissa, HeapNumber::kExponentShift);
  __ Or(exponent, exponent, mantissa);

  // Shift up the source chopping the top bit off.
  __ Addu(zeros_, zeros_, Operand(1));
  // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
  __ sllv(source_, source_, zeros_);
  // Compute lower part of fraction (last 12 bits).
  __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
  // And the top (top 20 bits).
  __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);

  __ Ret(USE_DELAY_SLOT);
  __ or_(exponent, exponent, source_);
}


void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
                                   FloatingPointHelper::Destination destination,
                                   Register scratch1,
                                   Register scratch2) {
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    __ sra(scratch1, a0, kSmiTagSize);
    __ mtc1(scratch1, f14);
    __ cvt_d_w(f14, f14);
    __ sra(scratch1, a1, kSmiTagSize);
    __ mtc1(scratch1, f12);
    __ cvt_d_w(f12, f12);
    if (destination == kCoreRegisters) {
      __ Move(a2, a3, f14);
      __ Move(a0, a1, f12);
    }
  } else {
    ASSERT(destination == kCoreRegisters);
    // Write Smi from a0 to a3 and a2 in double format.
    __ mov(scratch1, a0);
    ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2);
    __ push(ra);
    __ Call(stub1.GetCode());
    // Write Smi from a1 to a1 and a0 in double format.
    __ mov(scratch1, a1);
    ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2);
    __ Call(stub2.GetCode());
    __ pop(ra);
  }
}


void FloatingPointHelper::LoadOperands(
    MacroAssembler* masm,
    FloatingPointHelper::Destination destination,
    Register heap_number_map,
    Register scratch1,
    Register scratch2,
    Label* slow) {

  // Load right operand (a0) to f12 or a2/a3.
  LoadNumber(masm, destination,
             a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow);

  // Load left operand (a1) to f14 or a0/a1.
  LoadNumber(masm, destination,
             a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow);
}


void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
                                     Destination destination,
                                     Register object,
                                     FPURegister dst,
                                     Register dst1,
                                     Register dst2,
                                     Register heap_number_map,
                                     Register scratch1,
                                     Register scratch2,
                                     Label* not_number) {
  if (FLAG_debug_code) {
    __ AbortIfNotRootValue(heap_number_map,
                           Heap::kHeapNumberMapRootIndex,
                           "HeapNumberMap register clobbered.");
  }

  Label is_smi, done;

  // Smi-check
  __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
  // Heap number check
  __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);

  // Handle loading a double from a heap number.
  if (CpuFeatures::IsSupported(FPU) &&
      destination == kFPURegisters) {
    CpuFeatures::Scope scope(FPU);
    // Load the double from tagged HeapNumber to double register.

    // ARM uses a workaround here because of the unaligned HeapNumber
    // kValueOffset. On MIPS this workaround is built into ldc1 so there's no
    // point in generating even more instructions.
    __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
  } else {
    ASSERT(destination == kCoreRegisters);
    // Load the double from heap number to dst1 and dst2 in double format.
    __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset));
    __ lw(dst2, FieldMemOperand(object,
        HeapNumber::kValueOffset + kPointerSize));
  }
  __ Branch(&done);

  // Handle loading a double from a smi.
  __ bind(&is_smi);
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    // Convert smi to double using FPU instructions.
    __ mtc1(scratch1, dst);
    __ cvt_d_w(dst, dst);
    if (destination == kCoreRegisters) {
      // Load the converted smi to dst1 and dst2 in double format.
      __ Move(dst1, dst2, dst);
    }
  } else {
    ASSERT(destination == kCoreRegisters);
    // Write smi to dst1 and dst2 double format.
    __ mov(scratch1, object);
    ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
    __ push(ra);
    __ Call(stub.GetCode());
    __ pop(ra);
  }

  __ bind(&done);
}


void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
                                               Register object,
                                               Register dst,
                                               Register heap_number_map,
                                               Register scratch1,
                                               Register scratch2,
                                               Register scratch3,
                                               FPURegister double_scratch,
                                               Label* not_number) {
  if (FLAG_debug_code) {
    __ AbortIfNotRootValue(heap_number_map,
                           Heap::kHeapNumberMapRootIndex,
                           "HeapNumberMap register clobbered.");
  }
  Label done;
  Label not_in_int32_range;

  __ UntagAndJumpIfSmi(dst, object, &done);
  __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
  __ Branch(not_number, ne, scratch1, Operand(heap_number_map));
  __ ConvertToInt32(object,
                    dst,
                    scratch1,
                    scratch2,
                    double_scratch,
                    &not_in_int32_range);
  __ jmp(&done);

  __ bind(&not_in_int32_range);
  __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
  __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));

  __ EmitOutOfInt32RangeTruncate(dst,
                                 scratch1,
                                 scratch2,
                                 scratch3);

  __ bind(&done);
}


void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
                                             Register int_scratch,
                                             Destination destination,
                                             FPURegister double_dst,
                                             Register dst1,
                                             Register dst2,
                                             Register scratch2,
                                             FPURegister single_scratch) {
  ASSERT(!int_scratch.is(scratch2));
  ASSERT(!int_scratch.is(dst1));
  ASSERT(!int_scratch.is(dst2));

  Label done;

  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    __ mtc1(int_scratch, single_scratch);
    __ cvt_d_w(double_dst, single_scratch);
    if (destination == kCoreRegisters) {
      __ Move(dst1, dst2, double_dst);
    }
  } else {
    Label fewer_than_20_useful_bits;
    // Expected output:
    // |         dst2            |         dst1            |
    // | s |   exp   |              mantissa               |

    // Check for zero.
    __ mov(dst2, int_scratch);
    __ mov(dst1, int_scratch);
    __ Branch(&done, eq, int_scratch, Operand(zero_reg));

    // Preload the sign of the value.
    __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask));
    // Get the absolute value of the object (as an unsigned integer).
    Label skip_sub;
    __ Branch(&skip_sub, ge, dst2, Operand(zero_reg));
    __ Subu(int_scratch, zero_reg, int_scratch);
    __ bind(&skip_sub);

    // Get mantissa[51:20].

    // Get the position of the first set bit.
    __ Clz(dst1, int_scratch);
    __ li(scratch2, 31);
    __ Subu(dst1, scratch2, dst1);

    // Set the exponent.
    __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias));
    __ Ins(dst2, scratch2,
        HeapNumber::kExponentShift, HeapNumber::kExponentBits);

    // Clear the first non null bit.
    __ li(scratch2, Operand(1));
    __ sllv(scratch2, scratch2, dst1);
    __ li(at, -1);
    __ Xor(scratch2, scratch2, at);
    __ And(int_scratch, int_scratch, scratch2);

    // Get the number of bits to set in the lower part of the mantissa.
    __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
    __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg));
    // Set the higher 20 bits of the mantissa.
    __ srlv(at, int_scratch, scratch2);
    __ or_(dst2, dst2, at);
    __ li(at, 32);
    __ subu(scratch2, at, scratch2);
    __ sllv(dst1, int_scratch, scratch2);
    __ Branch(&done);

    __ bind(&fewer_than_20_useful_bits);
    __ li(at, HeapNumber::kMantissaBitsInTopWord);
    __ subu(scratch2, at, dst1);
    __ sllv(scratch2, int_scratch, scratch2);
    __ Or(dst2, dst2, scratch2);
    // Set dst1 to 0.
    __ mov(dst1, zero_reg);
  }
  __ bind(&done);
}


void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
                                                  Register object,
                                                  Destination destination,
                                                  DoubleRegister double_dst,
                                                  Register dst1,
                                                  Register dst2,
                                                  Register heap_number_map,
                                                  Register scratch1,
                                                  Register scratch2,
                                                  FPURegister single_scratch,
                                                  Label* not_int32) {
  ASSERT(!scratch1.is(object) && !scratch2.is(object));
  ASSERT(!scratch1.is(scratch2));
  ASSERT(!heap_number_map.is(object) &&
         !heap_number_map.is(scratch1) &&
         !heap_number_map.is(scratch2));

  Label done, obj_is_not_smi;

  __ JumpIfNotSmi(object, &obj_is_not_smi);
  __ SmiUntag(scratch1, object);
  ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
                     scratch2, single_scratch);
  __ Branch(&done);

  __ bind(&obj_is_not_smi);
  if (FLAG_debug_code) {
    __ AbortIfNotRootValue(heap_number_map,
                           Heap::kHeapNumberMapRootIndex,
                           "HeapNumberMap register clobbered.");
  }
  __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);

  // Load the number.
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    // Load the double value.
    __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));

    Register except_flag = scratch2;
    __ EmitFPUTruncate(kRoundToZero,
                       single_scratch,
                       double_dst,
                       scratch1,
                       except_flag,
                       kCheckForInexactConversion);

    // Jump to not_int32 if the operation did not succeed.
    __ Branch(not_int32, ne, except_flag, Operand(zero_reg));

    if (destination == kCoreRegisters) {
      __ Move(dst1, dst2, double_dst);
    }

  } else {
    ASSERT(!scratch1.is(object) && !scratch2.is(object));
    // Load the double value in the destination registers.
    __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
    __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));

    // Check for 0 and -0.
    __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask));
    __ Or(scratch1, scratch1, Operand(dst2));
    __ Branch(&done, eq, scratch1, Operand(zero_reg));

    // Check that the value can be exactly represented by a 32-bit integer.
    // Jump to not_int32 if that's not the case.
    DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);

    // dst1 and dst2 were trashed. Reload the double value.
    __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
    __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
  }

  __ bind(&done);
}


void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
                                            Register object,
                                            Register dst,
                                            Register heap_number_map,
                                            Register scratch1,
                                            Register scratch2,
                                            Register scratch3,
                                            DoubleRegister double_scratch,
                                            Label* not_int32) {
  ASSERT(!dst.is(object));
  ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
  ASSERT(!scratch1.is(scratch2) &&
         !scratch1.is(scratch3) &&
         !scratch2.is(scratch3));

  Label done;

  __ UntagAndJumpIfSmi(dst, object, &done);

  if (FLAG_debug_code) {
    __ AbortIfNotRootValue(heap_number_map,
                           Heap::kHeapNumberMapRootIndex,
                           "HeapNumberMap register clobbered.");
  }
  __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);

  // Object is a heap number.
  // Convert the floating point value to a 32-bit integer.
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    // Load the double value.
    __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));

    FPURegister single_scratch = double_scratch.low();
    Register except_flag = scratch2;
    __ EmitFPUTruncate(kRoundToZero,
                       single_scratch,
                       double_scratch,
                       scratch1,
                       except_flag,
                       kCheckForInexactConversion);

    // Jump to not_int32 if the operation did not succeed.
    __ Branch(not_int32, ne, except_flag, Operand(zero_reg));
    // Get the result in the destination register.
    __ mfc1(dst, single_scratch);

  } else {
    // Load the double value in the destination registers.
    __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset));
    __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset));

    // Check for 0 and -0.
    __ And(dst, scratch1, Operand(~HeapNumber::kSignMask));
    __ Or(dst, scratch2, Operand(dst));
    __ Branch(&done, eq, dst, Operand(zero_reg));

    DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);

    // Registers state after DoubleIs32BitInteger.
    // dst: mantissa[51:20].
    // scratch2: 1

    // Shift back the higher bits of the mantissa.
    __ srlv(dst, dst, scratch3);
    // Set the implicit first bit.
    __ li(at, 32);
    __ subu(scratch3, at, scratch3);
    __ sllv(scratch2, scratch2, scratch3);
    __ Or(dst, dst, scratch2);
    // Set the sign.
    __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
    __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
    Label skip_sub;
    __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg));
    __ Subu(dst, zero_reg, dst);
    __ bind(&skip_sub);
  }

  __ bind(&done);
}


void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
                                               Register src1,
                                               Register src2,
                                               Register dst,
                                               Register scratch,
                                               Label* not_int32) {
  // Get exponent alone in scratch.
  __ Ext(scratch,
         src1,
         HeapNumber::kExponentShift,
         HeapNumber::kExponentBits);

  // Substract the bias from the exponent.
  __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias));

  // src1: higher (exponent) part of the double value.
  // src2: lower (mantissa) part of the double value.
  // scratch: unbiased exponent.

  // Fast cases. Check for obvious non 32-bit integer values.
  // Negative exponent cannot yield 32-bit integers.
  __ Branch(not_int32, lt, scratch, Operand(zero_reg));
  // Exponent greater than 31 cannot yield 32-bit integers.
  // Also, a positive value with an exponent equal to 31 is outside of the
  // signed 32-bit integer range.
  // Another way to put it is that if (exponent - signbit) > 30 then the
  // number cannot be represented as an int32.
  Register tmp = dst;
  __ srl(at, src1, 31);
  __ subu(tmp, scratch, at);
  __ Branch(not_int32, gt, tmp, Operand(30));
  // - Bits [21:0] in the mantissa are not null.
  __ And(tmp, src2, 0x3fffff);
  __ Branch(not_int32, ne, tmp, Operand(zero_reg));

  // Otherwise the exponent needs to be big enough to shift left all the
  // non zero bits left. So we need the (30 - exponent) last bits of the
  // 31 higher bits of the mantissa to be null.
  // Because bits [21:0] are null, we can check instead that the
  // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.

  // Get the 32 higher bits of the mantissa in dst.
  __ Ext(dst,
         src2,
         HeapNumber::kMantissaBitsInTopWord,
         32 - HeapNumber::kMantissaBitsInTopWord);
  __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord);
  __ or_(dst, dst, at);

  // Create the mask and test the lower bits (of the higher bits).
  __ li(at, 32);
  __ subu(scratch, at, scratch);
  __ li(src2, 1);
  __ sllv(src1, src2, scratch);
  __ Subu(src1, src1, Operand(1));
  __ And(src1, dst, src1);
  __ Branch(not_int32, ne, src1, Operand(zero_reg));
}


void FloatingPointHelper::CallCCodeForDoubleOperation(
    MacroAssembler* masm,
    Token::Value op,
    Register heap_number_result,
    Register scratch) {
  // Using core registers:
  // a0: Left value (least significant part of mantissa).
  // a1: Left value (sign, exponent, top of mantissa).
  // a2: Right value (least significant part of mantissa).
  // a3: Right value (sign, exponent, top of mantissa).

  // Assert that heap_number_result is saved.
  // We currently always use s0 to pass it.
  ASSERT(heap_number_result.is(s0));

  // Push the current return address before the C call.
  __ push(ra);
  __ PrepareCallCFunction(4, scratch);  // Two doubles are 4 arguments.
  if (!IsMipsSoftFloatABI) {
    CpuFeatures::Scope scope(FPU);
    // We are not using MIPS FPU instructions, and parameters for the runtime
    // function call are prepaired in a0-a3 registers, but function we are
    // calling is compiled with hard-float flag and expecting hard float ABI
    // (parameters in f12/f14 registers). We need to copy parameters from
    // a0-a3 registers to f12/f14 register pairs.
    __ Move(f12, a0, a1);
    __ Move(f14, a2, a3);
  }
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(
        ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
  }
  // Store answer in the overwritable heap number.
  if (!IsMipsSoftFloatABI) {
    CpuFeatures::Scope scope(FPU);
    // Double returned in register f0.
    __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
  } else {
    // Double returned in registers v0 and v1.
    __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset));
    __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset));
  }
  // Place heap_number_result in v0 and return to the pushed return address.
  __ pop(ra);
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, heap_number_result);
}


bool WriteInt32ToHeapNumberStub::IsPregenerated() {
  // These variants are compiled ahead of time.  See next method.
  if (the_int_.is(a1) &&
      the_heap_number_.is(v0) &&
      scratch_.is(a2) &&
      sign_.is(a3)) {
    return true;
  }
  if (the_int_.is(a2) &&
      the_heap_number_.is(v0) &&
      scratch_.is(a3) &&
      sign_.is(a0)) {
    return true;
  }
  // Other register combinations are generated as and when they are needed,
  // so it is unsafe to call them from stubs (we can't generate a stub while
  // we are generating a stub).
  return false;
}


void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
  WriteInt32ToHeapNumberStub stub1(a1, v0, a2, a3);
  WriteInt32ToHeapNumberStub stub2(a2, v0, a3, a0);
  stub1.GetCode()->set_is_pregenerated(true);
  stub2.GetCode()->set_is_pregenerated(true);
}


// See comment for class, this does NOT work for int32's that are in Smi range.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
  Label max_negative_int;
  // the_int_ has the answer which is a signed int32 but not a Smi.
  // We test for the special value that has a different exponent.
  STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
  // Test sign, and save for later conditionals.
  __ And(sign_, the_int_, Operand(0x80000000u));
  __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));

  // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
  // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
  uint32_t non_smi_exponent =
      (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
  __ li(scratch_, Operand(non_smi_exponent));
  // Set the sign bit in scratch_ if the value was negative.
  __ or_(scratch_, scratch_, sign_);
  // Subtract from 0 if the value was negative.
  __ subu(at, zero_reg, the_int_);
  __ Movn(the_int_, at, sign_);
  // We should be masking the implict first digit of the mantissa away here,
  // but it just ends up combining harmlessly with the last digit of the
  // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
  // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
  ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
  const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
  __ srl(at, the_int_, shift_distance);
  __ or_(scratch_, scratch_, at);
  __ sw(scratch_, FieldMemOperand(the_heap_number_,
                                   HeapNumber::kExponentOffset));
  __ sll(scratch_, the_int_, 32 - shift_distance);
  __ sw(scratch_, FieldMemOperand(the_heap_number_,
                                   HeapNumber::kMantissaOffset));
  __ Ret();

  __ bind(&max_negative_int);
  // The max negative int32 is stored as a positive number in the mantissa of
  // a double because it uses a sign bit instead of using two's complement.
  // The actual mantissa bits stored are all 0 because the implicit most
  // significant 1 bit is not stored.
  non_smi_exponent += 1 << HeapNumber::kExponentShift;
  __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
  __ sw(scratch_,
        FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
  __ mov(scratch_, zero_reg);
  __ sw(scratch_,
        FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
  __ Ret();
}


// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
                                          Label* slow,
                                          Condition cc,
                                          bool never_nan_nan) {
  Label not_identical;
  Label heap_number, return_equal;
  Register exp_mask_reg = t5;

  __ Branch(&not_identical, ne, a0, Operand(a1));

  // The two objects are identical. If we know that one of them isn't NaN then
  // we now know they test equal.
  if (cc != eq || !never_nan_nan) {
    __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));

    // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
    // so we do the second best thing - test it ourselves.
    // They are both equal and they are not both Smis so both of them are not
    // Smis. If it's not a heap number, then return equal.
    if (cc == less || cc == greater) {
      __ GetObjectType(a0, t4, t4);
      __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
    } else {
      __ GetObjectType(a0, t4, t4);
      __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
      // Comparing JS objects with <=, >= is complicated.
      if (cc != eq) {
      __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
        // Normally here we fall through to return_equal, but undefined is
        // special: (undefined == undefined) == true, but
        // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
        if (cc == less_equal || cc == greater_equal) {
          __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
          __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
          __ Branch(&return_equal, ne, a0, Operand(t2));
          if (cc == le) {
            // undefined <= undefined should fail.
            __ li(v0, Operand(GREATER));
          } else  {
            // undefined >= undefined should fail.
            __ li(v0, Operand(LESS));
          }
          __ Ret();
        }
      }
    }
  }

  __ bind(&return_equal);

  if (cc == less) {
    __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
  } else if (cc == greater) {
    __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
  } else {
    __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
  }
  __ Ret();

  if (cc != eq || !never_nan_nan) {
    // For less and greater we don't have to check for NaN since the result of
    // x < x is false regardless.  For the others here is some code to check
    // for NaN.
    if (cc != lt && cc != gt) {
      __ bind(&heap_number);
      // It is a heap number, so return non-equal if it's NaN and equal if it's
      // not NaN.

      // The representation of NaN values has all exponent bits (52..62) set,
      // and not all mantissa bits (0..51) clear.
      // Read top bits of double representation (second word of value).
      __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
      // Test that exponent bits are all set.
      __ And(t3, t2, Operand(exp_mask_reg));
      // If all bits not set (ne cond), then not a NaN, objects are equal.
      __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));

      // Shift out flag and all exponent bits, retaining only mantissa.
      __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
      // Or with all low-bits of mantissa.
      __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
      __ Or(v0, t3, Operand(t2));
      // For equal we already have the right value in v0:  Return zero (equal)
      // if all bits in mantissa are zero (it's an Infinity) and non-zero if
      // not (it's a NaN).  For <= and >= we need to load v0 with the failing
      // value if it's a NaN.
      if (cc != eq) {
        // All-zero means Infinity means equal.
        __ Ret(eq, v0, Operand(zero_reg));
        if (cc == le) {
          __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
        } else {
          __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
        }
      }
      __ Ret();
    }
    // No fall through here.
  }

  __ bind(&not_identical);
}


static void EmitSmiNonsmiComparison(MacroAssembler* masm,
                                    Register lhs,
                                    Register rhs,
                                    Label* both_loaded_as_doubles,
                                    Label* slow,
                                    bool strict) {
  ASSERT((lhs.is(a0) && rhs.is(a1)) ||
         (lhs.is(a1) && rhs.is(a0)));

  Label lhs_is_smi;
  __ JumpIfSmi(lhs, &lhs_is_smi);
  // Rhs is a Smi.
  // Check whether the non-smi is a heap number.
  __ GetObjectType(lhs, t4, t4);
  if (strict) {
    // If lhs was not a number and rhs was a Smi then strict equality cannot
    // succeed. Return non-equal (lhs is already not zero).
    __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
    __ mov(v0, lhs);
  } else {
    // Smi compared non-strictly with a non-Smi non-heap-number. Call
    // the runtime.
    __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
  }

  // Rhs is a smi, lhs is a number.
  // Convert smi rhs to double.
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    __ sra(at, rhs, kSmiTagSize);
    __ mtc1(at, f14);
    __ cvt_d_w(f14, f14);
    __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
  } else {
    // Load lhs to a double in a2, a3.
    __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
    __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));

    // Write Smi from rhs to a1 and a0 in double format. t5 is scratch.
    __ mov(t6, rhs);
    ConvertToDoubleStub stub1(a1, a0, t6, t5);
    __ push(ra);
    __ Call(stub1.GetCode());

    __ pop(ra);
  }

  // We now have both loaded as doubles.
  __ jmp(both_loaded_as_doubles);

  __ bind(&lhs_is_smi);
  // Lhs is a Smi.  Check whether the non-smi is a heap number.
  __ GetObjectType(rhs, t4, t4);
  if (strict) {
    // If lhs was not a number and rhs was a Smi then strict equality cannot
    // succeed. Return non-equal.
    __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
    __ li(v0, Operand(1));
  } else {
    // Smi compared non-strictly with a non-Smi non-heap-number. Call
    // the runtime.
    __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
  }

  // Lhs is a smi, rhs is a number.
  // Convert smi lhs to double.
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    __ sra(at, lhs, kSmiTagSize);
    __ mtc1(at, f12);
    __ cvt_d_w(f12, f12);
    __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
  } else {
    // Convert lhs to a double format. t5 is scratch.
    __ mov(t6, lhs);
    ConvertToDoubleStub stub2(a3, a2, t6, t5);
    __ push(ra);
    __ Call(stub2.GetCode());
    __ pop(ra);
    // Load rhs to a double in a1, a0.
    if (rhs.is(a0)) {
      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    } else {
      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
    }
  }
  // Fall through to both_loaded_as_doubles.
}


void EmitNanCheck(MacroAssembler* masm, Condition cc) {
  bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    // Lhs and rhs are already loaded to f12 and f14 register pairs.
    __ Move(t0, t1, f14);
    __ Move(t2, t3, f12);
  } else {
    // Lhs and rhs are already loaded to GP registers.
    __ mov(t0, a0);  // a0 has LS 32 bits of rhs.
    __ mov(t1, a1);  // a1 has MS 32 bits of rhs.
    __ mov(t2, a2);  // a2 has LS 32 bits of lhs.
    __ mov(t3, a3);  // a3 has MS 32 bits of lhs.
  }
  Register rhs_exponent = exp_first ? t0 : t1;
  Register lhs_exponent = exp_first ? t2 : t3;
  Register rhs_mantissa = exp_first ? t1 : t0;
  Register lhs_mantissa = exp_first ? t3 : t2;
  Label one_is_nan, neither_is_nan;
  Label lhs_not_nan_exp_mask_is_loaded;

  Register exp_mask_reg = t4;
  __ li(exp_mask_reg, HeapNumber::kExponentMask);
  __ and_(t5, lhs_exponent, exp_mask_reg);
  __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg));

  __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
  __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));

  __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg));

  __ li(exp_mask_reg, HeapNumber::kExponentMask);
  __ bind(&lhs_not_nan_exp_mask_is_loaded);
  __ and_(t5, rhs_exponent, exp_mask_reg);

  __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg));

  __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
  __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));

  __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg));

  __ bind(&one_is_nan);
  // NaN comparisons always fail.
  // Load whatever we need in v0 to make the comparison fail.

  if (cc == lt || cc == le) {
    __ li(v0, Operand(GREATER));
  } else {
    __ li(v0, Operand(LESS));
  }
  __ Ret();

  __ bind(&neither_is_nan);
}


static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
  // f12 and f14 have the two doubles.  Neither is a NaN.
  // Call a native function to do a comparison between two non-NaNs.
  // Call C routine that may not cause GC or other trouble.
  // We use a call_was and return manually because we need arguments slots to
  // be freed.

  Label return_result_not_equal, return_result_equal;
  if (cc == eq) {
    // Doubles are not equal unless they have the same bit pattern.
    // Exception: 0 and -0.
    bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);
      // Lhs and rhs are already loaded to f12 and f14 register pairs.
      __ Move(t0, t1, f14);
      __ Move(t2, t3, f12);
    } else {
      // Lhs and rhs are already loaded to GP registers.
      __ mov(t0, a0);  // a0 has LS 32 bits of rhs.
      __ mov(t1, a1);  // a1 has MS 32 bits of rhs.
      __ mov(t2, a2);  // a2 has LS 32 bits of lhs.
      __ mov(t3, a3);  // a3 has MS 32 bits of lhs.
    }
    Register rhs_exponent = exp_first ? t0 : t1;
    Register lhs_exponent = exp_first ? t2 : t3;
    Register rhs_mantissa = exp_first ? t1 : t0;
    Register lhs_mantissa = exp_first ? t3 : t2;

    __ xor_(v0, rhs_mantissa, lhs_mantissa);
    __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg));

    __ subu(v0, rhs_exponent, lhs_exponent);
    __ Branch(&return_result_equal, eq, v0, Operand(zero_reg));
    // 0, -0 case.
    __ sll(rhs_exponent, rhs_exponent, kSmiTagSize);
    __ sll(lhs_exponent, lhs_exponent, kSmiTagSize);
    __ or_(t4, rhs_exponent, lhs_exponent);
    __ or_(t4, t4, rhs_mantissa);

    __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg));

    __ bind(&return_result_equal);

    __ li(v0, Operand(EQUAL));
    __ Ret();
  }

  __ bind(&return_result_not_equal);

  if (!CpuFeatures::IsSupported(FPU)) {
    __ push(ra);
    __ PrepareCallCFunction(0, 2, t4);
    if (!IsMipsSoftFloatABI) {
      // We are not using MIPS FPU instructions, and parameters for the runtime
      // function call are prepaired in a0-a3 registers, but function we are
      // calling is compiled with hard-float flag and expecting hard float ABI
      // (parameters in f12/f14 registers). We need to copy parameters from
      // a0-a3 registers to f12/f14 register pairs.
      __ Move(f12, a0, a1);
      __ Move(f14, a2, a3);
    }

    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
       0, 2);
    __ pop(ra);  // Because this function returns int, result is in v0.
    __ Ret();
  } else {
    CpuFeatures::Scope scope(FPU);
    Label equal, less_than;
    __ BranchF(&equal, NULL, eq, f12, f14);
    __ BranchF(&less_than, NULL, lt, f12, f14);

    // Not equal, not less, not NaN, must be greater.

    __ li(v0, Operand(GREATER));
    __ Ret();

    __ bind(&equal);
    __ li(v0, Operand(EQUAL));
    __ Ret();

    __ bind(&less_than);
    __ li(v0, Operand(LESS));
    __ Ret();
  }
}


static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
                                           Register lhs,
                                           Register rhs) {
    // If either operand is a JS object or an oddball value, then they are
    // not equal since their pointers are different.
    // There is no test for undetectability in strict equality.
    STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
    Label first_non_object;
    // Get the type of the first operand into a2 and compare it with
    // FIRST_SPEC_OBJECT_TYPE.
    __ GetObjectType(lhs, a2, a2);
    __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));

    // Return non-zero.
    Label return_not_equal;
    __ bind(&return_not_equal);
    __ Ret(USE_DELAY_SLOT);
    __ li(v0, Operand(1));

    __ bind(&first_non_object);
    // Check for oddballs: true, false, null, undefined.
    __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));

    __ GetObjectType(rhs, a3, a3);
    __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));

    // Check for oddballs: true, false, null, undefined.
    __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));

    // Now that we have the types we might as well check for symbol-symbol.
    // Ensure that no non-strings have the symbol bit set.
    STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
    STATIC_ASSERT(kSymbolTag != 0);
    __ And(t2, a2, Operand(a3));
    __ And(t0, t2, Operand(kIsSymbolMask));
    __ Branch(&return_not_equal, ne, t0, Operand(zero_reg));
}


static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
                                       Register lhs,
                                       Register rhs,
                                       Label* both_loaded_as_doubles,
                                       Label* not_heap_numbers,
                                       Label* slow) {
  __ GetObjectType(lhs, a3, a2);
  __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
  __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
  // If first was a heap number & second wasn't, go to slow case.
  __ Branch(slow, ne, a3, Operand(a2));

  // Both are heap numbers. Load them up then jump to the code we have
  // for that.
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
  } else {
    __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
    if (rhs.is(a0)) {
      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    } else {
      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
    }
  }
  __ jmp(both_loaded_as_doubles);
}


// Fast negative check for symbol-to-symbol equality.
static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
                                         Register lhs,
                                         Register rhs,
                                         Label* possible_strings,
                                         Label* not_both_strings) {
  ASSERT((lhs.is(a0) && rhs.is(a1)) ||
         (lhs.is(a1) && rhs.is(a0)));

  // a2 is object type of lhs.
  // Ensure that no non-strings have the symbol bit set.
  Label object_test;
  STATIC_ASSERT(kSymbolTag != 0);
  __ And(at, a2, Operand(kIsNotStringMask));
  __ Branch(&object_test, ne, at, Operand(zero_reg));
  __ And(at, a2, Operand(kIsSymbolMask));
  __ Branch(possible_strings, eq, at, Operand(zero_reg));
  __ GetObjectType(rhs, a3, a3);
  __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
  __ And(at, a3, Operand(kIsSymbolMask));
  __ Branch(possible_strings, eq, at, Operand(zero_reg));

  // Both are symbols. We already checked they weren't the same pointer
  // so they are not equal.
  __ Ret(USE_DELAY_SLOT);
  __ li(v0, Operand(1));   // Non-zero indicates not equal.

  __ bind(&object_test);
  __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
  __ GetObjectType(rhs, a2, a3);
  __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));

  // If both objects are undetectable, they are equal.  Otherwise, they
  // are not equal, since they are different objects and an object is not
  // equal to undefined.
  __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
  __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
  __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
  __ and_(a0, a2, a3);
  __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
  __ Ret(USE_DELAY_SLOT);
  __ xori(v0, a0, 1 << Map::kIsUndetectable);
}


void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
                                                         Register object,
                                                         Register result,
                                                         Register scratch1,
                                                         Register scratch2,
                                                         Register scratch3,
                                                         bool object_is_smi,
                                                         Label* not_found) {
  // Use of registers. Register result is used as a temporary.
  Register number_string_cache = result;
  Register mask = scratch3;

  // Load the number string cache.
  __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);

  // Make the hash mask from the length of the number string cache. It
  // contains two elements (number and string) for each cache entry.
  __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
  // Divide length by two (length is a smi).
  __ sra(mask, mask, kSmiTagSize + 1);
  __ Addu(mask, mask, -1);  // Make mask.

  // Calculate the entry in the number string cache. The hash value in the
  // number string cache for smis is just the smi value, and the hash for
  // doubles is the xor of the upper and lower words. See
  // Heap::GetNumberStringCache.
  Isolate* isolate = masm->isolate();
  Label is_smi;
  Label load_result_from_cache;
  if (!object_is_smi) {
    __ JumpIfSmi(object, &is_smi);
    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);
      __ CheckMap(object,
                  scratch1,
                  Heap::kHeapNumberMapRootIndex,
                  not_found,
                  DONT_DO_SMI_CHECK);

      STATIC_ASSERT(8 == kDoubleSize);
      __ Addu(scratch1,
              object,
              Operand(HeapNumber::kValueOffset - kHeapObjectTag));
      __ lw(scratch2, MemOperand(scratch1, kPointerSize));
      __ lw(scratch1, MemOperand(scratch1, 0));
      __ Xor(scratch1, scratch1, Operand(scratch2));
      __ And(scratch1, scratch1, Operand(mask));

      // Calculate address of entry in string cache: each entry consists
      // of two pointer sized fields.
      __ sll(scratch1, scratch1, kPointerSizeLog2 + 1);
      __ Addu(scratch1, number_string_cache, scratch1);

      Register probe = mask;
      __ lw(probe,
             FieldMemOperand(scratch1, FixedArray::kHeaderSize));
      __ JumpIfSmi(probe, not_found);
      __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
      __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
      __ BranchF(&load_result_from_cache, NULL, eq, f12, f14);
      __ Branch(not_found);
    } else {
      // Note that there is no cache check for non-FPU case, even though
      // it seems there could be. May be a tiny opimization for non-FPU
      // cores.
      __ Branch(not_found);
    }
  }

  __ bind(&is_smi);
  Register scratch = scratch1;
  __ sra(scratch, object, 1);   // Shift away the tag.
  __ And(scratch, mask, Operand(scratch));

  // Calculate address of entry in string cache: each entry consists
  // of two pointer sized fields.
  __ sll(scratch, scratch, kPointerSizeLog2 + 1);
  __ Addu(scratch, number_string_cache, scratch);

  // Check if the entry is the smi we are looking for.
  Register probe = mask;
  __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
  __ Branch(not_found, ne, object, Operand(probe));

  // Get the result from the cache.
  __ bind(&load_result_from_cache);
  __ lw(result,
         FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));

  __ IncrementCounter(isolate->counters()->number_to_string_native(),
                      1,
                      scratch1,
                      scratch2);
}


void NumberToStringStub::Generate(MacroAssembler* masm) {
  Label runtime;

  __ lw(a1, MemOperand(sp, 0));

  // Generate code to lookup number in the number string cache.
  GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime);
  __ DropAndRet(1);

  __ bind(&runtime);
  // Handle number to string in the runtime system if not found in the cache.
  __ TailCallRuntime(Runtime::kNumberToString, 1, 1);
}


// On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared.
// On exit, v0 is 0, positive, or negative (smi) to indicate the result
// of the comparison.
void CompareStub::Generate(MacroAssembler* masm) {
  Label slow;  // Call builtin.
  Label not_smis, both_loaded_as_doubles;


  if (include_smi_compare_) {
    Label not_two_smis, smi_done;
    __ Or(a2, a1, a0);
    __ JumpIfNotSmi(a2, &not_two_smis);
    __ sra(a1, a1, 1);
    __ sra(a0, a0, 1);
    __ Ret(USE_DELAY_SLOT);
    __ subu(v0, a1, a0);
    __ bind(&not_two_smis);
  } else if (FLAG_debug_code) {
    __ Or(a2, a1, a0);
    __ And(a2, a2, kSmiTagMask);
    __ Assert(ne, "CompareStub: unexpected smi operands.",
        a2, Operand(zero_reg));
  }


  // NOTICE! This code is only reached after a smi-fast-case check, so
  // it is certain that at least one operand isn't a smi.

  // Handle the case where the objects are identical.  Either returns the answer
  // or goes to slow.  Only falls through if the objects were not identical.
  EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);

  // If either is a Smi (we know that not both are), then they can only
  // be strictly equal if the other is a HeapNumber.
  STATIC_ASSERT(kSmiTag == 0);
  ASSERT_EQ(0, Smi::FromInt(0));
  __ And(t2, lhs_, Operand(rhs_));
  __ JumpIfNotSmi(t2, &not_smis, t0);
  // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
  // 1) Return the answer.
  // 2) Go to slow.
  // 3) Fall through to both_loaded_as_doubles.
  // 4) Jump to rhs_not_nan.
  // In cases 3 and 4 we have found out we were dealing with a number-number
  // comparison and the numbers have been loaded into f12 and f14 as doubles,
  // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
  EmitSmiNonsmiComparison(masm, lhs_, rhs_,
                          &both_loaded_as_doubles, &slow, strict_);

  __ bind(&both_loaded_as_doubles);
  // f12, f14 are the double representations of the left hand side
  // and the right hand side if we have FPU. Otherwise a2, a3 represent
  // left hand side and a0, a1 represent right hand side.

  Isolate* isolate = masm->isolate();
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    Label nan;
    __ li(t0, Operand(LESS));
    __ li(t1, Operand(GREATER));
    __ li(t2, Operand(EQUAL));

    // Check if either rhs or lhs is NaN.
    __ BranchF(NULL, &nan, eq, f12, f14);

    // Check if LESS condition is satisfied. If true, move conditionally
    // result to v0.
    __ c(OLT, D, f12, f14);
    __ Movt(v0, t0);
    // Use previous check to store conditionally to v0 oposite condition
    // (GREATER). If rhs is equal to lhs, this will be corrected in next
    // check.
    __ Movf(v0, t1);
    // Check if EQUAL condition is satisfied. If true, move conditionally
    // result to v0.
    __ c(EQ, D, f12, f14);
    __ Movt(v0, t2);

    __ Ret();

    __ bind(&nan);
    // NaN comparisons always fail.
    // Load whatever we need in v0 to make the comparison fail.
    if (cc_ == lt || cc_ == le) {
      __ li(v0, Operand(GREATER));
    } else {
      __ li(v0, Operand(LESS));
    }
    __ Ret();
  } else {
    // Checks for NaN in the doubles we have loaded.  Can return the answer or
    // fall through if neither is a NaN.  Also binds rhs_not_nan.
    EmitNanCheck(masm, cc_);

    // Compares two doubles that are not NaNs. Returns the answer.
    // Never falls through.
    EmitTwoNonNanDoubleComparison(masm, cc_);
  }

  __ bind(&not_smis);
  // At this point we know we are dealing with two different objects,
  // and neither of them is a Smi. The objects are in lhs_ and rhs_.
  if (strict_) {
    // This returns non-equal for some object types, or falls through if it
    // was not lucky.
    EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
  }

  Label check_for_symbols;
  Label flat_string_check;
  // Check for heap-number-heap-number comparison. Can jump to slow case,
  // or load both doubles and jump to the code that handles
  // that case. If the inputs are not doubles then jumps to check_for_symbols.
  // In this case a2 will contain the type of lhs_.
  EmitCheckForTwoHeapNumbers(masm,
                             lhs_,
                             rhs_,
                             &both_loaded_as_doubles,
                             &check_for_symbols,
                             &flat_string_check);

  __ bind(&check_for_symbols);
  if (cc_ == eq && !strict_) {
    // Returns an answer for two symbols or two detectable objects.
    // Otherwise jumps to string case or not both strings case.
    // Assumes that a2 is the type of lhs_ on entry.
    EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
  }

  // Check for both being sequential ASCII strings, and inline if that is the
  // case.
  __ bind(&flat_string_check);

  __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow);

  __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3);
  if (cc_ == eq) {
    StringCompareStub::GenerateFlatAsciiStringEquals(masm,
                                                     lhs_,
                                                     rhs_,
                                                     a2,
                                                     a3,
                                                     t0);
  } else {
    StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
                                                       lhs_,
                                                       rhs_,
                                                       a2,
                                                       a3,
                                                       t0,
                                                       t1);
  }
  // Never falls through to here.

  __ bind(&slow);
  // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
  // a1 (rhs) second.
  __ Push(lhs_, rhs_);
  // Figure out which native to call and setup the arguments.
  Builtins::JavaScript native;
  if (cc_ == eq) {
    native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
  } else {
    native = Builtins::COMPARE;
    int ncr;  // NaN compare result.
    if (cc_ == lt || cc_ == le) {
      ncr = GREATER;
    } else {
      ASSERT(cc_ == gt || cc_ == ge);  // Remaining cases.
      ncr = LESS;
    }
    __ li(a0, Operand(Smi::FromInt(ncr)));
    __ push(a0);
  }

  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
  // tagged as a small integer.
  __ InvokeBuiltin(native, JUMP_FUNCTION);
}


// The stub expects its argument in the tos_ register and returns its result in
// it, too: zero for false, and a non-zero value for true.
void ToBooleanStub::Generate(MacroAssembler* masm) {
  // This stub uses FPU instructions.
  CpuFeatures::Scope scope(FPU);

  Label patch;
  const Register map = t5.is(tos_) ? t3 : t5;

  // undefined -> false.
  CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);

  // Boolean -> its value.
  CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
  CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);

  // 'null' -> false.
  CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);

  if (types_.Contains(SMI)) {
    // Smis: 0 -> false, all other -> true
    __ And(at, tos_, kSmiTagMask);
    // tos_ contains the correct return value already
    __ Ret(eq, at, Operand(zero_reg));
  } else if (types_.NeedsMap()) {
    // If we need a map later and have a Smi -> patch.
    __ JumpIfSmi(tos_, &patch);
  }

  if (types_.NeedsMap()) {
    __ lw(map, FieldMemOperand(tos_, HeapObject::kMapOffset));

    if (types_.CanBeUndetectable()) {
      __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
      __ And(at, at, Operand(1 << Map::kIsUndetectable));
      // Undetectable -> false.
      __ Movn(tos_, zero_reg, at);
      __ Ret(ne, at, Operand(zero_reg));
    }
  }

  if (types_.Contains(SPEC_OBJECT)) {
    // Spec object -> true.
    __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
    // tos_ contains the correct non-zero return value already.
    __ Ret(ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
  }

  if (types_.Contains(STRING)) {
    // String value -> false iff empty.
    __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
    Label skip;
    __ Branch(&skip, ge, at, Operand(FIRST_NONSTRING_TYPE));
    __ Ret(USE_DELAY_SLOT);  // the string length is OK as the return value
    __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
    __ bind(&skip);
  }

  if (types_.Contains(HEAP_NUMBER)) {
    // Heap number -> false iff +0, -0, or NaN.
    Label not_heap_number;
    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
    __ Branch(&not_heap_number, ne, map, Operand(at));
    Label zero_or_nan, number;
    __ ldc1(f2, FieldMemOperand(tos_, HeapNumber::kValueOffset));
    __ BranchF(&number, &zero_or_nan, ne, f2, kDoubleRegZero);
    // "tos_" is a register, and contains a non zero value by default.
    // Hence we only need to overwrite "tos_" with zero to return false for
    // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
    __ bind(&zero_or_nan);
    __ mov(tos_, zero_reg);
    __ bind(&number);
    __ Ret();
    __ bind(&not_heap_number);
  }

  __ bind(&patch);
  GenerateTypeTransition(masm);
}


void ToBooleanStub::CheckOddball(MacroAssembler* masm,
                                 Type type,
                                 Heap::RootListIndex value,
                                 bool result) {
  if (types_.Contains(type)) {
    // If we see an expected oddball, return its ToBoolean value tos_.
    __ LoadRoot(at, value);
    __ Subu(at, at, tos_);  // This is a check for equality for the movz below.
    // The value of a root is never NULL, so we can avoid loading a non-null
    // value into tos_ when we want to return 'true'.
    if (!result) {
      __ Movz(tos_, zero_reg, at);
    }
    __ Ret(eq, at, Operand(zero_reg));
  }
}


void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
  __ Move(a3, tos_);
  __ li(a2, Operand(Smi::FromInt(tos_.code())));
  __ li(a1, Operand(Smi::FromInt(types_.ToByte())));
  __ Push(a3, a2, a1);
  // Patch the caller to an appropriate specialized stub and return the
  // operation result to the caller of the stub.
  __ TailCallExternalReference(
      ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
      3,
      1);
}


void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
  // We don't allow a GC during a store buffer overflow so there is no need to
  // store the registers in any particular way, but we do have to store and
  // restore them.
  __ MultiPush(kJSCallerSaved | ra.bit());
  if (save_doubles_ == kSaveFPRegs) {
    CpuFeatures::Scope scope(FPU);
    __ MultiPushFPU(kCallerSavedFPU);
  }
  const int argument_count = 1;
  const int fp_argument_count = 0;
  const Register scratch = a1;

  AllowExternalCallThatCantCauseGC scope(masm);
  __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
  __ li(a0, Operand(ExternalReference::isolate_address()));
  __ CallCFunction(
      ExternalReference::store_buffer_overflow_function(masm->isolate()),
      argument_count);
  if (save_doubles_ == kSaveFPRegs) {
    CpuFeatures::Scope scope(FPU);
    __ MultiPopFPU(kCallerSavedFPU);
  }

  __ MultiPop(kJSCallerSaved | ra.bit());
  __ Ret();
}


void UnaryOpStub::PrintName(StringStream* stream) {
  const char* op_name = Token::Name(op_);
  const char* overwrite_name = NULL;  // Make g++ happy.
  switch (mode_) {
    case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
    case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
  }
  stream->Add("UnaryOpStub_%s_%s_%s",
              op_name,
              overwrite_name,
              UnaryOpIC::GetName(operand_type_));
}


// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::Generate(MacroAssembler* masm) {
  switch (operand_type_) {
    case UnaryOpIC::UNINITIALIZED:
      GenerateTypeTransition(masm);
      break;
    case UnaryOpIC::SMI:
      GenerateSmiStub(masm);
      break;
    case UnaryOpIC::HEAP_NUMBER:
      GenerateHeapNumberStub(masm);
      break;
    case UnaryOpIC::GENERIC:
      GenerateGenericStub(masm);
      break;
  }
}


void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
  // Argument is in a0 and v0 at this point, so we can overwrite a0.
  __ li(a2, Operand(Smi::FromInt(op_)));
  __ li(a1, Operand(Smi::FromInt(mode_)));
  __ li(a0, Operand(Smi::FromInt(operand_type_)));
  __ Push(v0, a2, a1, a0);

  __ TailCallExternalReference(
      ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
}


// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
  switch (op_) {
    case Token::SUB:
      GenerateSmiStubSub(masm);
      break;
    case Token::BIT_NOT:
      GenerateSmiStubBitNot(masm);
      break;
    default:
      UNREACHABLE();
  }
}


void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
  Label non_smi, slow;
  GenerateSmiCodeSub(masm, &non_smi, &slow);
  __ bind(&non_smi);
  __ bind(&slow);
  GenerateTypeTransition(masm);
}


void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
  Label non_smi;
  GenerateSmiCodeBitNot(masm, &non_smi);
  __ bind(&non_smi);
  GenerateTypeTransition(masm);
}


void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
                                     Label* non_smi,
                                     Label* slow) {
  __ JumpIfNotSmi(a0, non_smi);

  // The result of negating zero or the smallest negative smi is not a smi.
  __ And(t0, a0, ~0x80000000);
  __ Branch(slow, eq, t0, Operand(zero_reg));

  // Return '0 - value'.
  __ Ret(USE_DELAY_SLOT);
  __ subu(v0, zero_reg, a0);
}


void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
                                        Label* non_smi) {
  __ JumpIfNotSmi(a0, non_smi);

  // Flip bits and revert inverted smi-tag.
  __ Neg(v0, a0);
  __ And(v0, v0, ~kSmiTagMask);
  __ Ret();
}


// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
  switch (op_) {
    case Token::SUB:
      GenerateHeapNumberStubSub(masm);
      break;
    case Token::BIT_NOT:
      GenerateHeapNumberStubBitNot(masm);
      break;
    default:
      UNREACHABLE();
  }
}


void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
  Label non_smi, slow, call_builtin;
  GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
  __ bind(&non_smi);
  GenerateHeapNumberCodeSub(masm, &slow);
  __ bind(&slow);
  GenerateTypeTransition(masm);
  __ bind(&call_builtin);
  GenerateGenericCodeFallback(masm);
}


void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
  Label non_smi, slow;
  GenerateSmiCodeBitNot(masm, &non_smi);
  __ bind(&non_smi);
  GenerateHeapNumberCodeBitNot(masm, &slow);
  __ bind(&slow);
  GenerateTypeTransition(masm);
}


void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
                                            Label* slow) {
  EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
  // a0 is a heap number.  Get a new heap number in a1.
  if (mode_ == UNARY_OVERWRITE) {
    __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
    __ Xor(a2, a2, Operand(HeapNumber::kSignMask));  // Flip sign.
    __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
  } else {
    Label slow_allocate_heapnumber, heapnumber_allocated;
    __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber);
    __ jmp(&heapnumber_allocated);

    __ bind(&slow_allocate_heapnumber);
    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ push(a0);
      __ CallRuntime(Runtime::kNumberAlloc, 0);
      __ mov(a1, v0);
      __ pop(a0);
    }

    __ bind(&heapnumber_allocated);
    __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
    __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
    __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset));
    __ Xor(a2, a2, Operand(HeapNumber::kSignMask));  // Flip sign.
    __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset));
    __ mov(v0, a1);
  }
  __ Ret();
}


void UnaryOpStub::GenerateHeapNumberCodeBitNot(
    MacroAssembler* masm,
    Label* slow) {
  Label impossible;

  EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
  // Convert the heap number in a0 to an untagged integer in a1.
  __ ConvertToInt32(a0, a1, a2, a3, f0, slow);

  // Do the bitwise operation and check if the result fits in a smi.
  Label try_float;
  __ Neg(a1, a1);
  __ Addu(a2, a1, Operand(0x40000000));
  __ Branch(&try_float, lt, a2, Operand(zero_reg));

  // Tag the result as a smi and we're done.
  __ SmiTag(v0, a1);
  __ Ret();

  // Try to store the result in a heap number.
  __ bind(&try_float);
  if (mode_ == UNARY_NO_OVERWRITE) {
    Label slow_allocate_heapnumber, heapnumber_allocated;
    // Allocate a new heap number without zapping v0, which we need if it fails.
    __ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber);
    __ jmp(&heapnumber_allocated);

    __ bind(&slow_allocate_heapnumber);
    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ push(v0);  // Push the heap number, not the untagged int32.
      __ CallRuntime(Runtime::kNumberAlloc, 0);
      __ mov(a2, v0);  // Move the new heap number into a2.
      // Get the heap number into v0, now that the new heap number is in a2.
      __ pop(v0);
    }

    // Convert the heap number in v0 to an untagged integer in a1.
    // This can't go slow-case because it's the same number we already
    // converted once again.
    __ ConvertToInt32(v0, a1, a3, t0, f0, &impossible);
    // Negate the result.
    __ Xor(a1, a1, -1);

    __ bind(&heapnumber_allocated);
    __ mov(v0, a2);  // Move newly allocated heap number to v0.
  }

  if (CpuFeatures::IsSupported(FPU)) {
    // Convert the int32 in a1 to the heap number in v0. a2 is corrupted.
    CpuFeatures::Scope scope(FPU);
    __ mtc1(a1, f0);
    __ cvt_d_w(f0, f0);
    __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
    __ Ret();
  } else {
    // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
    // have to set up a frame.
    WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3);
    __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
  }

  __ bind(&impossible);
  if (FLAG_debug_code) {
    __ stop("Incorrect assumption in bit-not stub");
  }
}


// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
  switch (op_) {
    case Token::SUB:
      GenerateGenericStubSub(masm);
      break;
    case Token::BIT_NOT:
      GenerateGenericStubBitNot(masm);
      break;
    default:
      UNREACHABLE();
  }
}


void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
  Label non_smi, slow;
  GenerateSmiCodeSub(masm, &non_smi, &slow);
  __ bind(&non_smi);
  GenerateHeapNumberCodeSub(masm, &slow);
  __ bind(&slow);
  GenerateGenericCodeFallback(masm);
}


void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
  Label non_smi, slow;
  GenerateSmiCodeBitNot(masm, &non_smi);
  __ bind(&non_smi);
  GenerateHeapNumberCodeBitNot(masm, &slow);
  __ bind(&slow);
  GenerateGenericCodeFallback(masm);
}


void UnaryOpStub::GenerateGenericCodeFallback(
    MacroAssembler* masm) {
  // Handle the slow case by jumping to the JavaScript builtin.
  __ push(a0);
  switch (op_) {
    case Token::SUB:
      __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
      break;
    case Token::BIT_NOT:
      __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
      break;
    default:
      UNREACHABLE();
  }
}


void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
  Label get_result;

  __ Push(a1, a0);

  __ li(a2, Operand(Smi::FromInt(MinorKey())));
  __ li(a1, Operand(Smi::FromInt(op_)));
  __ li(a0, Operand(Smi::FromInt(operands_type_)));
  __ Push(a2, a1, a0);

  __ TailCallExternalReference(
      ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
                        masm->isolate()),
      5,
      1);
}


void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
    MacroAssembler* masm) {
  UNIMPLEMENTED();
}


void BinaryOpStub::Generate(MacroAssembler* masm) {
  // Explicitly allow generation of nested stubs. It is safe here because
  // generation code does not use any raw pointers.
  AllowStubCallsScope allow_stub_calls(masm, true);
  switch (operands_type_) {
    case BinaryOpIC::UNINITIALIZED:
      GenerateTypeTransition(masm);
      break;
    case BinaryOpIC::SMI:
      GenerateSmiStub(masm);
      break;
    case BinaryOpIC::INT32:
      GenerateInt32Stub(masm);
      break;
    case BinaryOpIC::HEAP_NUMBER:
      GenerateHeapNumberStub(masm);
      break;
    case BinaryOpIC::ODDBALL:
      GenerateOddballStub(masm);
      break;
    case BinaryOpIC::BOTH_STRING:
      GenerateBothStringStub(masm);
      break;
    case BinaryOpIC::STRING:
      GenerateStringStub(masm);
      break;
    case BinaryOpIC::GENERIC:
      GenerateGeneric(masm);
      break;
    default:
      UNREACHABLE();
  }
}


void BinaryOpStub::PrintName(StringStream* stream) {
  const char* op_name = Token::Name(op_);
  const char* overwrite_name;
  switch (mode_) {
    case NO_OVERWRITE: overwrite_name = "Alloc"; break;
    case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
    case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
    default: overwrite_name = "UnknownOverwrite"; break;
  }
  stream->Add("BinaryOpStub_%s_%s_%s",
              op_name,
              overwrite_name,
              BinaryOpIC::GetName(operands_type_));
}



void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
  Register left = a1;
  Register right = a0;

  Register scratch1 = t0;
  Register scratch2 = t1;

  ASSERT(right.is(a0));
  STATIC_ASSERT(kSmiTag == 0);

  Label not_smi_result;
  switch (op_) {
    case Token::ADD:
      __ AdduAndCheckForOverflow(v0, left, right, scratch1);
      __ RetOnNoOverflow(scratch1);
      // No need to revert anything - right and left are intact.
      break;
    case Token::SUB:
      __ SubuAndCheckForOverflow(v0, left, right, scratch1);
      __ RetOnNoOverflow(scratch1);
      // No need to revert anything - right and left are intact.
      break;
    case Token::MUL: {
      // Remove tag from one of the operands. This way the multiplication result
      // will be a smi if it fits the smi range.
      __ SmiUntag(scratch1, right);
      // Do multiplication.
      // lo = lower 32 bits of scratch1 * left.
      // hi = higher 32 bits of scratch1 * left.
      __ Mult(left, scratch1);
      // Check for overflowing the smi range - no overflow if higher 33 bits of
      // the result are identical.
      __ mflo(scratch1);
      __ mfhi(scratch2);
      __ sra(scratch1, scratch1, 31);
      __ Branch(&not_smi_result, ne, scratch1, Operand(scratch2));
      // Go slow on zero result to handle -0.
      __ mflo(v0);
      __ Ret(ne, v0, Operand(zero_reg));
      // We need -0 if we were multiplying a negative number with 0 to get 0.
      // We know one of them was zero.
      __ Addu(scratch2, right, left);
      Label skip;
      // ARM uses the 'pl' condition, which is 'ge'.
      // Negating it results in 'lt'.
      __ Branch(&skip, lt, scratch2, Operand(zero_reg));
      ASSERT(Smi::FromInt(0) == 0);
      __ Ret(USE_DELAY_SLOT);
      __ mov(v0, zero_reg);  // Return smi 0 if the non-zero one was positive.
      __ bind(&skip);
      // We fall through here if we multiplied a negative number with 0, because
      // that would mean we should produce -0.
      }
      break;
    case Token::DIV: {
      Label done;
      __ SmiUntag(scratch2, right);
      __ SmiUntag(scratch1, left);
      __ Div(scratch1, scratch2);
      // A minor optimization: div may be calculated asynchronously, so we check
      // for division by zero before getting the result.
      __ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
      // If the result is 0, we need to make sure the dividsor (right) is
      // positive, otherwise it is a -0 case.
      // Quotient is in 'lo', remainder is in 'hi'.
      // Check for no remainder first.
      __ mfhi(scratch1);
      __ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
      __ mflo(scratch1);
      __ Branch(&done, ne, scratch1, Operand(zero_reg));
      __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
      __ bind(&done);
      // Check that the signed result fits in a Smi.
      __ Addu(scratch2, scratch1, Operand(0x40000000));
      __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
      __ SmiTag(v0, scratch1);
      __ Ret();
      }
      break;
    case Token::MOD: {
      Label done;
      __ SmiUntag(scratch2, right);
      __ SmiUntag(scratch1, left);
      __ Div(scratch1, scratch2);
      // A minor optimization: div may be calculated asynchronously, so we check
      // for division by 0 before calling mfhi.
      // Check for zero on the right hand side.
      __ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
      // If the result is 0, we need to make sure the dividend (left) is
      // positive (or 0), otherwise it is a -0 case.
      // Remainder is in 'hi'.
      __ mfhi(scratch2);
      __ Branch(&done, ne, scratch2, Operand(zero_reg));
      __ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
      __ bind(&done);
      // Check that the signed result fits in a Smi.
      __ Addu(scratch1, scratch2, Operand(0x40000000));
      __ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
      __ SmiTag(v0, scratch2);
      __ Ret();
      }
      break;
    case Token::BIT_OR:
      __ Ret(USE_DELAY_SLOT);
      __ or_(v0, left, right);
      break;
    case Token::BIT_AND:
      __ Ret(USE_DELAY_SLOT);
      __ and_(v0, left, right);
      break;
    case Token::BIT_XOR:
      __ Ret(USE_DELAY_SLOT);
      __ xor_(v0, left, right);
      break;
    case Token::SAR:
      // Remove tags from right operand.
      __ GetLeastBitsFromSmi(scratch1, right, 5);
      __ srav(scratch1, left, scratch1);
      // Smi tag result.
      __ And(v0, scratch1, ~kSmiTagMask);
      __ Ret();
      break;
    case Token::SHR:
      // Remove tags from operands. We can't do this on a 31 bit number
      // because then the 0s get shifted into bit 30 instead of bit 31.
      __ SmiUntag(scratch1, left);
      __ GetLeastBitsFromSmi(scratch2, right, 5);
      __ srlv(v0, scratch1, scratch2);
      // Unsigned shift is not allowed to produce a negative number, so
      // check the sign bit and the sign bit after Smi tagging.
      __ And(scratch1, v0, Operand(0xc0000000));
      __ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
      // Smi tag result.
      __ SmiTag(v0);
      __ Ret();
      break;
    case Token::SHL:
      // Remove tags from operands.
      __ SmiUntag(scratch1, left);
      __ GetLeastBitsFromSmi(scratch2, right, 5);
      __ sllv(scratch1, scratch1, scratch2);
      // Check that the signed result fits in a Smi.
      __ Addu(scratch2, scratch1, Operand(0x40000000));
      __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
      __ SmiTag(v0, scratch1);
      __ Ret();
      break;
    default:
      UNREACHABLE();
  }
  __ bind(&not_smi_result);
}


void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
                                       bool smi_operands,
                                       Label* not_numbers,
                                       Label* gc_required) {
  Register left = a1;
  Register right = a0;
  Register scratch1 = t3;
  Register scratch2 = t5;
  Register scratch3 = t0;

  ASSERT(smi_operands || (not_numbers != NULL));
  if (smi_operands && FLAG_debug_code) {
    __ AbortIfNotSmi(left);
    __ AbortIfNotSmi(right);
  }

  Register heap_number_map = t2;
  __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);

  switch (op_) {
    case Token::ADD:
    case Token::SUB:
    case Token::MUL:
    case Token::DIV:
    case Token::MOD: {
      // Load left and right operands into f12 and f14 or a0/a1 and a2/a3
      // depending on whether FPU is available or not.
      FloatingPointHelper::Destination destination =
          CpuFeatures::IsSupported(FPU) &&
          op_ != Token::MOD ?
              FloatingPointHelper::kFPURegisters :
              FloatingPointHelper::kCoreRegisters;

      // Allocate new heap number for result.
      Register result = s0;
      GenerateHeapResultAllocation(
          masm, result, heap_number_map, scratch1, scratch2, gc_required);

      // Load the operands.
      if (smi_operands) {
        FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
      } else {
        FloatingPointHelper::LoadOperands(masm,
                                          destination,
                                          heap_number_map,
                                          scratch1,
                                          scratch2,
                                          not_numbers);
      }

      // Calculate the result.
      if (destination == FloatingPointHelper::kFPURegisters) {
        // Using FPU registers:
        // f12: Left value.
        // f14: Right value.
        CpuFeatures::Scope scope(FPU);
        switch (op_) {
        case Token::ADD:
          __ add_d(f10, f12, f14);
          break;
        case Token::SUB:
          __ sub_d(f10, f12, f14);
          break;
        case Token::MUL:
          __ mul_d(f10, f12, f14);
          break;
        case Token::DIV:
          __ div_d(f10, f12, f14);
          break;
        default:
          UNREACHABLE();
        }

        // ARM uses a workaround here because of the unaligned HeapNumber
        // kValueOffset. On MIPS this workaround is built into sdc1 so
        // there's no point in generating even more instructions.
        __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
        __ Ret(USE_DELAY_SLOT);
        __ mov(v0, result);
      } else {
        // Call the C function to handle the double operation.
        FloatingPointHelper::CallCCodeForDoubleOperation(masm,
                                                         op_,
                                                         result,
                                                         scratch1);
        if (FLAG_debug_code) {
          __ stop("Unreachable code.");
        }
      }
      break;
    }
    case Token::BIT_OR:
    case Token::BIT_XOR:
    case Token::BIT_AND:
    case Token::SAR:
    case Token::SHR:
    case Token::SHL: {
      if (smi_operands) {
        __ SmiUntag(a3, left);
        __ SmiUntag(a2, right);
      } else {
        // Convert operands to 32-bit integers. Right in a2 and left in a3.
        FloatingPointHelper::ConvertNumberToInt32(masm,
                                                  left,
                                                  a3,
                                                  heap_number_map,
                                                  scratch1,
                                                  scratch2,
                                                  scratch3,
                                                  f0,
                                                  not_numbers);
        FloatingPointHelper::ConvertNumberToInt32(masm,
                                                  right,
                                                  a2,
                                                  heap_number_map,
                                                  scratch1,
                                                  scratch2,
                                                  scratch3,
                                                  f0,
                                                  not_numbers);
      }
      Label result_not_a_smi;
      switch (op_) {
        case Token::BIT_OR:
          __ Or(a2, a3, Operand(a2));
          break;
        case Token::BIT_XOR:
          __ Xor(a2, a3, Operand(a2));
          break;
        case Token::BIT_AND:
          __ And(a2, a3, Operand(a2));
          break;
        case Token::SAR:
          // Use only the 5 least significant bits of the shift count.
          __ GetLeastBitsFromInt32(a2, a2, 5);
          __ srav(a2, a3, a2);
          break;
        case Token::SHR:
          // Use only the 5 least significant bits of the shift count.
          __ GetLeastBitsFromInt32(a2, a2, 5);
          __ srlv(a2, a3, a2);
          // SHR is special because it is required to produce a positive answer.
          // The code below for writing into heap numbers isn't capable of
          // writing the register as an unsigned int so we go to slow case if we
          // hit this case.
          if (CpuFeatures::IsSupported(FPU)) {
            __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
          } else {
            __ Branch(not_numbers, lt, a2, Operand(zero_reg));
          }
          break;
        case Token::SHL:
          // Use only the 5 least significant bits of the shift count.
          __ GetLeastBitsFromInt32(a2, a2, 5);
          __ sllv(a2, a3, a2);
          break;
        default:
          UNREACHABLE();
      }
      // Check that the *signed* result fits in a smi.
      __ Addu(a3, a2, Operand(0x40000000));
      __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
      __ SmiTag(v0, a2);
      __ Ret();

      // Allocate new heap number for result.
      __ bind(&result_not_a_smi);
      Register result = t1;
      if (smi_operands) {
        __ AllocateHeapNumber(
            result, scratch1, scratch2, heap_number_map, gc_required);
      } else {
        GenerateHeapResultAllocation(
            masm, result, heap_number_map, scratch1, scratch2, gc_required);
      }

      // a2: Answer as signed int32.
      // t1: Heap number to write answer into.

      // Nothing can go wrong now, so move the heap number to v0, which is the
      // result.
      __ mov(v0, t1);

      if (CpuFeatures::IsSupported(FPU)) {
        // Convert the int32 in a2 to the heap number in a0. As
        // mentioned above SHR needs to always produce a positive result.
        CpuFeatures::Scope scope(FPU);
        __ mtc1(a2, f0);
        if (op_ == Token::SHR) {
          __ Cvt_d_uw(f0, f0, f22);
        } else {
          __ cvt_d_w(f0, f0);
        }
        // ARM uses a workaround here because of the unaligned HeapNumber
        // kValueOffset. On MIPS this workaround is built into sdc1 so
        // there's no point in generating even more instructions.
        __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
        __ Ret();
      } else {
        // Tail call that writes the int32 in a2 to the heap number in v0, using
        // a3 and a0 as scratch. v0 is preserved and returned.
        WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
        __ TailCallStub(&stub);
      }
      break;
    }
    default:
      UNREACHABLE();
  }
}


// Generate the smi code. If the operation on smis are successful this return is
// generated. If the result is not a smi and heap number allocation is not
// requested the code falls through. If number allocation is requested but a
// heap number cannot be allocated the code jumps to the lable gc_required.
void BinaryOpStub::GenerateSmiCode(
    MacroAssembler* masm,
    Label* use_runtime,
    Label* gc_required,
    SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
  Label not_smis;

  Register left = a1;
  Register right = a0;
  Register scratch1 = t3;

  // Perform combined smi check on both operands.
  __ Or(scratch1, left, Operand(right));
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfNotSmi(scratch1, &not_smis);

  // If the smi-smi operation results in a smi return is generated.
  GenerateSmiSmiOperation(masm);

  // If heap number results are possible generate the result in an allocated
  // heap number.
  if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
    GenerateFPOperation(masm, true, use_runtime, gc_required);
  }
  __ bind(&not_smis);
}


void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
  Label not_smis, call_runtime;

  if (result_type_ == BinaryOpIC::UNINITIALIZED ||
      result_type_ == BinaryOpIC::SMI) {
    // Only allow smi results.
    GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
  } else {
    // Allow heap number result and don't make a transition if a heap number
    // cannot be allocated.
    GenerateSmiCode(masm,
                    &call_runtime,
                    &call_runtime,
                    ALLOW_HEAPNUMBER_RESULTS);
  }

  // Code falls through if the result is not returned as either a smi or heap
  // number.
  GenerateTypeTransition(masm);

  __ bind(&call_runtime);
  GenerateCallRuntime(masm);
}


void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
  ASSERT(operands_type_ == BinaryOpIC::STRING);
  // Try to add arguments as strings, otherwise, transition to the generic
  // BinaryOpIC type.
  GenerateAddStrings(masm);
  GenerateTypeTransition(masm);
}


void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
  Label call_runtime;
  ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
  ASSERT(op_ == Token::ADD);
  // If both arguments are strings, call the string add stub.
  // Otherwise, do a transition.

  // Registers containing left and right operands respectively.
  Register left = a1;
  Register right = a0;

  // Test if left operand is a string.
  __ JumpIfSmi(left, &call_runtime);
  __ GetObjectType(left, a2, a2);
  __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));

  // Test if right operand is a string.
  __ JumpIfSmi(right, &call_runtime);
  __ GetObjectType(right, a2, a2);
  __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));

  StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
  GenerateRegisterArgsPush(masm);
  __ TailCallStub(&string_add_stub);

  __ bind(&call_runtime);
  GenerateTypeTransition(masm);
}


void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
  ASSERT(operands_type_ == BinaryOpIC::INT32);

  Register left = a1;
  Register right = a0;
  Register scratch1 = t3;
  Register scratch2 = t5;
  FPURegister double_scratch = f0;
  FPURegister single_scratch = f6;

  Register heap_number_result = no_reg;
  Register heap_number_map = t2;
  __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);

  Label call_runtime;
  // Labels for type transition, used for wrong input or output types.
  // Both label are currently actually bound to the same position. We use two
  // different label to differentiate the cause leading to type transition.
  Label transition;

  // Smi-smi fast case.
  Label skip;
  __ Or(scratch1, left, right);
  __ JumpIfNotSmi(scratch1, &skip);
  GenerateSmiSmiOperation(masm);
  // Fall through if the result is not a smi.
  __ bind(&skip);

  switch (op_) {
    case Token::ADD:
    case Token::SUB:
    case Token::MUL:
    case Token::DIV:
    case Token::MOD: {
      // Load both operands and check that they are 32-bit integer.
      // Jump to type transition if they are not. The registers a0 and a1 (right
      // and left) are preserved for the runtime call.
      FloatingPointHelper::Destination destination =
          (CpuFeatures::IsSupported(FPU) && op_ != Token::MOD)
              ? FloatingPointHelper::kFPURegisters
              : FloatingPointHelper::kCoreRegisters;

      FloatingPointHelper::LoadNumberAsInt32Double(masm,
                                                   right,
                                                   destination,
                                                   f14,
                                                   a2,
                                                   a3,
                                                   heap_number_map,
                                                   scratch1,
                                                   scratch2,
                                                   f2,
                                                   &transition);
      FloatingPointHelper::LoadNumberAsInt32Double(masm,
                                                   left,
                                                   destination,
                                                   f12,
                                                   t0,
                                                   t1,
                                                   heap_number_map,
                                                   scratch1,
                                                   scratch2,
                                                   f2,
                                                   &transition);

      if (destination == FloatingPointHelper::kFPURegisters) {
        CpuFeatures::Scope scope(FPU);
        Label return_heap_number;
        switch (op_) {
          case Token::ADD:
            __ add_d(f10, f12, f14);
            break;
          case Token::SUB:
            __ sub_d(f10, f12, f14);
            break;
          case Token::MUL:
            __ mul_d(f10, f12, f14);
            break;
          case Token::DIV:
            __ div_d(f10, f12, f14);
            break;
          default:
            UNREACHABLE();
        }

        if (op_ != Token::DIV) {
          // These operations produce an integer result.
          // Try to return a smi if we can.
          // Otherwise return a heap number if allowed, or jump to type
          // transition.

          Register except_flag = scratch2;
          __ EmitFPUTruncate(kRoundToZero,
                             single_scratch,
                             f10,
                             scratch1,
                             except_flag);

          if (result_type_ <= BinaryOpIC::INT32) {
            // If except_flag != 0, result does not fit in a 32-bit integer.
            __ Branch(&transition, ne, except_flag, Operand(zero_reg));
          }

          // Check if the result fits in a smi.
          __ mfc1(scratch1, single_scratch);
          __ Addu(scratch2, scratch1, Operand(0x40000000));
          // If not try to return a heap number.
          __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
          // Check for minus zero. Return heap number for minus zero.
          Label not_zero;
          __ Branch(&not_zero, ne, scratch1, Operand(zero_reg));
          __ mfc1(scratch2, f11);
          __ And(scratch2, scratch2, HeapNumber::kSignMask);
          __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg));
          __ bind(&not_zero);

          // Tag the result and return.
          __ SmiTag(v0, scratch1);
          __ Ret();
        } else {
          // DIV just falls through to allocating a heap number.
        }

        __ bind(&return_heap_number);
        // Return a heap number, or fall through to type transition or runtime
        // call if we can't.
        if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
                                                 : BinaryOpIC::INT32)) {
          // We are using FPU registers so s0 is available.
          heap_number_result = s0;
          GenerateHeapResultAllocation(masm,
                                       heap_number_result,
                                       heap_number_map,
                                       scratch1,
                                       scratch2,
                                       &call_runtime);
          __ mov(v0, heap_number_result);
          __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset));
          __ Ret();
        }

        // A DIV operation expecting an integer result falls through
        // to type transition.

      } else {
        // We preserved a0 and a1 to be able to call runtime.
        // Save the left value on the stack.
        __ Push(t1, t0);

        Label pop_and_call_runtime;

        // Allocate a heap number to store the result.
        heap_number_result = s0;
        GenerateHeapResultAllocation(masm,
                                     heap_number_result,
                                     heap_number_map,
                                     scratch1,
                                     scratch2,
                                     &pop_and_call_runtime);

        // Load the left value from the value saved on the stack.
        __ Pop(a1, a0);

        // Call the C function to handle the double operation.
        FloatingPointHelper::CallCCodeForDoubleOperation(
            masm, op_, heap_number_result, scratch1);
        if (FLAG_debug_code) {
          __ stop("Unreachable code.");
        }

        __ bind(&pop_and_call_runtime);
        __ Drop(2);
        __ Branch(&call_runtime);
      }

      break;
    }

    case Token::BIT_OR:
    case Token::BIT_XOR:
    case Token::BIT_AND:
    case Token::SAR:
    case Token::SHR:
    case Token::SHL: {
      Label return_heap_number;
      Register scratch3 = t1;
      // Convert operands to 32-bit integers. Right in a2 and left in a3. The
      // registers a0 and a1 (right and left) are preserved for the runtime
      // call.
      FloatingPointHelper::LoadNumberAsInt32(masm,
                                             left,
                                             a3,
                                             heap_number_map,
                                             scratch1,
                                             scratch2,
                                             scratch3,
                                             f0,
                                             &transition);
      FloatingPointHelper::LoadNumberAsInt32(masm,
                                             right,
                                             a2,
                                             heap_number_map,
                                             scratch1,
                                             scratch2,
                                             scratch3,
                                             f0,
                                             &transition);

      // The ECMA-262 standard specifies that, for shift operations, only the
      // 5 least significant bits of the shift value should be used.
      switch (op_) {
        case Token::BIT_OR:
          __ Or(a2, a3, Operand(a2));
          break;
        case Token::BIT_XOR:
          __ Xor(a2, a3, Operand(a2));
          break;
        case Token::BIT_AND:
          __ And(a2, a3, Operand(a2));
          break;
        case Token::SAR:
          __ And(a2, a2, Operand(0x1f));
          __ srav(a2, a3, a2);
          break;
        case Token::SHR:
          __ And(a2, a2, Operand(0x1f));
          __ srlv(a2, a3, a2);
          // SHR is special because it is required to produce a positive answer.
          // We only get a negative result if the shift value (a2) is 0.
          // This result cannot be respresented as a signed 32-bit integer, try
          // to return a heap number if we can.
          // The non FPU code does not support this special case, so jump to
          // runtime if we don't support it.
          if (CpuFeatures::IsSupported(FPU)) {
            __ Branch((result_type_ <= BinaryOpIC::INT32)
                        ? &transition
                        : &return_heap_number,
                       lt,
                       a2,
                       Operand(zero_reg));
          } else {
            __ Branch((result_type_ <= BinaryOpIC::INT32)
                        ? &transition
                        : &call_runtime,
                       lt,
                       a2,
                       Operand(zero_reg));
          }
          break;
        case Token::SHL:
          __ And(a2, a2, Operand(0x1f));
          __ sllv(a2, a3, a2);
          break;
        default:
          UNREACHABLE();
      }

      // Check if the result fits in a smi.
      __ Addu(scratch1, a2, Operand(0x40000000));
      // If not try to return a heap number. (We know the result is an int32.)
      __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
      // Tag the result and return.
      __ SmiTag(v0, a2);
      __ Ret();

      __ bind(&return_heap_number);
      heap_number_result = t1;
      GenerateHeapResultAllocation(masm,
                                   heap_number_result,
                                   heap_number_map,
                                   scratch1,
                                   scratch2,
                                   &call_runtime);

      if (CpuFeatures::IsSupported(FPU)) {
        CpuFeatures::Scope scope(FPU);

        if (op_ != Token::SHR) {
          // Convert the result to a floating point value.
          __ mtc1(a2, double_scratch);
          __ cvt_d_w(double_scratch, double_scratch);
        } else {
          // The result must be interpreted as an unsigned 32-bit integer.
          __ mtc1(a2, double_scratch);
          __ Cvt_d_uw(double_scratch, double_scratch, single_scratch);
        }

        // Store the result.
        __ mov(v0, heap_number_result);
        __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset));
        __ Ret();
      } else {
        // Tail call that writes the int32 in a2 to the heap number in v0, using
        // a3 and a0 as scratch. v0 is preserved and returned.
        __ mov(a0, t1);
        WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
        __ TailCallStub(&stub);
      }

      break;
    }

    default:
      UNREACHABLE();
  }

  // We never expect DIV to yield an integer result, so we always generate
  // type transition code for DIV operations expecting an integer result: the
  // code will fall through to this type transition.
  if (transition.is_linked() ||
      ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
    __ bind(&transition);
    GenerateTypeTransition(masm);
  }

  __ bind(&call_runtime);
  GenerateCallRuntime(masm);
}


void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
  Label call_runtime;

  if (op_ == Token::ADD) {
    // Handle string addition here, because it is the only operation
    // that does not do a ToNumber conversion on the operands.
    GenerateAddStrings(masm);
  }

  // Convert oddball arguments to numbers.
  Label check, done;
  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
  __ Branch(&check, ne, a1, Operand(t0));
  if (Token::IsBitOp(op_)) {
    __ li(a1, Operand(Smi::FromInt(0)));
  } else {
    __ LoadRoot(a1, Heap::kNanValueRootIndex);
  }
  __ jmp(&done);
  __ bind(&check);
  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
  __ Branch(&done, ne, a0, Operand(t0));
  if (Token::IsBitOp(op_)) {
    __ li(a0, Operand(Smi::FromInt(0)));
  } else {
    __ LoadRoot(a0, Heap::kNanValueRootIndex);
  }
  __ bind(&done);

  GenerateHeapNumberStub(masm);
}


void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
  Label call_runtime;
  GenerateFPOperation(masm, false, &call_runtime, &call_runtime);

  __ bind(&call_runtime);
  GenerateCallRuntime(masm);
}


void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
  Label call_runtime, call_string_add_or_runtime;

  GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);

  GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);

  __ bind(&call_string_add_or_runtime);
  if (op_ == Token::ADD) {
    GenerateAddStrings(masm);
  }

  __ bind(&call_runtime);
  GenerateCallRuntime(masm);
}


void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
  ASSERT(op_ == Token::ADD);
  Label left_not_string, call_runtime;

  Register left = a1;
  Register right = a0;

  // Check if left argument is a string.
  __ JumpIfSmi(left, &left_not_string);
  __ GetObjectType(left, a2, a2);
  __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));

  StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
  GenerateRegisterArgsPush(masm);
  __ TailCallStub(&string_add_left_stub);

  // Left operand is not a string, test right.
  __ bind(&left_not_string);
  __ JumpIfSmi(right, &call_runtime);
  __ GetObjectType(right, a2, a2);
  __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));

  StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
  GenerateRegisterArgsPush(masm);
  __ TailCallStub(&string_add_right_stub);

  // At least one argument is not a string.
  __ bind(&call_runtime);
}


void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
  GenerateRegisterArgsPush(masm);
  switch (op_) {
    case Token::ADD:
      __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
      break;
    case Token::SUB:
      __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
      break;
    case Token::MUL:
      __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
      break;
    case Token::DIV:
      __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
      break;
    case Token::MOD:
      __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
      break;
    case Token::BIT_OR:
      __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
      break;
    case Token::BIT_AND:
      __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
      break;
    case Token::BIT_XOR:
      __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
      break;
    case Token::SAR:
      __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
      break;
    case Token::SHR:
      __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
      break;
    case Token::SHL:
      __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
      break;
    default:
      UNREACHABLE();
  }
}


void BinaryOpStub::GenerateHeapResultAllocation(
    MacroAssembler* masm,
    Register result,
    Register heap_number_map,
    Register scratch1,
    Register scratch2,
    Label* gc_required) {

  // Code below will scratch result if allocation fails. To keep both arguments
  // intact for the runtime call result cannot be one of these.
  ASSERT(!result.is(a0) && !result.is(a1));

  if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
    Label skip_allocation, allocated;
    Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0;
    // If the overwritable operand is already an object, we skip the
    // allocation of a heap number.
    __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
    // Allocate a heap number for the result.
    __ AllocateHeapNumber(
        result, scratch1, scratch2, heap_number_map, gc_required);
    __ Branch(&allocated);
    __ bind(&skip_allocation);
    // Use object holding the overwritable operand for result.
    __ mov(result, overwritable_operand);
    __ bind(&allocated);
  } else {
    ASSERT(mode_ == NO_OVERWRITE);
    __ AllocateHeapNumber(
        result, scratch1, scratch2, heap_number_map, gc_required);
  }
}


void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
  __ Push(a1, a0);
}



void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
  // Untagged case: double input in f4, double result goes
  //   into f4.
  // Tagged case: tagged input on top of stack and in a0,
  //   tagged result (heap number) goes into v0.

  Label input_not_smi;
  Label loaded;
  Label calculate;
  Label invalid_cache;
  const Register scratch0 = t5;
  const Register scratch1 = t3;
  const Register cache_entry = a0;
  const bool tagged = (argument_type_ == TAGGED);

  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);

    if (tagged) {
      // Argument is a number and is on stack and in a0.
      // Load argument and check if it is a smi.
      __ JumpIfNotSmi(a0, &input_not_smi);

      // Input is a smi. Convert to double and load the low and high words
      // of the double into a2, a3.
      __ sra(t0, a0, kSmiTagSize);
      __ mtc1(t0, f4);
      __ cvt_d_w(f4, f4);
      __ Move(a2, a3, f4);
      __ Branch(&loaded);

      __ bind(&input_not_smi);
      // Check if input is a HeapNumber.
      __ CheckMap(a0,
                  a1,
                  Heap::kHeapNumberMapRootIndex,
                  &calculate,
                  DONT_DO_SMI_CHECK);
      // Input is a HeapNumber. Store the
      // low and high words into a2, a3.
      __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset));
      __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4));
    } else {
      // Input is untagged double in f4. Output goes to f4.
      __ Move(a2, a3, f4);
    }
    __ bind(&loaded);
    // a2 = low 32 bits of double value.
    // a3 = high 32 bits of double value.
    // Compute hash (the shifts are arithmetic):
    //   h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
    __ Xor(a1, a2, a3);
    __ sra(t0, a1, 16);
    __ Xor(a1, a1, t0);
    __ sra(t0, a1, 8);
    __ Xor(a1, a1, t0);
    ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
    __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));

    // a2 = low 32 bits of double value.
    // a3 = high 32 bits of double value.
    // a1 = TranscendentalCache::hash(double value).
    __ li(cache_entry, Operand(
        ExternalReference::transcendental_cache_array_address(
            masm->isolate())));
    // a0 points to cache array.
    __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof(
        Isolate::Current()->transcendental_cache()->caches_[0])));
    // a0 points to the cache for the type type_.
    // If NULL, the cache hasn't been initialized yet, so go through runtime.
    __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg));

#ifdef DEBUG
    // Check that the layout of cache elements match expectations.
    { TranscendentalCache::SubCache::Element test_elem[2];
      char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
      char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
      char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
      char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
      char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
      CHECK_EQ(12, elem2_start - elem_start);  // Two uint_32's and a pointer.
      CHECK_EQ(0, elem_in0 - elem_start);
      CHECK_EQ(kIntSize, elem_in1 - elem_start);
      CHECK_EQ(2 * kIntSize, elem_out - elem_start);
    }
#endif

    // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12].
    __ sll(t0, a1, 1);
    __ Addu(a1, a1, t0);
    __ sll(t0, a1, 2);
    __ Addu(cache_entry, cache_entry, t0);

    // Check if cache matches: Double value is stored in uint32_t[2] array.
    __ lw(t0, MemOperand(cache_entry, 0));
    __ lw(t1, MemOperand(cache_entry, 4));
    __ lw(t2, MemOperand(cache_entry, 8));
    __ Branch(&calculate, ne, a2, Operand(t0));
    __ Branch(&calculate, ne, a3, Operand(t1));
    // Cache hit. Load result, cleanup and return.
    Counters* counters = masm->isolate()->counters();
    __ IncrementCounter(
        counters->transcendental_cache_hit(), 1, scratch0, scratch1);
    if (tagged) {
      // Pop input value from stack and load result into v0.
      __ Drop(1);
      __ mov(v0, t2);
    } else {
      // Load result into f4.
      __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
    }
    __ Ret();
  }  // if (CpuFeatures::IsSupported(FPU))

  __ bind(&calculate);
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(
      counters->transcendental_cache_miss(), 1, scratch0, scratch1);
  if (tagged) {
    __ bind(&invalid_cache);
    __ TailCallExternalReference(ExternalReference(RuntimeFunction(),
                                                   masm->isolate()),
                                 1,
                                 1);
  } else {
    if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE();
    CpuFeatures::Scope scope(FPU);

    Label no_update;
    Label skip_cache;

    // Call C function to calculate the result and update the cache.
    // Register a0 holds precalculated cache entry address; preserve
    // it on the stack and pop it into register cache_entry after the
    // call.
    __ Push(cache_entry, a2, a3);
    GenerateCallCFunction(masm, scratch0);
    __ GetCFunctionDoubleResult(f4);

    // Try to update the cache. If we cannot allocate a
    // heap number, we return the result without updating.
    __ Pop(cache_entry, a2, a3);
    __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
    __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));

    __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize));
    __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize));
    __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize));

    __ Ret(USE_DELAY_SLOT);
    __ mov(v0, cache_entry);

    __ bind(&invalid_cache);
    // The cache is invalid. Call runtime which will recreate the
    // cache.
    __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache);
    __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset));
    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ push(a0);
      __ CallRuntime(RuntimeFunction(), 1);
    }
    __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset));
    __ Ret();

    __ bind(&skip_cache);
    // Call C function to calculate the result and answer directly
    // without updating the cache.
    GenerateCallCFunction(masm, scratch0);
    __ GetCFunctionDoubleResult(f4);
    __ bind(&no_update);

    // We return the value in f4 without adding it to the cache, but
    // we cause a scavenging GC so that future allocations will succeed.
    {
      FrameScope scope(masm, StackFrame::INTERNAL);

      // Allocate an aligned object larger than a HeapNumber.
      ASSERT(4 * kPointerSize >= HeapNumber::kSize);
      __ li(scratch0, Operand(4 * kPointerSize));
      __ push(scratch0);
      __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
    }
    __ Ret();
  }
}


void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
                                                    Register scratch) {
  __ push(ra);
  __ PrepareCallCFunction(2, scratch);
  if (IsMipsSoftFloatABI) {
    __ Move(a0, a1, f4);
  } else {
    __ mov_d(f12, f4);
  }
  AllowExternalCallThatCantCauseGC scope(masm);
  Isolate* isolate = masm->isolate();
  switch (type_) {
    case TranscendentalCache::SIN:
      __ CallCFunction(
          ExternalReference::math_sin_double_function(isolate),
          0, 1);
      break;
    case TranscendentalCache::COS:
      __ CallCFunction(
          ExternalReference::math_cos_double_function(isolate),
          0, 1);
      break;
    case TranscendentalCache::TAN:
      __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
          0, 1);
      break;
    case TranscendentalCache::LOG:
      __ CallCFunction(
          ExternalReference::math_log_double_function(isolate),
          0, 1);
      break;
    default:
      UNIMPLEMENTED();
      break;
  }
  __ pop(ra);
}


Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
  switch (type_) {
    // Add more cases when necessary.
    case TranscendentalCache::SIN: return Runtime::kMath_sin;
    case TranscendentalCache::COS: return Runtime::kMath_cos;
    case TranscendentalCache::TAN: return Runtime::kMath_tan;
    case TranscendentalCache::LOG: return Runtime::kMath_log;
    default:
      UNIMPLEMENTED();
      return Runtime::kAbort;
  }
}


void StackCheckStub::Generate(MacroAssembler* masm) {
  __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
}


void InterruptStub::Generate(MacroAssembler* masm) {
  __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
}


void MathPowStub::Generate(MacroAssembler* masm) {
  CpuFeatures::Scope fpu_scope(FPU);
  const Register base = a1;
  const Register exponent = a2;
  const Register heapnumbermap = t1;
  const Register heapnumber = v0;
  const DoubleRegister double_base = f2;
  const DoubleRegister double_exponent = f4;
  const DoubleRegister double_result = f0;
  const DoubleRegister double_scratch = f6;
  const FPURegister single_scratch = f8;
  const Register scratch = t5;
  const Register scratch2 = t3;

  Label call_runtime, done, int_exponent;
  if (exponent_type_ == ON_STACK) {
    Label base_is_smi, unpack_exponent;
    // The exponent and base are supplied as arguments on the stack.
    // This can only happen if the stub is called from non-optimized code.
    // Load input parameters from stack to double registers.
    __ lw(base, MemOperand(sp, 1 * kPointerSize));
    __ lw(exponent, MemOperand(sp, 0 * kPointerSize));

    __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);

    __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
    __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
    __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));

    __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
    __ jmp(&unpack_exponent);

    __ bind(&base_is_smi);
    __ mtc1(scratch, single_scratch);
    __ cvt_d_w(double_base, single_scratch);
    __ bind(&unpack_exponent);

    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);

    __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
    __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    __ ldc1(double_exponent,
            FieldMemOperand(exponent, HeapNumber::kValueOffset));
  } else if (exponent_type_ == TAGGED) {
    // Base is already in double_base.
    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);

    __ ldc1(double_exponent,
            FieldMemOperand(exponent, HeapNumber::kValueOffset));
  }

  if (exponent_type_ != INTEGER) {
    Label int_exponent_convert;
    // Detect integer exponents stored as double.
    __ EmitFPUTruncate(kRoundToMinusInf,
                       single_scratch,
                       double_exponent,
                       scratch,
                       scratch2,
                       kCheckForInexactConversion);
    // scratch2 == 0 means there was no conversion error.
    __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));

    if (exponent_type_ == ON_STACK) {
      // Detect square root case.  Crankshaft detects constant +/-0.5 at
      // compile time and uses DoMathPowHalf instead.  We then skip this check
      // for non-constant cases of +/-0.5 as these hardly occur.
      Label not_plus_half;

      // Test for 0.5.
      __ Move(double_scratch, 0.5);
      __ BranchF(USE_DELAY_SLOT,
                 &not_plus_half,
                 NULL,
                 ne,
                 double_exponent,
                 double_scratch);
      // double_scratch can be overwritten in the delay slot.
      // Calculates square root of base.  Check for the special case of
      // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
      __ Move(double_scratch, -V8_INFINITY);
      __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
      __ neg_d(double_result, double_scratch);

      // Add +0 to convert -0 to +0.
      __ add_d(double_scratch, double_base, kDoubleRegZero);
      __ sqrt_d(double_result, double_scratch);
      __ jmp(&done);

      __ bind(&not_plus_half);
      __ Move(double_scratch, -0.5);
      __ BranchF(USE_DELAY_SLOT,
                 &call_runtime,
                 NULL,
                 ne,
                 double_exponent,
                 double_scratch);
      // double_scratch can be overwritten in the delay slot.
      // Calculates square root of base.  Check for the special case of
      // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
      __ Move(double_scratch, -V8_INFINITY);
      __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
      __ Move(double_result, kDoubleRegZero);

      // Add +0 to convert -0 to +0.
      __ add_d(double_scratch, double_base, kDoubleRegZero);
      __ Move(double_result, 1);
      __ sqrt_d(double_scratch, double_scratch);
      __ div_d(double_result, double_result, double_scratch);
      __ jmp(&done);
    }

    __ push(ra);
    {
      AllowExternalCallThatCantCauseGC scope(masm);
      __ PrepareCallCFunction(0, 2, scratch);
      __ SetCallCDoubleArguments(double_base, double_exponent);
      __ CallCFunction(
          ExternalReference::power_double_double_function(masm->isolate()),
          0, 2);
    }
    __ pop(ra);
    __ GetCFunctionDoubleResult(double_result);
    __ jmp(&done);

    __ bind(&int_exponent_convert);
    __ mfc1(scratch, single_scratch);
  }

  // Calculate power with integer exponent.
  __ bind(&int_exponent);

  // Get two copies of exponent in the registers scratch and exponent.
  if (exponent_type_ == INTEGER) {
    __ mov(scratch, exponent);
  } else {
    // Exponent has previously been stored into scratch as untagged integer.
    __ mov(exponent, scratch);
  }

  __ mov_d(double_scratch, double_base);  // Back up base.
  __ Move(double_result, 1.0);

  // Get absolute value of exponent.
  Label positive_exponent;
  __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
  __ Subu(scratch, zero_reg, scratch);
  __ bind(&positive_exponent);

  Label while_true, no_carry, loop_end;
  __ bind(&while_true);

  __ And(scratch2, scratch, 1);

  __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
  __ mul_d(double_result, double_result, double_scratch);
  __ bind(&no_carry);

  __ sra(scratch, scratch, 1);

  __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
  __ mul_d(double_scratch, double_scratch, double_scratch);

  __ Branch(&while_true);

  __ bind(&loop_end);

  __ Branch(&done, ge, exponent, Operand(zero_reg));
  __ Move(double_scratch, 1.0);
  __ div_d(double_result, double_scratch, double_result);
  // Test whether result is zero.  Bail out to check for subnormal result.
  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
  __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);

  // double_exponent may not contain the exponent value if the input was a
  // smi.  We set it with exponent value before bailing out.
  __ mtc1(exponent, single_scratch);
  __ cvt_d_w(double_exponent, single_scratch);

  // Returning or bailing out.
  Counters* counters = masm->isolate()->counters();
  if (exponent_type_ == ON_STACK) {
    // The arguments are still on the stack.
    __ bind(&call_runtime);
    __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);

    // The stub is called from non-optimized code, which expects the result
    // as heap number in exponent.
    __ bind(&done);
    __ AllocateHeapNumber(
        heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
    __ sdc1(double_result,
            FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
    ASSERT(heapnumber.is(v0));
    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
    __ DropAndRet(2);
  } else {
    __ push(ra);
    {
      AllowExternalCallThatCantCauseGC scope(masm);
      __ PrepareCallCFunction(0, 2, scratch);
      __ SetCallCDoubleArguments(double_base, double_exponent);
      __ CallCFunction(
          ExternalReference::power_double_double_function(masm->isolate()),
          0, 2);
    }
    __ pop(ra);
    __ GetCFunctionDoubleResult(double_result);

    __ bind(&done);
    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
    __ Ret();
  }
}


bool CEntryStub::NeedsImmovableCode() {
  return true;
}


bool CEntryStub::IsPregenerated() {
  return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
          result_size_ == 1;
}


void CodeStub::GenerateStubsAheadOfTime() {
  CEntryStub::GenerateAheadOfTime();
  WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
  RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
}


void CodeStub::GenerateFPStubs() {
  CEntryStub save_doubles(1, kSaveFPRegs);
  Handle<Code> code = save_doubles.GetCode();
  code->set_is_pregenerated(true);
  StoreBufferOverflowStub stub(kSaveFPRegs);
  stub.GetCode()->set_is_pregenerated(true);
  code->GetIsolate()->set_fp_stubs_generated(true);
}


void CEntryStub::GenerateAheadOfTime() {
  CEntryStub stub(1, kDontSaveFPRegs);
  Handle<Code> code = stub.GetCode();
  code->set_is_pregenerated(true);
}


void CEntryStub::GenerateCore(MacroAssembler* masm,
                              Label* throw_normal_exception,
                              Label* throw_termination_exception,
                              Label* throw_out_of_memory_exception,
                              bool do_gc,
                              bool always_allocate) {
  // v0: result parameter for PerformGC, if any
  // s0: number of arguments including receiver (C callee-saved)
  // s1: pointer to the first argument          (C callee-saved)
  // s2: pointer to builtin function            (C callee-saved)

  Isolate* isolate = masm->isolate();

  if (do_gc) {
    // Move result passed in v0 into a0 to call PerformGC.
    __ mov(a0, v0);
    __ PrepareCallCFunction(1, 0, a1);
    __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1, 0);
  }

  ExternalReference scope_depth =
      ExternalReference::heap_always_allocate_scope_depth(isolate);
  if (always_allocate) {
    __ li(a0, Operand(scope_depth));
    __ lw(a1, MemOperand(a0));
    __ Addu(a1, a1, Operand(1));
    __ sw(a1, MemOperand(a0));
  }

  // Prepare arguments for C routine.
  // a0 = argc
  __ mov(a0, s0);
  // a1 = argv (set in the delay slot after find_ra below).

  // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
  // also need to reserve the 4 argument slots on the stack.

  __ AssertStackIsAligned();

  __ li(a2, Operand(ExternalReference::isolate_address()));

  // To let the GC traverse the return address of the exit frames, we need to
  // know where the return address is. The CEntryStub is unmovable, so
  // we can store the address on the stack to be able to find it again and
  // we never have to restore it, because it will not change.
  { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
    // This branch-and-link sequence is needed to find the current PC on mips,
    // saved to the ra register.
    // Use masm-> here instead of the double-underscore macro since extra
    // coverage code can interfere with the proper calculation of ra.
    Label find_ra;
    masm->bal(&find_ra);  // bal exposes branch delay slot.
    masm->mov(a1, s1);
    masm->bind(&find_ra);

    // Adjust the value in ra to point to the correct return location, 2nd
    // instruction past the real call into C code (the jalr(t9)), and push it.
    // This is the return address of the exit frame.
    const int kNumInstructionsToJump = 5;
    masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
    masm->sw(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
    // Stack space reservation moved to the branch delay slot below.
    // Stack is still aligned.

    // Call the C routine.
    masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
    masm->jalr(t9);
    // Set up sp in the delay slot.
    masm->addiu(sp, sp, -kCArgsSlotsSize);
    // Make sure the stored 'ra' points to this position.
    ASSERT_EQ(kNumInstructionsToJump,
              masm->InstructionsGeneratedSince(&find_ra));
  }

  if (always_allocate) {
    // It's okay to clobber a2 and a3 here. v0 & v1 contain result.
    __ li(a2, Operand(scope_depth));
    __ lw(a3, MemOperand(a2));
    __ Subu(a3, a3, Operand(1));
    __ sw(a3, MemOperand(a2));
  }

  // Check for failure result.
  Label failure_returned;
  STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
  __ addiu(a2, v0, 1);
  __ andi(t0, a2, kFailureTagMask);
  __ Branch(USE_DELAY_SLOT, &failure_returned, eq, t0, Operand(zero_reg));
  // Restore stack (remove arg slots) in branch delay slot.
  __ addiu(sp, sp, kCArgsSlotsSize);


  // Exit C frame and return.
  // v0:v1: result
  // sp: stack pointer
  // fp: frame pointer
  __ LeaveExitFrame(save_doubles_, s0, true);

  // Check if we should retry or throw exception.
  Label retry;
  __ bind(&failure_returned);
  STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
  __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize);
  __ Branch(&retry, eq, t0, Operand(zero_reg));

  // Special handling of out of memory exceptions.
  Failure* out_of_memory = Failure::OutOfMemoryException();
  __ Branch(USE_DELAY_SLOT,
            throw_out_of_memory_exception,
            eq,
            v0,
            Operand(reinterpret_cast<int32_t>(out_of_memory)));
  // If we throw the OOM exception, the value of a3 doesn't matter.
  // Any instruction can be in the delay slot that's not a jump.

  // Retrieve the pending exception and clear the variable.
  __ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
  __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                      isolate)));
  __ lw(v0, MemOperand(t0));
  __ sw(a3, MemOperand(t0));

  // Special handling of termination exceptions which are uncatchable
  // by javascript code.
  __ LoadRoot(t0, Heap::kTerminationExceptionRootIndex);
  __ Branch(throw_termination_exception, eq, v0, Operand(t0));

  // Handle normal exception.
  __ jmp(throw_normal_exception);

  __ bind(&retry);
  // Last failure (v0) will be moved to (a0) for parameter when retrying.
}


void CEntryStub::Generate(MacroAssembler* masm) {
  // Called from JavaScript; parameters are on stack as if calling JS function
  // s0: number of arguments including receiver
  // s1: size of arguments excluding receiver
  // s2: pointer to builtin function
  // fp: frame pointer    (restored after C call)
  // sp: stack pointer    (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)

  // NOTE: Invocations of builtins may return failure objects
  // instead of a proper result. The builtin entry handles
  // this by performing a garbage collection and retrying the
  // builtin once.

  // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
  // The reason for this is that these arguments would need to be saved anyway
  // so it's faster to set them up directly.
  // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.

  // Compute the argv pointer in a callee-saved register.
  __ Addu(s1, sp, s1);

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(save_doubles_);

  // s0: number of arguments (C callee-saved)
  // s1: pointer to first argument (C callee-saved)
  // s2: pointer to builtin function (C callee-saved)

  Label throw_normal_exception;
  Label throw_termination_exception;
  Label throw_out_of_memory_exception;

  // Call into the runtime system.
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               false,
               false);

  // Do space-specific GC and retry runtime call.
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               true,
               false);

  // Do full GC and retry runtime call one final time.
  Failure* failure = Failure::InternalError();
  __ li(v0, Operand(reinterpret_cast<int32_t>(failure)));
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               true,
               true);

  __ bind(&throw_out_of_memory_exception);
  // Set external caught exception to false.
  Isolate* isolate = masm->isolate();
  ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
                                    isolate);
  __ li(a0, Operand(false, RelocInfo::NONE));
  __ li(a2, Operand(external_caught));
  __ sw(a0, MemOperand(a2));

  // Set pending exception and v0 to out of memory exception.
  Failure* out_of_memory = Failure::OutOfMemoryException();
  __ li(v0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
  __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                      isolate)));
  __ sw(v0, MemOperand(a2));
  // Fall through to the next label.

  __ bind(&throw_termination_exception);
  __ ThrowUncatchable(v0);

  __ bind(&throw_normal_exception);
  __ Throw(v0);
}


void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
  Label invoke, handler_entry, exit;
  Isolate* isolate = masm->isolate();

  // Registers:
  // a0: entry address
  // a1: function
  // a2: receiver
  // a3: argc
  //
  // Stack:
  // 4 args slots
  // args

  // Save callee saved registers on the stack.
  __ MultiPush(kCalleeSaved | ra.bit());

  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    // Save callee-saved FPU registers.
    __ MultiPushFPU(kCalleeSavedFPU);
    // Set up the reserved register for 0.0.
    __ Move(kDoubleRegZero, 0.0);
  }


  // Load argv in s0 register.
  int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
  if (CpuFeatures::IsSupported(FPU)) {
    offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
  }

  __ InitializeRootRegister();
  __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));

  // We build an EntryFrame.
  __ li(t3, Operand(-1));  // Push a bad frame pointer to fail if it is used.
  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
  __ li(t2, Operand(Smi::FromInt(marker)));
  __ li(t1, Operand(Smi::FromInt(marker)));
  __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
                                      isolate)));
  __ lw(t0, MemOperand(t0));
  __ Push(t3, t2, t1, t0);
  // Set up frame pointer for the frame to be pushed.
  __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);

  // Registers:
  // a0: entry_address
  // a1: function
  // a2: receiver_pointer
  // a3: argc
  // s0: argv
  //
  // Stack:
  // caller fp          |
  // function slot      | entry frame
  // context slot       |
  // bad fp (0xff...f)  |
  // callee saved registers + ra
  // 4 args slots
  // args

  // If this is the outermost JS call, set js_entry_sp value.
  Label non_outermost_js;
  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
  __ li(t1, Operand(ExternalReference(js_entry_sp)));
  __ lw(t2, MemOperand(t1));
  __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
  __ sw(fp, MemOperand(t1));
  __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
  Label cont;
  __ b(&cont);
  __ nop();   // Branch delay slot nop.
  __ bind(&non_outermost_js);
  __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
  __ bind(&cont);
  __ push(t0);

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ jmp(&invoke);
  __ bind(&handler_entry);
  handler_offset_ = handler_entry.pos();
  // Caught exception: Store result (exception) in the pending exception
  // field in the JSEnv and return a failure sentinel.  Coming in here the
  // fp will be invalid because the PushTryHandler below sets it to 0 to
  // signal the existence of the JSEntry frame.
  __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                      isolate)));
  __ sw(v0, MemOperand(t0));  // We come back from 'invoke'. result is in v0.
  __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
  __ b(&exit);  // b exposes branch delay slot.
  __ nop();   // Branch delay slot nop.

  // Invoke: Link this frame into the handler chain.  There's only one
  // handler block in this code object, so its index is 0.
  __ bind(&invoke);
  __ PushTryHandler(StackHandler::JS_ENTRY, 0);
  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the bal(&invoke) above, which
  // restores all kCalleeSaved registers (including cp and fp) to their
  // saved values before returning a failure to C.

  // Clear any pending exceptions.
  __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
  __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                      isolate)));
  __ sw(t1, MemOperand(t0));

  // Invoke the function by calling through JS entry trampoline builtin.
  // Notice that we cannot store a reference to the trampoline code directly in
  // this stub, because runtime stubs are not traversed when doing GC.

  // Registers:
  // a0: entry_address
  // a1: function
  // a2: receiver_pointer
  // a3: argc
  // s0: argv
  //
  // Stack:
  // handler frame
  // entry frame
  // callee saved registers + ra
  // 4 args slots
  // args

  if (is_construct) {
    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
                                      isolate);
    __ li(t0, Operand(construct_entry));
  } else {
    ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
    __ li(t0, Operand(entry));
  }
  __ lw(t9, MemOperand(t0));  // Deref address.

  // Call JSEntryTrampoline.
  __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
  __ Call(t9);

  // Unlink this frame from the handler chain.
  __ PopTryHandler();

  __ bind(&exit);  // v0 holds result
  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  __ pop(t1);
  __ Branch(&non_outermost_js_2,
            ne,
            t1,
            Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
  __ li(t1, Operand(ExternalReference(js_entry_sp)));
  __ sw(zero_reg, MemOperand(t1));
  __ bind(&non_outermost_js_2);

  // Restore the top frame descriptors from the stack.
  __ pop(t1);
  __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
                                      isolate)));
  __ sw(t1, MemOperand(t0));

  // Reset the stack to the callee saved registers.
  __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);

  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    // Restore callee-saved fpu registers.
    __ MultiPopFPU(kCalleeSavedFPU);
  }

  // Restore callee saved registers from the stack.
  __ MultiPop(kCalleeSaved | ra.bit());
  // Return.
  __ Jump(ra);
}


// Uses registers a0 to t0.
// Expected input (depending on whether args are in registers or on the stack):
// * object: a0 or at sp + 1 * kPointerSize.
// * function: a1 or at sp.
//
// An inlined call site may have been generated before calling this stub.
// In this case the offset to the inline site to patch is passed on the stack,
// in the safepoint slot for register t0.
void InstanceofStub::Generate(MacroAssembler* masm) {
  // Call site inlining and patching implies arguments in registers.
  ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
  // ReturnTrueFalse is only implemented for inlined call sites.
  ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());

  // Fixed register usage throughout the stub:
  const Register object = a0;  // Object (lhs).
  Register map = a3;  // Map of the object.
  const Register function = a1;  // Function (rhs).
  const Register prototype = t0;  // Prototype of the function.
  const Register inline_site = t5;
  const Register scratch = a2;

  const int32_t kDeltaToLoadBoolResult = 5 * kPointerSize;

  Label slow, loop, is_instance, is_not_instance, not_js_object;

  if (!HasArgsInRegisters()) {
    __ lw(object, MemOperand(sp, 1 * kPointerSize));
    __ lw(function, MemOperand(sp, 0));
  }

  // Check that the left hand is a JS object and load map.
  __ JumpIfSmi(object, &not_js_object);
  __ IsObjectJSObjectType(object, map, scratch, &not_js_object);

  // If there is a call site cache don't look in the global cache, but do the
  // real lookup and update the call site cache.
  if (!HasCallSiteInlineCheck()) {
    Label miss;
    __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
    __ Branch(&miss, ne, function, Operand(at));
    __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
    __ Branch(&miss, ne, map, Operand(at));
    __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
    __ DropAndRet(HasArgsInRegisters() ? 0 : 2);

    __ bind(&miss);
  }

  // Get the prototype of the function.
  __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);

  // Check that the function prototype is a JS object.
  __ JumpIfSmi(prototype, &slow);
  __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);

  // Update the global instanceof or call site inlined cache with the current
  // map and function. The cached answer will be set when it is known below.
  if (!HasCallSiteInlineCheck()) {
    __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
    __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
  } else {
    ASSERT(HasArgsInRegisters());
    // Patch the (relocated) inlined map check.

    // The offset was stored in t0 safepoint slot.
    // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
    __ LoadFromSafepointRegisterSlot(scratch, t0);
    __ Subu(inline_site, ra, scratch);
    // Get the map location in scratch and patch it.
    __ GetRelocatedValue(inline_site, scratch, v1);  // v1 used as scratch.
    __ sw(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
  }

  // Register mapping: a3 is object map and t0 is function prototype.
  // Get prototype of object into a2.
  __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));

  // We don't need map any more. Use it as a scratch register.
  Register scratch2 = map;
  map = no_reg;

  // Loop through the prototype chain looking for the function prototype.
  __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
  __ bind(&loop);
  __ Branch(&is_instance, eq, scratch, Operand(prototype));
  __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
  __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
  __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
  __ Branch(&loop);

  __ bind(&is_instance);
  ASSERT(Smi::FromInt(0) == 0);
  if (!HasCallSiteInlineCheck()) {
    __ mov(v0, zero_reg);
    __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
  } else {
    // Patch the call site to return true.
    __ LoadRoot(v0, Heap::kTrueValueRootIndex);
    __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
    // Get the boolean result location in scratch and patch it.
    __ PatchRelocatedValue(inline_site, scratch, v0);

    if (!ReturnTrueFalseObject()) {
      ASSERT_EQ(Smi::FromInt(0), 0);
      __ mov(v0, zero_reg);
    }
  }
  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);

  __ bind(&is_not_instance);
  if (!HasCallSiteInlineCheck()) {
    __ li(v0, Operand(Smi::FromInt(1)));
    __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
  } else {
    // Patch the call site to return false.
    __ LoadRoot(v0, Heap::kFalseValueRootIndex);
    __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
    // Get the boolean result location in scratch and patch it.
    __ PatchRelocatedValue(inline_site, scratch, v0);

    if (!ReturnTrueFalseObject()) {
      __ li(v0, Operand(Smi::FromInt(1)));
    }
  }

  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);

  Label object_not_null, object_not_null_or_smi;
  __ bind(&not_js_object);
  // Before null, smi and string value checks, check that the rhs is a function
  // as for a non-function rhs an exception needs to be thrown.
  __ JumpIfSmi(function, &slow);
  __ GetObjectType(function, scratch2, scratch);
  __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));

  // Null is not instance of anything.
  __ Branch(&object_not_null,
            ne,
            scratch,
            Operand(masm->isolate()->factory()->null_value()));
  __ li(v0, Operand(Smi::FromInt(1)));
  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);

  __ bind(&object_not_null);
  // Smi values are not instances of anything.
  __ JumpIfNotSmi(object, &object_not_null_or_smi);
  __ li(v0, Operand(Smi::FromInt(1)));
  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);

  __ bind(&object_not_null_or_smi);
  // String values are not instances of anything.
  __ IsObjectJSStringType(object, scratch, &slow);
  __ li(v0, Operand(Smi::FromInt(1)));
  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);

  // Slow-case.  Tail call builtin.
  __ bind(&slow);
  if (!ReturnTrueFalseObject()) {
    if (HasArgsInRegisters()) {
      __ Push(a0, a1);
    }
  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
  } else {
    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ Push(a0, a1);
      __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
    }
    __ mov(a0, v0);
    __ LoadRoot(v0, Heap::kTrueValueRootIndex);
    __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
    __ LoadRoot(v0, Heap::kFalseValueRootIndex);
    __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
  }
}


Register InstanceofStub::left() { return a0; }


Register InstanceofStub::right() { return a1; }


void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
  // The displacement is the offset of the last parameter (if any)
  // relative to the frame pointer.
  const int kDisplacement =
      StandardFrameConstants::kCallerSPOffset - kPointerSize;

  // Check that the key is a smiGenerateReadElement.
  Label slow;
  __ JumpIfNotSmi(a1, &slow);

  // Check if the calling frame is an arguments adaptor frame.
  Label adaptor;
  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
  __ Branch(&adaptor,
            eq,
            a3,
            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

  // Check index (a1) against formal parameters count limit passed in
  // through register a0. Use unsigned comparison to get negative
  // check for free.
  __ Branch(&slow, hs, a1, Operand(a0));

  // Read the argument from the stack and return it.
  __ subu(a3, a0, a1);
  __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(a3, fp, Operand(t3));
  __ lw(v0, MemOperand(a3, kDisplacement));
  __ Ret();

  // Arguments adaptor case: Check index (a1) against actual arguments
  // limit found in the arguments adaptor frame. Use unsigned
  // comparison to get negative check for free.
  __ bind(&adaptor);
  __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ Branch(&slow, Ugreater_equal, a1, Operand(a0));

  // Read the argument from the adaptor frame and return it.
  __ subu(a3, a0, a1);
  __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(a3, a2, Operand(t3));
  __ lw(v0, MemOperand(a3, kDisplacement));
  __ Ret();

  // Slow-case: Handle non-smi or out-of-bounds access to arguments
  // by calling the runtime system.
  __ bind(&slow);
  __ push(a1);
  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}


void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
  // sp[0] : number of parameters
  // sp[4] : receiver displacement
  // sp[8] : function
  // Check if the calling frame is an arguments adaptor frame.
  Label runtime;
  __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
  __ Branch(&runtime,
            ne,
            a2,
            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

  // Patch the arguments.length and the parameters pointer in the current frame.
  __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ sw(a2, MemOperand(sp, 0 * kPointerSize));
  __ sll(t3, a2, 1);
  __ Addu(a3, a3, Operand(t3));
  __ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
  __ sw(a3, MemOperand(sp, 1 * kPointerSize));

  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}


void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
  // Stack layout:
  //  sp[0] : number of parameters (tagged)
  //  sp[4] : address of receiver argument
  //  sp[8] : function
  // Registers used over whole function:
  //  t2 : allocated object (tagged)
  //  t5 : mapped parameter count (tagged)

  __ lw(a1, MemOperand(sp, 0 * kPointerSize));
  // a1 = parameter count (tagged)

  // Check if the calling frame is an arguments adaptor frame.
  Label runtime;
  Label adaptor_frame, try_allocate;
  __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
  __ Branch(&adaptor_frame,
            eq,
            a2,
            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

  // No adaptor, parameter count = argument count.
  __ mov(a2, a1);
  __ b(&try_allocate);
  __ nop();   // Branch delay slot nop.

  // We have an adaptor frame. Patch the parameters pointer.
  __ bind(&adaptor_frame);
  __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ sll(t6, a2, 1);
  __ Addu(a3, a3, Operand(t6));
  __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
  __ sw(a3, MemOperand(sp, 1 * kPointerSize));

  // a1 = parameter count (tagged)
  // a2 = argument count (tagged)
  // Compute the mapped parameter count = min(a1, a2) in a1.
  Label skip_min;
  __ Branch(&skip_min, lt, a1, Operand(a2));
  __ mov(a1, a2);
  __ bind(&skip_min);

  __ bind(&try_allocate);

  // Compute the sizes of backing store, parameter map, and arguments object.
  // 1. Parameter map, has 2 extra words containing context and backing store.
  const int kParameterMapHeaderSize =
      FixedArray::kHeaderSize + 2 * kPointerSize;
  // If there are no mapped parameters, we do not need the parameter_map.
  Label param_map_size;
  ASSERT_EQ(0, Smi::FromInt(0));
  __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
  __ mov(t5, zero_reg);  // In delay slot: param map size = 0 when a1 == 0.
  __ sll(t5, a1, 1);
  __ addiu(t5, t5, kParameterMapHeaderSize);
  __ bind(&param_map_size);

  // 2. Backing store.
  __ sll(t6, a2, 1);
  __ Addu(t5, t5, Operand(t6));
  __ Addu(t5, t5, Operand(FixedArray::kHeaderSize));

  // 3. Arguments object.
  __ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize));

  // Do the allocation of all three objects in one go.
  __ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT);

  // v0 = address of new object(s) (tagged)
  // a2 = argument count (tagged)
  // Get the arguments boilerplate from the current (global) context into t0.
  const int kNormalOffset =
      Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
  const int kAliasedOffset =
      Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);

  __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
  Label skip2_ne, skip2_eq;
  __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
  __ lw(t0, MemOperand(t0, kNormalOffset));
  __ bind(&skip2_ne);

  __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
  __ lw(t0, MemOperand(t0, kAliasedOffset));
  __ bind(&skip2_eq);

  // v0 = address of new object (tagged)
  // a1 = mapped parameter count (tagged)
  // a2 = argument count (tagged)
  // t0 = address of boilerplate object (tagged)
  // Copy the JS object part.
  for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
    __ lw(a3, FieldMemOperand(t0, i));
    __ sw(a3, FieldMemOperand(v0, i));
  }

  // Set up the callee in-object property.
  STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
  __ lw(a3, MemOperand(sp, 2 * kPointerSize));
  const int kCalleeOffset = JSObject::kHeaderSize +
      Heap::kArgumentsCalleeIndex * kPointerSize;
  __ sw(a3, FieldMemOperand(v0, kCalleeOffset));

  // Use the length (smi tagged) and set that as an in-object property too.
  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
  const int kLengthOffset = JSObject::kHeaderSize +
      Heap::kArgumentsLengthIndex * kPointerSize;
  __ sw(a2, FieldMemOperand(v0, kLengthOffset));

  // Set up the elements pointer in the allocated arguments object.
  // If we allocated a parameter map, t0 will point there, otherwise
  // it will point to the backing store.
  __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize));
  __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));

  // v0 = address of new object (tagged)
  // a1 = mapped parameter count (tagged)
  // a2 = argument count (tagged)
  // t0 = address of parameter map or backing store (tagged)
  // Initialize parameter map. If there are no mapped arguments, we're done.
  Label skip_parameter_map;
  Label skip3;
  __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
  // Move backing store address to a3, because it is
  // expected there when filling in the unmapped arguments.
  __ mov(a3, t0);
  __ bind(&skip3);

  __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));

  __ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex);
  __ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset));
  __ Addu(t2, a1, Operand(Smi::FromInt(2)));
  __ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset));
  __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
  __ sll(t6, a1, 1);
  __ Addu(t2, t0, Operand(t6));
  __ Addu(t2, t2, Operand(kParameterMapHeaderSize));
  __ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));

  // Copy the parameter slots and the holes in the arguments.
  // We need to fill in mapped_parameter_count slots. They index the context,
  // where parameters are stored in reverse order, at
  //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
  // The mapped parameter thus need to get indices
  //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
  //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
  // We loop from right to left.
  Label parameters_loop, parameters_test;
  __ mov(t2, a1);
  __ lw(t5, MemOperand(sp, 0 * kPointerSize));
  __ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
  __ Subu(t5, t5, Operand(a1));
  __ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
  __ sll(t6, t2, 1);
  __ Addu(a3, t0, Operand(t6));
  __ Addu(a3, a3, Operand(kParameterMapHeaderSize));

  // t2 = loop variable (tagged)
  // a1 = mapping index (tagged)
  // a3 = address of backing store (tagged)
  // t0 = address of parameter map (tagged)
  // t1 = temporary scratch (a.o., for address calculation)
  // t3 = the hole value
  __ jmp(&parameters_test);

  __ bind(&parameters_loop);
  __ Subu(t2, t2, Operand(Smi::FromInt(1)));
  __ sll(t1, t2, 1);
  __ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag));
  __ Addu(t6, t0, t1);
  __ sw(t5, MemOperand(t6));
  __ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
  __ Addu(t6, a3, t1);
  __ sw(t3, MemOperand(t6));
  __ Addu(t5, t5, Operand(Smi::FromInt(1)));
  __ bind(&parameters_test);
  __ Branch(&parameters_loop, ne, t2, Operand(Smi::FromInt(0)));

  __ bind(&skip_parameter_map);
  // a2 = argument count (tagged)
  // a3 = address of backing store (tagged)
  // t1 = scratch
  // Copy arguments header and remaining slots (if there are any).
  __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
  __ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset));
  __ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));

  Label arguments_loop, arguments_test;
  __ mov(t5, a1);
  __ lw(t0, MemOperand(sp, 1 * kPointerSize));
  __ sll(t6, t5, 1);
  __ Subu(t0, t0, Operand(t6));
  __ jmp(&arguments_test);

  __ bind(&arguments_loop);
  __ Subu(t0, t0, Operand(kPointerSize));
  __ lw(t2, MemOperand(t0, 0));
  __ sll(t6, t5, 1);
  __ Addu(t1, a3, Operand(t6));
  __ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize));
  __ Addu(t5, t5, Operand(Smi::FromInt(1)));

  __ bind(&arguments_test);
  __ Branch(&arguments_loop, lt, t5, Operand(a2));

  // Return and remove the on-stack parameters.
  __ DropAndRet(3);

  // Do the runtime call to allocate the arguments object.
  // a2 = argument count (tagged)
  __ bind(&runtime);
  __ sw(a2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}


void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
  // sp[0] : number of parameters
  // sp[4] : receiver displacement
  // sp[8] : function
  // Check if the calling frame is an arguments adaptor frame.
  Label adaptor_frame, try_allocate, runtime;
  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
  __ Branch(&adaptor_frame,
            eq,
            a3,
            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

  // Get the length from the frame.
  __ lw(a1, MemOperand(sp, 0));
  __ Branch(&try_allocate);

  // Patch the arguments.length and the parameters pointer.
  __ bind(&adaptor_frame);
  __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ sw(a1, MemOperand(sp, 0));
  __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(a3, a2, Operand(at));

  __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
  __ sw(a3, MemOperand(sp, 1 * kPointerSize));

  // Try the new space allocation. Start out with computing the size
  // of the arguments object and the elements array in words.
  Label add_arguments_object;
  __ bind(&try_allocate);
  __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
  __ srl(a1, a1, kSmiTagSize);

  __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
  __ bind(&add_arguments_object);
  __ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));

  // Do the allocation of both objects in one go.
  __ AllocateInNewSpace(a1,
                        v0,
                        a2,
                        a3,
                        &runtime,
                        static_cast<AllocationFlags>(TAG_OBJECT |
                                                     SIZE_IN_WORDS));

  // Get the arguments boilerplate from the current (global) context.
  __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
  __ lw(t0, MemOperand(t0, Context::SlotOffset(
      Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));

  // Copy the JS object part.
  __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize);

  // Get the length (smi tagged) and set that as an in-object property too.
  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
  __ lw(a1, MemOperand(sp, 0 * kPointerSize));
  __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
      Heap::kArgumentsLengthIndex * kPointerSize));

  Label done;
  __ Branch(&done, eq, a1, Operand(zero_reg));

  // Get the parameters pointer from the stack.
  __ lw(a2, MemOperand(sp, 1 * kPointerSize));

  // Set up the elements pointer in the allocated arguments object and
  // initialize the header in the elements fixed array.
  __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict));
  __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
  __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
  __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
  __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
  // Untag the length for the loop.
  __ srl(a1, a1, kSmiTagSize);

  // Copy the fixed array slots.
  Label loop;
  // Set up t0 to point to the first array slot.
  __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ bind(&loop);
  // Pre-decrement a2 with kPointerSize on each iteration.
  // Pre-decrement in order to skip receiver.
  __ Addu(a2, a2, Operand(-kPointerSize));
  __ lw(a3, MemOperand(a2));
  // Post-increment t0 with kPointerSize on each iteration.
  __ sw(a3, MemOperand(t0));
  __ Addu(t0, t0, Operand(kPointerSize));
  __ Subu(a1, a1, Operand(1));
  __ Branch(&loop, ne, a1, Operand(zero_reg));

  // Return and remove the on-stack parameters.
  __ bind(&done);
  __ DropAndRet(3);

  // Do the runtime call to allocate the arguments object.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
}


void RegExpExecStub::Generate(MacroAssembler* masm) {
  // Just jump directly to runtime if native RegExp is not selected at compile
  // time or if regexp entry in generated code is turned off runtime switch or
  // at compilation.
#ifdef V8_INTERPRETED_REGEXP
  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else  // V8_INTERPRETED_REGEXP

  // Stack frame on entry.
  //  sp[0]: last_match_info (expected JSArray)
  //  sp[4]: previous index
  //  sp[8]: subject string
  //  sp[12]: JSRegExp object

  const int kLastMatchInfoOffset = 0 * kPointerSize;
  const int kPreviousIndexOffset = 1 * kPointerSize;
  const int kSubjectOffset = 2 * kPointerSize;
  const int kJSRegExpOffset = 3 * kPointerSize;

  Isolate* isolate = masm->isolate();

  Label runtime, invoke_regexp;

  // Allocation of registers for this function. These are in callee save
  // registers and will be preserved by the call to the native RegExp code, as
  // this code is called using the normal C calling convention. When calling
  // directly from generated code the native RegExp code will not do a GC and
  // therefore the content of these registers are safe to use after the call.
  // MIPS - using s0..s2, since we are not using CEntry Stub.
  Register subject = s0;
  Register regexp_data = s1;
  Register last_match_info_elements = s2;

  // Ensure that a RegExp stack is allocated.
  ExternalReference address_of_regexp_stack_memory_address =
      ExternalReference::address_of_regexp_stack_memory_address(
          isolate);
  ExternalReference address_of_regexp_stack_memory_size =
      ExternalReference::address_of_regexp_stack_memory_size(isolate);
  __ li(a0, Operand(address_of_regexp_stack_memory_size));
  __ lw(a0, MemOperand(a0, 0));
  __ Branch(&runtime, eq, a0, Operand(zero_reg));

  // Check that the first argument is a JSRegExp object.
  __ lw(a0, MemOperand(sp, kJSRegExpOffset));
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfSmi(a0, &runtime);
  __ GetObjectType(a0, a1, a1);
  __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));

  // Check that the RegExp has been compiled (data contains a fixed array).
  __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
  if (FLAG_debug_code) {
    __ And(t0, regexp_data, Operand(kSmiTagMask));
    __ Check(nz,
             "Unexpected type for RegExp data, FixedArray expected",
             t0,
             Operand(zero_reg));
    __ GetObjectType(regexp_data, a0, a0);
    __ Check(eq,
             "Unexpected type for RegExp data, FixedArray expected",
             a0,
             Operand(FIXED_ARRAY_TYPE));
  }

  // regexp_data: RegExp data (FixedArray)
  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
  __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
  __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));

  // regexp_data: RegExp data (FixedArray)
  // Check that the number of captures fit in the static offsets vector buffer.
  __ lw(a2,
         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
  // Calculate number of capture registers (number_of_captures + 1) * 2. This
  // uses the asumption that smis are 2 * their untagged value.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
  __ Addu(a2, a2, Operand(2));  // a2 was a smi.
  // Check that the static offsets vector buffer is large enough.
  __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize));

  // a2: Number of capture registers
  // regexp_data: RegExp data (FixedArray)
  // Check that the second argument is a string.
  __ lw(subject, MemOperand(sp, kSubjectOffset));
  __ JumpIfSmi(subject, &runtime);
  __ GetObjectType(subject, a0, a0);
  __ And(a0, a0, Operand(kIsNotStringMask));
  STATIC_ASSERT(kStringTag == 0);
  __ Branch(&runtime, ne, a0, Operand(zero_reg));

  // Get the length of the string to r3.
  __ lw(a3, FieldMemOperand(subject, String::kLengthOffset));

  // a2: Number of capture registers
  // a3: Length of subject string as a smi
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // Check that the third argument is a positive smi less than the subject
  // string length. A negative value will be greater (unsigned comparison).
  __ lw(a0, MemOperand(sp, kPreviousIndexOffset));
  __ JumpIfNotSmi(a0, &runtime);
  __ Branch(&runtime, ls, a3, Operand(a0));

  // a2: Number of capture registers
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // Check that the fourth object is a JSArray object.
  __ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
  __ JumpIfSmi(a0, &runtime);
  __ GetObjectType(a0, a1, a1);
  __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE));
  // Check that the JSArray is in fast case.
  __ lw(last_match_info_elements,
         FieldMemOperand(a0, JSArray::kElementsOffset));
  __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
  __ Branch(&runtime, ne, a0, Operand(
      isolate->factory()->fixed_array_map()));
  // Check that the last match info has space for the capture registers and the
  // additional information.
  __ lw(a0,
         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
  __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead));
  __ sra(at, a0, kSmiTagSize);  // Untag length for comparison.
  __ Branch(&runtime, gt, a2, Operand(at));

  // Reset offset for possibly sliced string.
  __ mov(t0, zero_reg);
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // Check the representation and encoding of the subject string.
  Label seq_string;
  __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
  // First check for flat string.  None of the following string type tests will
  // succeed if subject is not a string or a short external string.
  __ And(a1,
         a0,
         Operand(kIsNotStringMask |
                 kStringRepresentationMask |
                 kShortExternalStringMask));
  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
  __ Branch(&seq_string, eq, a1, Operand(zero_reg));

  // subject: Subject string
  // a0: instance type if Subject string
  // regexp_data: RegExp data (FixedArray)
  // a1: whether subject is a string and if yes, its string representation
  // Check for flat cons string or sliced string.
  // A flat cons string is a cons string where the second part is the empty
  // string. In that case the subject string is just the first part of the cons
  // string. Also in this case the first part of the cons string is known to be
  // a sequential string or an external string.
  // In the case of a sliced string its offset has to be taken into account.
  Label cons_string, external_string, check_encoding;
  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
  __ Branch(&cons_string, lt, a1, Operand(kExternalStringTag));
  __ Branch(&external_string, eq, a1, Operand(kExternalStringTag));

  // Catch non-string subject or short external string.
  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
  __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
  __ Branch(&runtime, ne, at, Operand(zero_reg));

  // String is sliced.
  __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
  __ sra(t0, t0, kSmiTagSize);
  __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
  // t5: offset of sliced string, smi-tagged.
  __ jmp(&check_encoding);
  // String is a cons string, check whether it is flat.
  __ bind(&cons_string);
  __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
  __ LoadRoot(a1, Heap::kEmptyStringRootIndex);
  __ Branch(&runtime, ne, a0, Operand(a1));
  __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
  // Is first part of cons or parent of slice a flat string?
  __ bind(&check_encoding);
  __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kSeqStringTag == 0);
  __ And(at, a0, Operand(kStringRepresentationMask));
  __ Branch(&external_string, ne, at, Operand(zero_reg));

  __ bind(&seq_string);
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // a0: Instance type of subject string
  STATIC_ASSERT(kStringEncodingMask == 4);
  STATIC_ASSERT(kAsciiStringTag == 4);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  // Find the code object based on the assumptions above.
  __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for ASCII.
  __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
  __ sra(a3, a0, 2);  // a3 is 1 for ASCII, 0 for UC16 (used below).
  __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
  __ Movz(t9, t1, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.

  // Check that the irregexp code has been generated for the actual string
  // encoding. If it has, the field contains a code object otherwise it contains
  // a smi (code flushing support).
  __ JumpIfSmi(t9, &runtime);

  // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
  // t9: code
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // Load used arguments before starting to push arguments for call to native
  // RegExp code to avoid handling changing stack height.
  __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
  __ sra(a1, a1, kSmiTagSize);  // Untag the Smi.

  // a1: previous index
  // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
  // t9: code
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // All checks done. Now push arguments for native regexp code.
  __ IncrementCounter(isolate->counters()->regexp_entry_native(),
                      1, a0, a2);

  // Isolates: note we add an additional parameter here (isolate pointer).
  const int kRegExpExecuteArguments = 8;
  const int kParameterRegisters = 4;
  __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);

  // Stack pointer now points to cell where return address is to be written.
  // Arguments are before that on the stack or in registers, meaning we
  // treat the return address as argument 5. Thus every argument after that
  // needs to be shifted back by 1. Since DirectCEntryStub will handle
  // allocating space for the c argument slots, we don't need to calculate
  // that into the argument positions on the stack. This is how the stack will
  // look (sp meaning the value of sp at this moment):
  // [sp + 4] - Argument 8
  // [sp + 3] - Argument 7
  // [sp + 2] - Argument 6
  // [sp + 1] - Argument 5
  // [sp + 0] - saved ra

  // Argument 8: Pass current isolate address.
  // CFunctionArgumentOperand handles MIPS stack argument slots.
  __ li(a0, Operand(ExternalReference::isolate_address()));
  __ sw(a0, MemOperand(sp, 4 * kPointerSize));

  // Argument 7: Indicate that this is a direct call from JavaScript.
  __ li(a0, Operand(1));
  __ sw(a0, MemOperand(sp, 3 * kPointerSize));

  // Argument 6: Start (high end) of backtracking stack memory area.
  __ li(a0, Operand(address_of_regexp_stack_memory_address));
  __ lw(a0, MemOperand(a0, 0));
  __ li(a2, Operand(address_of_regexp_stack_memory_size));
  __ lw(a2, MemOperand(a2, 0));
  __ addu(a0, a0, a2);
  __ sw(a0, MemOperand(sp, 2 * kPointerSize));

  // Argument 5: static offsets vector buffer.
  __ li(a0, Operand(
        ExternalReference::address_of_static_offsets_vector(isolate)));
  __ sw(a0, MemOperand(sp, 1 * kPointerSize));

  // For arguments 4 and 3 get string length, calculate start of string data
  // and calculate the shift of the index (0 for ASCII and 1 for two byte).
  __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
  __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
  // Load the length from the original subject string from the previous stack
  // frame. Therefore we have to use fp, which points exactly to two pointer
  // sizes below the previous sp. (Because creating a new stack frame pushes
  // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
  __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
  // If slice offset is not 0, load the length from the original sliced string.
  // Argument 4, a3: End of string data
  // Argument 3, a2: Start of string data
  // Prepare start and end index of the input.
  __ sllv(t1, t0, a3);
  __ addu(t0, t2, t1);
  __ sllv(t1, a1, a3);
  __ addu(a2, t0, t1);

  __ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
  __ sra(t2, t2, kSmiTagSize);
  __ sllv(t1, t2, a3);
  __ addu(a3, t0, t1);
  // Argument 2 (a1): Previous index.
  // Already there

  // Argument 1 (a0): Subject string.
  __ mov(a0, subject);

  // Locate the code entry and call it.
  __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
  DirectCEntryStub stub;
  stub.GenerateCall(masm, t9);

  __ LeaveExitFrame(false, no_reg);

  // v0: result
  // subject: subject string (callee saved)
  // regexp_data: RegExp data (callee saved)
  // last_match_info_elements: Last match info elements (callee saved)

  // Check the result.

  Label success;
  __ Branch(&success, eq, v0, Operand(NativeRegExpMacroAssembler::SUCCESS));
  Label failure;
  __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
  // If not exception it can only be retry. Handle that in the runtime system.
  __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
  // Result must now be exception. If there is no pending exception already a
  // stack overflow (on the backtrack stack) was detected in RegExp code but
  // haven't created the exception yet. Handle that in the runtime system.
  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
  __ li(a1, Operand(isolate->factory()->the_hole_value()));
  __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                      isolate)));
  __ lw(v0, MemOperand(a2, 0));
  __ Branch(&runtime, eq, v0, Operand(a1));

  __ sw(a1, MemOperand(a2, 0));  // Clear pending exception.

  // Check if the exception is a termination. If so, throw as uncatchable.
  __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
  Label termination_exception;
  __ Branch(&termination_exception, eq, v0, Operand(a0));

  __ Throw(v0);

  __ bind(&termination_exception);
  __ ThrowUncatchable(v0);

  __ bind(&failure);
  // For failure and exception return null.
  __ li(v0, Operand(isolate->factory()->null_value()));
  __ DropAndRet(4);

  // Process the result from the native regexp code.
  __ bind(&success);
  __ lw(a1,
         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
  // Calculate number of capture registers (number_of_captures + 1) * 2.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
  __ Addu(a1, a1, Operand(2));  // a1 was a smi.

  // a1: number of capture registers
  // subject: subject string
  // Store the capture count.
  __ sll(a2, a1, kSmiTagSize + kSmiShiftSize);  // To smi.
  __ sw(a2, FieldMemOperand(last_match_info_elements,
                             RegExpImpl::kLastCaptureCountOffset));
  // Store last subject and last input.
  __ sw(subject,
         FieldMemOperand(last_match_info_elements,
                         RegExpImpl::kLastSubjectOffset));
  __ mov(a2, subject);
  __ RecordWriteField(last_match_info_elements,
                      RegExpImpl::kLastSubjectOffset,
                      a2,
                      t3,
                      kRAHasNotBeenSaved,
                      kDontSaveFPRegs);
  __ sw(subject,
         FieldMemOperand(last_match_info_elements,
                         RegExpImpl::kLastInputOffset));
  __ RecordWriteField(last_match_info_elements,
                      RegExpImpl::kLastInputOffset,
                      subject,
                      t3,
                      kRAHasNotBeenSaved,
                      kDontSaveFPRegs);

  // Get the static offsets vector filled by the native regexp code.
  ExternalReference address_of_static_offsets_vector =
      ExternalReference::address_of_static_offsets_vector(isolate);
  __ li(a2, Operand(address_of_static_offsets_vector));

  // a1: number of capture registers
  // a2: offsets vector
  Label next_capture, done;
  // Capture register counter starts from number of capture registers and
  // counts down until wrapping after zero.
  __ Addu(a0,
         last_match_info_elements,
         Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
  __ bind(&next_capture);
  __ Subu(a1, a1, Operand(1));
  __ Branch(&done, lt, a1, Operand(zero_reg));
  // Read the value from the static offsets vector buffer.
  __ lw(a3, MemOperand(a2, 0));
  __ addiu(a2, a2, kPointerSize);
  // Store the smi value in the last match info.
  __ sll(a3, a3, kSmiTagSize);  // Convert to Smi.
  __ sw(a3, MemOperand(a0, 0));
  __ Branch(&next_capture, USE_DELAY_SLOT);
  __ addiu(a0, a0, kPointerSize);  // In branch delay slot.

  __ bind(&done);

  // Return last match info.
  __ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
  __ DropAndRet(4);

  // External string.  Short external strings have already been ruled out.
  // a0: scratch
  __ bind(&external_string);
  __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ And(at, a0, Operand(kIsIndirectStringMask));
    __ Assert(eq,
              "external string expected, but not found",
              at,
              Operand(zero_reg));
  }
  __ lw(subject,
        FieldMemOperand(subject, ExternalString::kResourceDataOffset));
  // Move the pointer so that offset-wise, it looks like a sequential string.
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
  __ Subu(subject,
          subject,
          SeqTwoByteString::kHeaderSize - kHeapObjectTag);
  __ jmp(&seq_string);

  // Do the runtime call to execute the regexp.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif  // V8_INTERPRETED_REGEXP
}


void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
  const int kMaxInlineLength = 100;
  Label slowcase;
  Label done;
  __ lw(a1, MemOperand(sp, kPointerSize * 2));
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize == 1);
  __ JumpIfNotSmi(a1, &slowcase);
  __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength)));
  // Smi-tagging is equivalent to multiplying by 2.
  // Allocate RegExpResult followed by FixedArray with size in ebx.
  // JSArray:   [Map][empty properties][Elements][Length-smi][index][input]
  // Elements:  [Map][Length][..elements..]
  // Size of JSArray with two in-object properties and the header of a
  // FixedArray.
  int objects_size =
      (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
  __ srl(t1, a1, kSmiTagSize + kSmiShiftSize);
  __ Addu(a2, t1, Operand(objects_size));
  __ AllocateInNewSpace(
      a2,  // In: Size, in words.
      v0,  // Out: Start of allocation (tagged).
      a3,  // Scratch register.
      t0,  // Scratch register.
      &slowcase,
      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
  // v0: Start of allocated area, object-tagged.
  // a1: Number of elements in array, as smi.
  // t1: Number of elements, untagged.

  // Set JSArray map to global.regexp_result_map().
  // Set empty properties FixedArray.
  // Set elements to point to FixedArray allocated right after the JSArray.
  // Interleave operations for better latency.
  __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
  __ Addu(a3, v0, Operand(JSRegExpResult::kSize));
  __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array()));
  __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
  __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
  __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX));
  __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
  __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));

  // Set input, index and length fields from arguments.
  __ lw(a1, MemOperand(sp, kPointerSize * 0));
  __ lw(a2, MemOperand(sp, kPointerSize * 1));
  __ lw(t2, MemOperand(sp, kPointerSize * 2));
  __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset));
  __ sw(a2, FieldMemOperand(v0, JSRegExpResult::kIndexOffset));
  __ sw(t2, FieldMemOperand(v0, JSArray::kLengthOffset));

  // Fill out the elements FixedArray.
  // v0: JSArray, tagged.
  // a3: FixedArray, tagged.
  // t1: Number of elements in array, untagged.

  // Set map.
  __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map()));
  __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
  // Set FixedArray length.
  __ sll(t2, t1, kSmiTagSize);
  __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset));
  // Fill contents of fixed-array with the-hole.
  __ li(a2, Operand(masm->isolate()->factory()->the_hole_value()));
  __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  // Fill fixed array elements with hole.
  // v0: JSArray, tagged.
  // a2: the hole.
  // a3: Start of elements in FixedArray.
  // t1: Number of elements to fill.
  Label loop;
  __ sll(t1, t1, kPointerSizeLog2);  // Convert num elements to num bytes.
  __ addu(t1, t1, a3);  // Point past last element to store.
  __ bind(&loop);
  __ Branch(&done, ge, a3, Operand(t1));  // Break when a3 past end of elem.
  __ sw(a2, MemOperand(a3));
  __ Branch(&loop, USE_DELAY_SLOT);
  __ addiu(a3, a3, kPointerSize);  // In branch delay slot.

  __ bind(&done);
  __ DropAndRet(3);

  __ bind(&slowcase);
  __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
}


static void GenerateRecordCallTarget(MacroAssembler* masm) {
  // Cache the called function in a global property cell.  Cache states
  // are uninitialized, monomorphic (indicated by a JSFunction), and
  // megamorphic.
  // a1 : the function to call
  // a2 : cache cell for call target
  Label done;

  ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
            masm->isolate()->heap()->undefined_value());
  ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
            masm->isolate()->heap()->the_hole_value());

  // Load the cache state into a3.
  __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));

  // A monomorphic cache hit or an already megamorphic state: invoke the
  // function without changing the state.
  __ Branch(&done, eq, a3, Operand(a1));
  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
  __ Branch(&done, eq, a3, Operand(at));

  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
  // megamorphic.
  __ LoadRoot(at, Heap::kTheHoleValueRootIndex);

  __ Branch(USE_DELAY_SLOT, &done, eq, a3, Operand(at));
  // An uninitialized cache is patched with the function.
  // Store a1 in the delay slot. This may or may not get overwritten depending
  // on the result of the comparison.
  __ sw(a1, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
  // No need for a write barrier here - cells are rescanned.

  // MegamorphicSentinel is an immortal immovable object (undefined) so no
  // write-barrier is needed.
  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
  __ sw(at, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));

  __ bind(&done);
}


void CallFunctionStub::Generate(MacroAssembler* masm) {
  // a1 : the function to call
  // a2 : cache cell for call target
  Label slow, non_function;

  // The receiver might implicitly be the global object. This is
  // indicated by passing the hole as the receiver to the call
  // function stub.
  if (ReceiverMightBeImplicit()) {
    Label call;
    // Get the receiver from the stack.
    // function, receiver [, arguments]
    __ lw(t0, MemOperand(sp, argc_ * kPointerSize));
    // Call as function is indicated with the hole.
    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
    __ Branch(&call, ne, t0, Operand(at));
    // Patch the receiver on the stack with the global receiver object.
    __ lw(a3, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
    __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalReceiverOffset));
    __ sw(a3, MemOperand(sp, argc_ * kPointerSize));
    __ bind(&call);
  }

  // Check that the function is really a JavaScript function.
  // a1: pushed function (to be verified)
  __ JumpIfSmi(a1, &non_function);
  // Get the map of the function object.
  __ GetObjectType(a1, a3, a3);
  __ Branch(&slow, ne, a3, Operand(JS_FUNCTION_TYPE));

  if (RecordCallTarget()) {
    GenerateRecordCallTarget(masm);
  }

  // Fast-case: Invoke the function now.
  // a1: pushed function
  ParameterCount actual(argc_);

  if (ReceiverMightBeImplicit()) {
    Label call_as_function;
    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
    __ Branch(&call_as_function, eq, t0, Operand(at));
    __ InvokeFunction(a1,
                      actual,
                      JUMP_FUNCTION,
                      NullCallWrapper(),
                      CALL_AS_METHOD);
    __ bind(&call_as_function);
  }
  __ InvokeFunction(a1,
                    actual,
                    JUMP_FUNCTION,
                    NullCallWrapper(),
                    CALL_AS_FUNCTION);

  // Slow-case: Non-function called.
  __ bind(&slow);
  if (RecordCallTarget()) {
    // If there is a call target cache, mark it megamorphic in the
    // non-function case.  MegamorphicSentinel is an immortal immovable
    // object (undefined) so no write barrier is needed.
    ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
              masm->isolate()->heap()->undefined_value());
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    __ sw(at, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
  }
  // Check for function proxy.
  __ Branch(&non_function, ne, a3, Operand(JS_FUNCTION_PROXY_TYPE));
  __ push(a1);  // Put proxy as additional argument.
  __ li(a0, Operand(argc_ + 1, RelocInfo::NONE));
  __ li(a2, Operand(0, RelocInfo::NONE));
  __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY);
  __ SetCallKind(t1, CALL_AS_METHOD);
  {
    Handle<Code> adaptor =
      masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
    __ Jump(adaptor, RelocInfo::CODE_TARGET);
  }

  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
  // of the original receiver from the call site).
  __ bind(&non_function);
  __ sw(a1, MemOperand(sp, argc_ * kPointerSize));
  __ li(a0, Operand(argc_));  // Set up the number of arguments.
  __ mov(a2, zero_reg);
  __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
  __ SetCallKind(t1, CALL_AS_METHOD);
  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
          RelocInfo::CODE_TARGET);
}


void CallConstructStub::Generate(MacroAssembler* masm) {
  // a0 : number of arguments
  // a1 : the function to call
  // a2 : cache cell for call target
  Label slow, non_function_call;

  // Check that the function is not a smi.
  __ JumpIfSmi(a1, &non_function_call);
  // Check that the function is a JSFunction.
  __ GetObjectType(a1, a3, a3);
  __ Branch(&slow, ne, a3, Operand(JS_FUNCTION_TYPE));

  if (RecordCallTarget()) {
    GenerateRecordCallTarget(masm);
  }

  // Jump to the function-specific construct stub.
  __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
  __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset));
  __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ Jump(at);

  // a0: number of arguments
  // a1: called object
  // a3: object type
  Label do_call;
  __ bind(&slow);
  __ Branch(&non_function_call, ne, a3, Operand(JS_FUNCTION_PROXY_TYPE));
  __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
  __ jmp(&do_call);

  __ bind(&non_function_call);
  __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
  __ bind(&do_call);
  // Set expected number of arguments to zero (not changing r0).
  __ li(a2, Operand(0, RelocInfo::NONE));
  __ SetCallKind(t1, CALL_AS_METHOD);
  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
          RelocInfo::CODE_TARGET);
}


// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
void CompareStub::PrintName(StringStream* stream) {
  ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
         (lhs_.is(a1) && rhs_.is(a0)));
  const char* cc_name;
  switch (cc_) {
    case lt: cc_name = "LT"; break;
    case gt: cc_name = "GT"; break;
    case le: cc_name = "LE"; break;
    case ge: cc_name = "GE"; break;
    case eq: cc_name = "EQ"; break;
    case ne: cc_name = "NE"; break;
    default: cc_name = "UnknownCondition"; break;
  }
  bool is_equality = cc_ == eq || cc_ == ne;
  stream->Add("CompareStub_%s", cc_name);
  stream->Add(lhs_.is(a0) ? "_a0" : "_a1");
  stream->Add(rhs_.is(a0) ? "_a0" : "_a1");
  if (strict_ && is_equality) stream->Add("_STRICT");
  if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
  if (!include_number_compare_) stream->Add("_NO_NUMBER");
  if (!include_smi_compare_) stream->Add("_NO_SMI");
}


int CompareStub::MinorKey() {
  // Encode the two parameters in a unique 16 bit value.
  ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
  ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
         (lhs_.is(a1) && rhs_.is(a0)));
  return ConditionField::encode(static_cast<unsigned>(cc_))
         | RegisterField::encode(lhs_.is(a0))
         | StrictField::encode(strict_)
         | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
         | IncludeSmiCompareField::encode(include_smi_compare_);
}


// StringCharCodeAtGenerator.
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
  Label flat_string;
  Label ascii_string;
  Label got_char_code;
  Label sliced_string;

  ASSERT(!t0.is(index_));
  ASSERT(!t0.is(result_));
  ASSERT(!t0.is(object_));

  // If the receiver is a smi trigger the non-string case.
  __ JumpIfSmi(object_, receiver_not_string_);

  // Fetch the instance type of the receiver into result register.
  __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
  __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
  // If the receiver is not a string trigger the non-string case.
  __ And(t0, result_, Operand(kIsNotStringMask));
  __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));

  // If the index is non-smi trigger the non-smi case.
  __ JumpIfNotSmi(index_, &index_not_smi_);

  __ bind(&got_smi_index_);

  // Check for index out of range.
  __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
  __ Branch(index_out_of_range_, ls, t0, Operand(index_));

  __ sra(index_, index_, kSmiTagSize);

  StringCharLoadGenerator::Generate(masm,
                                    object_,
                                    index_,
                                    result_,
                                    &call_runtime_);

  __ sll(result_, result_, kSmiTagSize);
  __ bind(&exit_);
}


void StringCharCodeAtGenerator::GenerateSlow(
    MacroAssembler* masm,
    const RuntimeCallHelper& call_helper) {
  __ Abort("Unexpected fallthrough to CharCodeAt slow case");

  // Index is not a smi.
  __ bind(&index_not_smi_);
  // If index is a heap number, try converting it to an integer.
  __ CheckMap(index_,
              result_,
              Heap::kHeapNumberMapRootIndex,
              index_not_number_,
              DONT_DO_SMI_CHECK);
  call_helper.BeforeCall(masm);
  // Consumed by runtime conversion function:
  __ Push(object_, index_);
  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
  } else {
    ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
    // NumberToSmi discards numbers that are not exact integers.
    __ CallRuntime(Runtime::kNumberToSmi, 1);
  }

  // Save the conversion result before the pop instructions below
  // have a chance to overwrite it.

  __ Move(index_, v0);
  __ pop(object_);
  // Reload the instance type.
  __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
  __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
  call_helper.AfterCall(masm);
  // If index is still not a smi, it must be out of range.
  __ JumpIfNotSmi(index_, index_out_of_range_);
  // Otherwise, return to the fast path.
  __ Branch(&got_smi_index_);

  // Call runtime. We get here when the receiver is a string and the
  // index is a number, but the code of getting the actual character
  // is too complex (e.g., when the string needs to be flattened).
  __ bind(&call_runtime_);
  call_helper.BeforeCall(masm);
  __ sll(index_, index_, kSmiTagSize);
  __ Push(object_, index_);
  __ CallRuntime(Runtime::kStringCharCodeAt, 2);

  __ Move(result_, v0);

  call_helper.AfterCall(masm);
  __ jmp(&exit_);

  __ Abort("Unexpected fallthrough from CharCodeAt slow case");
}


// -------------------------------------------------------------------------
// StringCharFromCodeGenerator

void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
  // Fast case of Heap::LookupSingleCharacterStringFromCode.

  ASSERT(!t0.is(result_));
  ASSERT(!t0.is(code_));

  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiShiftSize == 0);
  ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
  __ And(t0,
         code_,
         Operand(kSmiTagMask |
                 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
  __ Branch(&slow_case_, ne, t0, Operand(zero_reg));

  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
  // At this point code register contains smi tagged ASCII char code.
  STATIC_ASSERT(kSmiTag == 0);
  __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(result_, result_, t0);
  __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
  __ Branch(&slow_case_, eq, result_, Operand(t0));
  __ bind(&exit_);
}


void StringCharFromCodeGenerator::GenerateSlow(
    MacroAssembler* masm,
    const RuntimeCallHelper& call_helper) {
  __ Abort("Unexpected fallthrough to CharFromCode slow case");

  __ bind(&slow_case_);
  call_helper.BeforeCall(masm);
  __ push(code_);
  __ CallRuntime(Runtime::kCharFromCode, 1);
  __ Move(result_, v0);

  call_helper.AfterCall(masm);
  __ Branch(&exit_);

  __ Abort("Unexpected fallthrough from CharFromCode slow case");
}


// -------------------------------------------------------------------------
// StringCharAtGenerator

void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
  char_code_at_generator_.GenerateFast(masm);
  char_from_code_generator_.GenerateFast(masm);
}


void StringCharAtGenerator::GenerateSlow(
    MacroAssembler* masm,
    const RuntimeCallHelper& call_helper) {
  char_code_at_generator_.GenerateSlow(masm, call_helper);
  char_from_code_generator_.GenerateSlow(masm, call_helper);
}


void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
                                          Register dest,
                                          Register src,
                                          Register count,
                                          Register scratch,
                                          bool ascii) {
  Label loop;
  Label done;
  // This loop just copies one character at a time, as it is only used for
  // very short strings.
  if (!ascii) {
    __ addu(count, count, count);
  }
  __ Branch(&done, eq, count, Operand(zero_reg));
  __ addu(count, dest, count);  // Count now points to the last dest byte.

  __ bind(&loop);
  __ lbu(scratch, MemOperand(src));
  __ addiu(src, src, 1);
  __ sb(scratch, MemOperand(dest));
  __ addiu(dest, dest, 1);
  __ Branch(&loop, lt, dest, Operand(count));

  __ bind(&done);
}


enum CopyCharactersFlags {
  COPY_ASCII = 1,
  DEST_ALWAYS_ALIGNED = 2
};


void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
                                              Register dest,
                                              Register src,
                                              Register count,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              Register scratch4,
                                              Register scratch5,
                                              int flags) {
  bool ascii = (flags & COPY_ASCII) != 0;
  bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;

  if (dest_always_aligned && FLAG_debug_code) {
    // Check that destination is actually word aligned if the flag says
    // that it is.
    __ And(scratch4, dest, Operand(kPointerAlignmentMask));
    __ Check(eq,
             "Destination of copy not aligned.",
             scratch4,
             Operand(zero_reg));
  }

  const int kReadAlignment = 4;
  const int kReadAlignmentMask = kReadAlignment - 1;
  // Ensure that reading an entire aligned word containing the last character
  // of a string will not read outside the allocated area (because we pad up
  // to kObjectAlignment).
  STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
  // Assumes word reads and writes are little endian.
  // Nothing to do for zero characters.
  Label done;

  if (!ascii) {
    __ addu(count, count, count);
  }
  __ Branch(&done, eq, count, Operand(zero_reg));

  Label byte_loop;
  // Must copy at least eight bytes, otherwise just do it one byte at a time.
  __ Subu(scratch1, count, Operand(8));
  __ Addu(count, dest, Operand(count));
  Register limit = count;  // Read until src equals this.
  __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg));

  if (!dest_always_aligned) {
    // Align dest by byte copying. Copies between zero and three bytes.
    __ And(scratch4, dest, Operand(kReadAlignmentMask));
    Label dest_aligned;
    __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg));
    Label aligned_loop;
    __ bind(&aligned_loop);
    __ lbu(scratch1, MemOperand(src));
    __ addiu(src, src, 1);
    __ sb(scratch1, MemOperand(dest));
    __ addiu(dest, dest, 1);
    __ addiu(scratch4, scratch4, 1);
    __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask));
    __ bind(&dest_aligned);
  }

  Label simple_loop;

  __ And(scratch4, src, Operand(kReadAlignmentMask));
  __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg));

  // Loop for src/dst that are not aligned the same way.
  // This loop uses lwl and lwr instructions. These instructions
  // depend on the endianness, and the implementation assumes little-endian.
  {
    Label loop;
    __ bind(&loop);
    __ lwr(scratch1, MemOperand(src));
    __ Addu(src, src, Operand(kReadAlignment));
    __ lwl(scratch1, MemOperand(src, -1));
    __ sw(scratch1, MemOperand(dest));
    __ Addu(dest, dest, Operand(kReadAlignment));
    __ Subu(scratch2, limit, dest);
    __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
  }

  __ Branch(&byte_loop);

  // Simple loop.
  // Copy words from src to dest, until less than four bytes left.
  // Both src and dest are word aligned.
  __ bind(&simple_loop);
  {
    Label loop;
    __ bind(&loop);
    __ lw(scratch1, MemOperand(src));
    __ Addu(src, src, Operand(kReadAlignment));
    __ sw(scratch1, MemOperand(dest));
    __ Addu(dest, dest, Operand(kReadAlignment));
    __ Subu(scratch2, limit, dest);
    __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
  }

  // Copy bytes from src to dest until dest hits limit.
  __ bind(&byte_loop);
  // Test if dest has already reached the limit.
  __ Branch(&done, ge, dest, Operand(limit));
  __ lbu(scratch1, MemOperand(src));
  __ addiu(src, src, 1);
  __ sb(scratch1, MemOperand(dest));
  __ addiu(dest, dest, 1);
  __ Branch(&byte_loop);

  __ bind(&done);
}


void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
                                                        Register c1,
                                                        Register c2,
                                                        Register scratch1,
                                                        Register scratch2,
                                                        Register scratch3,
                                                        Register scratch4,
                                                        Register scratch5,
                                                        Label* not_found) {
  // Register scratch3 is the general scratch register in this function.
  Register scratch = scratch3;

  // Make sure that both characters are not digits as such strings has a
  // different hash algorithm. Don't try to look for these in the symbol table.
  Label not_array_index;
  __ Subu(scratch, c1, Operand(static_cast<int>('0')));
  __ Branch(&not_array_index,
            Ugreater,
            scratch,
            Operand(static_cast<int>('9' - '0')));
  __ Subu(scratch, c2, Operand(static_cast<int>('0')));

  // If check failed combine both characters into single halfword.
  // This is required by the contract of the method: code at the
  // not_found branch expects this combination in c1 register.
  Label tmp;
  __ sll(scratch1, c2, kBitsPerByte);
  __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0')));
  __ Or(c1, c1, scratch1);
  __ bind(&tmp);
  __ Branch(
      not_found, Uless_equal, scratch, Operand(static_cast<int>('9' - '0')));

  __ bind(&not_array_index);
  // Calculate the two character string hash.
  Register hash = scratch1;
  StringHelper::GenerateHashInit(masm, hash, c1);
  StringHelper::GenerateHashAddCharacter(masm, hash, c2);
  StringHelper::GenerateHashGetHash(masm, hash);

  // Collect the two characters in a register.
  Register chars = c1;
  __ sll(scratch, c2, kBitsPerByte);
  __ Or(chars, chars, scratch);

  // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
  // hash:  hash of two character string.

  // Load symbol table.
  // Load address of first element of the symbol table.
  Register symbol_table = c2;
  __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);

  Register undefined = scratch4;
  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);

  // Calculate capacity mask from the symbol table capacity.
  Register mask = scratch2;
  __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
  __ sra(mask, mask, 1);
  __ Addu(mask, mask, -1);

  // Calculate untagged address of the first element of the symbol table.
  Register first_symbol_table_element = symbol_table;
  __ Addu(first_symbol_table_element, symbol_table,
         Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));

  // Registers.
  // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
  // hash:  hash of two character string
  // mask:  capacity mask
  // first_symbol_table_element: address of the first element of
  //                             the symbol table
  // undefined: the undefined object
  // scratch: -

  // Perform a number of probes in the symbol table.
  const int kProbes = 4;
  Label found_in_symbol_table;
  Label next_probe[kProbes];
  Register candidate = scratch5;  // Scratch register contains candidate.
  for (int i = 0; i < kProbes; i++) {
    // Calculate entry in symbol table.
    if (i > 0) {
      __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
    } else {
      __ mov(candidate, hash);
    }

    __ And(candidate, candidate, Operand(mask));

    // Load the entry from the symble table.
    STATIC_ASSERT(SymbolTable::kEntrySize == 1);
    __ sll(scratch, candidate, kPointerSizeLog2);
    __ Addu(scratch, scratch, first_symbol_table_element);
    __ lw(candidate, MemOperand(scratch));

    // If entry is undefined no string with this hash can be found.
    Label is_string;
    __ GetObjectType(candidate, scratch, scratch);
    __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE));

    __ Branch(not_found, eq, undefined, Operand(candidate));
    // Must be the hole (deleted entry).
    if (FLAG_debug_code) {
      __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
      __ Assert(eq, "oddball in symbol table is not undefined or the hole",
          scratch, Operand(candidate));
    }
    __ jmp(&next_probe[i]);

    __ bind(&is_string);

    // Check that the candidate is a non-external ASCII string.  The instance
    // type is still in the scratch register from the CompareObjectType
    // operation.
    __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);

    // If length is not 2 the string is not a candidate.
    __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset));
    __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2)));

    // Check if the two characters match.
    // Assumes that word load is little endian.
    __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
    __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch));
    __ bind(&next_probe[i]);
  }

  // No matching 2 character string found by probing.
  __ jmp(not_found);

  // Scratch register contains result when we fall through to here.
  Register result = candidate;
  __ bind(&found_in_symbol_table);
  __ mov(v0, result);
}


void StringHelper::GenerateHashInit(MacroAssembler* masm,
                                    Register hash,
                                    Register character) {
  // hash = seed + character + ((seed + character) << 10);
  __ LoadRoot(hash, Heap::kHashSeedRootIndex);
  // Untag smi seed and add the character.
  __ SmiUntag(hash);
  __ addu(hash, hash, character);
  __ sll(at, hash, 10);
  __ addu(hash, hash, at);
  // hash ^= hash >> 6;
  __ srl(at, hash, 6);
  __ xor_(hash, hash, at);
}


void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
                                            Register hash,
                                            Register character) {
  // hash += character;
  __ addu(hash, hash, character);
  // hash += hash << 10;
  __ sll(at, hash, 10);
  __ addu(hash, hash, at);
  // hash ^= hash >> 6;
  __ srl(at, hash, 6);
  __ xor_(hash, hash, at);
}


void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
                                       Register hash) {
  // hash += hash << 3;
  __ sll(at, hash, 3);
  __ addu(hash, hash, at);
  // hash ^= hash >> 11;
  __ srl(at, hash, 11);
  __ xor_(hash, hash, at);
  // hash += hash << 15;
  __ sll(at, hash, 15);
  __ addu(hash, hash, at);

  __ li(at, Operand(String::kHashBitMask));
  __ and_(hash, hash, at);

  // if (hash == 0) hash = 27;
  __ ori(at, zero_reg, StringHasher::kZeroHash);
  __ Movz(hash, at, hash);
}


void SubStringStub::Generate(MacroAssembler* masm) {
  Label runtime;
  // Stack frame on entry.
  //  ra: return address
  //  sp[0]: to
  //  sp[4]: from
  //  sp[8]: string

  // This stub is called from the native-call %_SubString(...), so
  // nothing can be assumed about the arguments. It is tested that:
  //  "string" is a sequential string,
  //  both "from" and "to" are smis, and
  //  0 <= from <= to <= string.length.
  // If any of these assumptions fail, we call the runtime system.

  const int kToOffset = 0 * kPointerSize;
  const int kFromOffset = 1 * kPointerSize;
  const int kStringOffset = 2 * kPointerSize;

  __ lw(a2, MemOperand(sp, kToOffset));
  __ lw(a3, MemOperand(sp, kFromOffset));
  STATIC_ASSERT(kFromOffset == kToOffset + 4);
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);

  // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
  // safe in this case.
  __ UntagAndJumpIfNotSmi(a2, a2, &runtime);
  __ UntagAndJumpIfNotSmi(a3, a3, &runtime);
  // Both a2 and a3 are untagged integers.

  __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.

  __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
  __ Subu(a2, a2, a3);

  // Make sure first argument is a string.
  __ lw(v0, MemOperand(sp, kStringOffset));
  __ JumpIfSmi(v0, &runtime);
  __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
  __ And(t0, a1, Operand(kIsNotStringMask));

  __ Branch(&runtime, ne, t0, Operand(zero_reg));

  // Short-cut for the case of trivial substring.
  Label return_v0;
  // v0: original string
  // a2: result string length
  __ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
  __ sra(t0, t0, 1);
  // Return original string.
  __ Branch(&return_v0, eq, a2, Operand(t0));
  // Longer than original string's length or negative: unsafe arguments.
  __ Branch(&runtime, hi, a2, Operand(t0));
  // Shorter than original string's length: an actual substring.

  // Deal with different string types: update the index if necessary
  // and put the underlying string into t1.
  // v0: original string
  // a1: instance type
  // a2: length
  // a3: from index (untagged)
  Label underlying_unpacked, sliced_string, seq_or_external_string;
  // If the string is not indirect, it can only be sequential or external.
  STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
  STATIC_ASSERT(kIsIndirectStringMask != 0);
  __ And(t0, a1, Operand(kIsIndirectStringMask));
  __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
  // t0 is used as a scratch register and can be overwritten in either case.
  __ And(t0, a1, Operand(kSlicedNotConsMask));
  __ Branch(&sliced_string, ne, t0, Operand(zero_reg));
  // Cons string.  Check whether it is flat, then fetch first part.
  __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
  __ LoadRoot(t0, Heap::kEmptyStringRootIndex);
  __ Branch(&runtime, ne, t1, Operand(t0));
  __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
  // Update instance type.
  __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
  __ jmp(&underlying_unpacked);

  __ bind(&sliced_string);
  // Sliced string.  Fetch parent and correct start index by offset.
  __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
  __ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset));
  __ sra(t0, t0, 1);  // Add offset to index.
  __ Addu(a3, a3, t0);
  // Update instance type.
  __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
  __ jmp(&underlying_unpacked);

  __ bind(&seq_or_external_string);
  // Sequential or external string.  Just move string to the expected register.
  __ mov(t1, v0);

  __ bind(&underlying_unpacked);

  if (FLAG_string_slices) {
    Label copy_routine;
    // t1: underlying subject string
    // a1: instance type of underlying subject string
    // a2: length
    // a3: adjusted start index (untagged)
    // Short slice.  Copy instead of slicing.
    __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
    // Allocate new sliced string.  At this point we do not reload the instance
    // type including the string encoding because we simply rely on the info
    // provided by the original string.  It does not matter if the original
    // string's encoding is wrong because we always have to recheck encoding of
    // the newly created string's parent anyways due to externalized strings.
    Label two_byte_slice, set_slice_header;
    STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
    STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
    __ And(t0, a1, Operand(kStringEncodingMask));
    __ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
    __ AllocateAsciiSlicedString(v0, a2, t2, t3, &runtime);
    __ jmp(&set_slice_header);
    __ bind(&two_byte_slice);
    __ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
    __ bind(&set_slice_header);
    __ sll(a3, a3, 1);
    __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
    __ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
    __ jmp(&return_v0);

    __ bind(&copy_routine);
  }

  // t1: underlying subject string
  // a1: instance type of underlying subject string
  // a2: length
  // a3: adjusted start index (untagged)
  Label two_byte_sequential, sequential_string, allocate_result;
  STATIC_ASSERT(kExternalStringTag != 0);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ And(t0, a1, Operand(kExternalStringTag));
  __ Branch(&sequential_string, eq, t0, Operand(zero_reg));

  // Handle external string.
  // Rule out short external strings.
  STATIC_CHECK(kShortExternalStringTag != 0);
  __ And(t0, a1, Operand(kShortExternalStringTag));
  __ Branch(&runtime, ne, t0, Operand(zero_reg));
  __ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
  // t1 already points to the first character of underlying string.
  __ jmp(&allocate_result);

  __ bind(&sequential_string);
  // Locate first character of underlying subject string.
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
  __ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));

  __ bind(&allocate_result);
  // Sequential acii string.  Allocate the result.
  STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
  __ And(t0, a1, Operand(kStringEncodingMask));
  __ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));

  // Allocate and copy the resulting ASCII string.
  __ AllocateAsciiString(v0, a2, t0, t2, t3, &runtime);

  // Locate first character of substring to copy.
  __ Addu(t1, t1, a3);

  // Locate first character of result.
  __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));

  // v0: result string
  // a1: first character of result string
  // a2: result string length
  // t1: first character of substring to copy
  STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
  StringHelper::GenerateCopyCharactersLong(
      masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED);
  __ jmp(&return_v0);

  // Allocate and copy the resulting two-byte string.
  __ bind(&two_byte_sequential);
  __ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);

  // Locate first character of substring to copy.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
  __ sll(t0, a3, 1);
  __ Addu(t1, t1, t0);
  // Locate first character of result.
  __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));

  // v0: result string.
  // a1: first character of result.
  // a2: result length.
  // t1: first character of substring to copy.
  STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
  StringHelper::GenerateCopyCharactersLong(
      masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED);

  __ bind(&return_v0);
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
  __ DropAndRet(3);

  // Just jump to runtime to create the sub string.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kSubString, 3, 1);
}


void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
                                                      Register left,
                                                      Register right,
                                                      Register scratch1,
                                                      Register scratch2,
                                                      Register scratch3) {
  Register length = scratch1;

  // Compare lengths.
  Label strings_not_equal, check_zero_length;
  __ lw(length, FieldMemOperand(left, String::kLengthOffset));
  __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
  __ Branch(&check_zero_length, eq, length, Operand(scratch2));
  __ bind(&strings_not_equal);
  __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
  __ Ret();

  // Check if the length is zero.
  Label compare_chars;
  __ bind(&check_zero_length);
  STATIC_ASSERT(kSmiTag == 0);
  __ Branch(&compare_chars, ne, length, Operand(zero_reg));
  __ li(v0, Operand(Smi::FromInt(EQUAL)));
  __ Ret();

  // Compare characters.
  __ bind(&compare_chars);

  GenerateAsciiCharsCompareLoop(masm,
                                left, right, length, scratch2, scratch3, v0,
                                &strings_not_equal);

  // Characters are equal.
  __ li(v0, Operand(Smi::FromInt(EQUAL)));
  __ Ret();
}


void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                                        Register left,
                                                        Register right,
                                                        Register scratch1,
                                                        Register scratch2,
                                                        Register scratch3,
                                                        Register scratch4) {
  Label result_not_equal, compare_lengths;
  // Find minimum length and length difference.
  __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
  __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
  __ Subu(scratch3, scratch1, Operand(scratch2));
  Register length_delta = scratch3;
  __ slt(scratch4, scratch2, scratch1);
  __ Movn(scratch1, scratch2, scratch4);
  Register min_length = scratch1;
  STATIC_ASSERT(kSmiTag == 0);
  __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));

  // Compare loop.
  GenerateAsciiCharsCompareLoop(masm,
                                left, right, min_length, scratch2, scratch4, v0,
                                &result_not_equal);

  // Compare lengths - strings up to min-length are equal.
  __ bind(&compare_lengths);
  ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
  // Use length_delta as result if it's zero.
  __ mov(scratch2, length_delta);
  __ mov(scratch4, zero_reg);
  __ mov(v0, zero_reg);

  __ bind(&result_not_equal);
  // Conditionally update the result based either on length_delta or
  // the last comparion performed in the loop above.
  Label ret;
  __ Branch(&ret, eq, scratch2, Operand(scratch4));
  __ li(v0, Operand(Smi::FromInt(GREATER)));
  __ Branch(&ret, gt, scratch2, Operand(scratch4));
  __ li(v0, Operand(Smi::FromInt(LESS)));
  __ bind(&ret);
  __ Ret();
}


void StringCompareStub::GenerateAsciiCharsCompareLoop(
    MacroAssembler* masm,
    Register left,
    Register right,
    Register length,
    Register scratch1,
    Register scratch2,
    Register scratch3,
    Label* chars_not_equal) {
  // Change index to run from -length to -1 by adding length to string
  // start. This means that loop ends when index reaches zero, which
  // doesn't need an additional compare.
  __ SmiUntag(length);
  __ Addu(scratch1, length,
          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
  __ Addu(left, left, Operand(scratch1));
  __ Addu(right, right, Operand(scratch1));
  __ Subu(length, zero_reg, length);
  Register index = length;  // index = -length;


  // Compare loop.
  Label loop;
  __ bind(&loop);
  __ Addu(scratch3, left, index);
  __ lbu(scratch1, MemOperand(scratch3));
  __ Addu(scratch3, right, index);
  __ lbu(scratch2, MemOperand(scratch3));
  __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
  __ Addu(index, index, 1);
  __ Branch(&loop, ne, index, Operand(zero_reg));
}


void StringCompareStub::Generate(MacroAssembler* masm) {
  Label runtime;

  Counters* counters = masm->isolate()->counters();

  // Stack frame on entry.
  //  sp[0]: right string
  //  sp[4]: left string
  __ lw(a1, MemOperand(sp, 1 * kPointerSize));  // Left.
  __ lw(a0, MemOperand(sp, 0 * kPointerSize));  // Right.

  Label not_same;
  __ Branch(&not_same, ne, a0, Operand(a1));
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ li(v0, Operand(Smi::FromInt(EQUAL)));
  __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
  __ DropAndRet(2);

  __ bind(&not_same);

  // Check that both objects are sequential ASCII strings.
  __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);

  // Compare flat ASCII strings natively. Remove arguments from stack first.
  __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
  __ Addu(sp, sp, Operand(2 * kPointerSize));
  GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1);

  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}


void StringAddStub::Generate(MacroAssembler* masm) {
  Label call_runtime, call_builtin;
  Builtins::JavaScript builtin_id = Builtins::ADD;

  Counters* counters = masm->isolate()->counters();

  // Stack on entry:
  // sp[0]: second argument (right).
  // sp[4]: first argument (left).

  // Load the two arguments.
  __ lw(a0, MemOperand(sp, 1 * kPointerSize));  // First argument.
  __ lw(a1, MemOperand(sp, 0 * kPointerSize));  // Second argument.

  // Make sure that both arguments are strings if not known in advance.
  if (flags_ == NO_STRING_ADD_FLAGS) {
    __ JumpIfEitherSmi(a0, a1, &call_runtime);
    // Load instance types.
    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
    STATIC_ASSERT(kStringTag == 0);
    // If either is not a string, go to runtime.
    __ Or(t4, t0, Operand(t1));
    __ And(t4, t4, Operand(kIsNotStringMask));
    __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
  } else {
    // Here at least one of the arguments is definitely a string.
    // We convert the one that is not known to be a string.
    if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
      ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
      GenerateConvertArgument(
          masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin);
      builtin_id = Builtins::STRING_ADD_RIGHT;
    } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
      ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
      GenerateConvertArgument(
          masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin);
      builtin_id = Builtins::STRING_ADD_LEFT;
    }
  }

  // Both arguments are strings.
  // a0: first string
  // a1: second string
  // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
  // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
  {
    Label strings_not_empty;
    // Check if either of the strings are empty. In that case return the other.
    // These tests use zero-length check on string-length whch is an Smi.
    // Assert that Smi::FromInt(0) is really 0.
    STATIC_ASSERT(kSmiTag == 0);
    ASSERT(Smi::FromInt(0) == 0);
    __ lw(a2, FieldMemOperand(a0, String::kLengthOffset));
    __ lw(a3, FieldMemOperand(a1, String::kLengthOffset));
    __ mov(v0, a0);       // Assume we'll return first string (from a0).
    __ Movz(v0, a1, a2);  // If first is empty, return second (from a1).
    __ slt(t4, zero_reg, a2);   // if (a2 > 0) t4 = 1.
    __ slt(t5, zero_reg, a3);   // if (a3 > 0) t5 = 1.
    __ and_(t4, t4, t5);        // Branch if both strings were non-empty.
    __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg));

    __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
    __ DropAndRet(2);

    __ bind(&strings_not_empty);
  }

  // Untag both string-lengths.
  __ sra(a2, a2, kSmiTagSize);
  __ sra(a3, a3, kSmiTagSize);

  // Both strings are non-empty.
  // a0: first string
  // a1: second string
  // a2: length of first string
  // a3: length of second string
  // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
  // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
  // Look at the length of the result of adding the two strings.
  Label string_add_flat_result, longer_than_two;
  // Adding two lengths can't overflow.
  STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
  __ Addu(t2, a2, Operand(a3));
  // Use the symbol table when adding two one character strings, as it
  // helps later optimizations to return a symbol here.
  __ Branch(&longer_than_two, ne, t2, Operand(2));

  // Check that both strings are non-external ASCII strings.
  if (flags_ != NO_STRING_ADD_FLAGS) {
    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
  }
  __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3,
                                                 &call_runtime);

  // Get the two characters forming the sub string.
  __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize));
  __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize));

  // Try to lookup two character string in symbol table. If it is not found
  // just allocate a new one.
  Label make_two_character_string;
  StringHelper::GenerateTwoCharacterSymbolTableProbe(
      masm, a2, a3, t2, t3, t0, t1, t5, &make_two_character_string);
  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
  __ DropAndRet(2);

  __ bind(&make_two_character_string);
  // Resulting string has length 2 and first chars of two strings
  // are combined into single halfword in a2 register.
  // So we can fill resulting string without two loops by a single
  // halfword store instruction (which assumes that processor is
  // in a little endian mode).
  __ li(t2, Operand(2));
  __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
  __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
  __ DropAndRet(2);

  __ bind(&longer_than_two);
  // Check if resulting string will be flat.
  __ Branch(&string_add_flat_result, lt, t2, Operand(ConsString::kMinLength));
  // Handle exceptionally long strings in the runtime system.
  STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
  ASSERT(IsPowerOf2(String::kMaxLength + 1));
  // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
  __ Branch(&call_runtime, hs, t2, Operand(String::kMaxLength + 1));

  // If result is not supposed to be flat, allocate a cons string object.
  // If both strings are ASCII the result is an ASCII cons string.
  if (flags_ != NO_STRING_ADD_FLAGS) {
    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
  }
  Label non_ascii, allocated, ascii_data;
  STATIC_ASSERT(kTwoByteStringTag == 0);
  // Branch to non_ascii if either string-encoding field is zero (non-ASCII).
  __ And(t4, t0, Operand(t1));
  __ And(t4, t4, Operand(kStringEncodingMask));
  __ Branch(&non_ascii, eq, t4, Operand(zero_reg));

  // Allocate an ASCII cons string.
  __ bind(&ascii_data);
  __ AllocateAsciiConsString(v0, t2, t0, t1, &call_runtime);
  __ bind(&allocated);
  // Fill the fields of the cons string.
  __ sw(a0, FieldMemOperand(v0, ConsString::kFirstOffset));
  __ sw(a1, FieldMemOperand(v0, ConsString::kSecondOffset));
  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
  __ DropAndRet(2);

  __ bind(&non_ascii);
  // At least one of the strings is two-byte. Check whether it happens
  // to contain only ASCII characters.
  // t0: first instance type.
  // t1: second instance type.
  // Branch to if _both_ instances have kAsciiDataHintMask set.
  __ And(at, t0, Operand(kAsciiDataHintMask));
  __ and_(at, at, t1);
  __ Branch(&ascii_data, ne, at, Operand(zero_reg));

  __ xor_(t0, t0, t1);
  STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
  __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
  __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));

  // Allocate a two byte cons string.
  __ AllocateTwoByteConsString(v0, t2, t0, t1, &call_runtime);
  __ Branch(&allocated);

  // We cannot encounter sliced strings or cons strings here since:
  STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
  // Handle creating a flat result from either external or sequential strings.
  // Locate the first characters' locations.
  // a0: first string
  // a1: second string
  // a2: length of first string
  // a3: length of second string
  // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
  // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
  // t2: sum of lengths.
  Label first_prepared, second_prepared;
  __ bind(&string_add_flat_result);
  if (flags_ != NO_STRING_ADD_FLAGS) {
    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
  }
  // Check whether both strings have same encoding
  __ Xor(t3, t0, Operand(t1));
  __ And(t3, t3, Operand(kStringEncodingMask));
  __ Branch(&call_runtime, ne, t3, Operand(zero_reg));

  STATIC_ASSERT(kSeqStringTag == 0);
  __ And(t4, t0, Operand(kStringRepresentationMask));

  STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
  Label skip_first_add;
  __ Branch(&skip_first_add, ne, t4, Operand(zero_reg));
  __ Branch(USE_DELAY_SLOT, &first_prepared);
  __ addiu(t3, a0, SeqAsciiString::kHeaderSize - kHeapObjectTag);
  __ bind(&skip_first_add);
  // External string: rule out short external string and load string resource.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  __ And(t4, t0, Operand(kShortExternalStringMask));
  __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
  __ lw(t3, FieldMemOperand(a0, ExternalString::kResourceDataOffset));
  __ bind(&first_prepared);

  STATIC_ASSERT(kSeqStringTag == 0);
  __ And(t4, t1, Operand(kStringRepresentationMask));
  STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
  Label skip_second_add;
  __ Branch(&skip_second_add, ne, t4, Operand(zero_reg));
  __ Branch(USE_DELAY_SLOT, &second_prepared);
  __ addiu(a1, a1, SeqAsciiString::kHeaderSize - kHeapObjectTag);
  __ bind(&skip_second_add);
  // External string: rule out short external string and load string resource.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  __ And(t4, t1, Operand(kShortExternalStringMask));
  __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
  __ lw(a1, FieldMemOperand(a1, ExternalString::kResourceDataOffset));
  __ bind(&second_prepared);

  Label non_ascii_string_add_flat_result;
  // t3: first character of first string
  // a1: first character of second string
  // a2: length of first string
  // a3: length of second string
  // t2: sum of lengths.
  // Both strings have the same encoding.
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ And(t4, t1, Operand(kStringEncodingMask));
  __ Branch(&non_ascii_string_add_flat_result, eq, t4, Operand(zero_reg));

  __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
  __ Addu(t2, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
  // v0: result string.
  // t3: first character of first string.
  // a1: first character of second string
  // a2: length of first string.
  // a3: length of second string.
  // t2: first character of result.

  StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, true);
  // t2: next character of result.
  StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true);
  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
  __ DropAndRet(2);

  __ bind(&non_ascii_string_add_flat_result);
  __ AllocateTwoByteString(v0, t2, t0, t1, t5, &call_runtime);
  __ Addu(t2, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  // v0: result string.
  // t3: first character of first string.
  // a1: first character of second string.
  // a2: length of first string.
  // a3: length of second string.
  // t2: first character of result.
  StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, false);
  // t2: next character of result.
  StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false);

  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
  __ DropAndRet(2);

  // Just jump to runtime to add the two strings.
  __ bind(&call_runtime);
  __ TailCallRuntime(Runtime::kStringAdd, 2, 1);

  if (call_builtin.is_linked()) {
    __ bind(&call_builtin);
    __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
  }
}


void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
                                            int stack_offset,
                                            Register arg,
                                            Register scratch1,
                                            Register scratch2,
                                            Register scratch3,
                                            Register scratch4,
                                            Label* slow) {
  // First check if the argument is already a string.
  Label not_string, done;
  __ JumpIfSmi(arg, &not_string);
  __ GetObjectType(arg, scratch1, scratch1);
  __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE));

  // Check the number to string cache.
  Label not_cached;
  __ bind(&not_string);
  // Puts the cached result into scratch1.
  NumberToStringStub::GenerateLookupNumberStringCache(masm,
                                                      arg,
                                                      scratch1,
                                                      scratch2,
                                                      scratch3,
                                                      scratch4,
                                                      false,
                                                      &not_cached);
  __ mov(arg, scratch1);
  __ sw(arg, MemOperand(sp, stack_offset));
  __ jmp(&done);

  // Check if the argument is a safe string wrapper.
  __ bind(&not_cached);
  __ JumpIfSmi(arg, slow);
  __ GetObjectType(arg, scratch1, scratch2);  // map -> scratch1.
  __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE));
  __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
  __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf);
  __ And(scratch2, scratch2, scratch4);
  __ Branch(slow, ne, scratch2, Operand(scratch4));
  __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset));
  __ sw(arg, MemOperand(sp, stack_offset));

  __ bind(&done);
}


void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
  ASSERT(state_ == CompareIC::SMIS);
  Label miss;
  __ Or(a2, a1, a0);
  __ JumpIfNotSmi(a2, &miss);

  if (GetCondition() == eq) {
    // For equality we do not care about the sign of the result.
    __ Subu(v0, a0, a1);
  } else {
    // Untag before subtracting to avoid handling overflow.
    __ SmiUntag(a1);
    __ SmiUntag(a0);
    __ Subu(v0, a1, a0);
  }
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
  ASSERT(state_ == CompareIC::HEAP_NUMBERS);

  Label generic_stub;
  Label unordered, maybe_undefined1, maybe_undefined2;
  Label miss;
  __ And(a2, a1, Operand(a0));
  __ JumpIfSmi(a2, &generic_stub);

  __ GetObjectType(a0, a2, a2);
  __ Branch(&maybe_undefined1, ne, a2, Operand(HEAP_NUMBER_TYPE));
  __ GetObjectType(a1, a2, a2);
  __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));

  // Inlining the double comparison and falling back to the general compare
  // stub if NaN is involved or FPU is unsupported.
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);

    // Load left and right operand.
    __ Subu(a2, a1, Operand(kHeapObjectTag));
    __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
    __ Subu(a2, a0, Operand(kHeapObjectTag));
    __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));

    // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
    Label fpu_eq, fpu_lt;
    // Test if equal, and also handle the unordered/NaN case.
    __ BranchF(&fpu_eq, &unordered, eq, f0, f2);

    // Test if less (unordered case is already handled).
    __ BranchF(&fpu_lt, NULL, lt, f0, f2);

    // Otherwise it's greater, so just fall thru, and return.
    __ li(v0, Operand(GREATER));
    __ Ret();

    __ bind(&fpu_eq);
    __ li(v0, Operand(EQUAL));
    __ Ret();

    __ bind(&fpu_lt);
    __ li(v0, Operand(LESS));
    __ Ret();
  }

  __ bind(&unordered);

  CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0);
  __ bind(&generic_stub);
  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);

  __ bind(&maybe_undefined1);
  if (Token::IsOrderedRelationalCompareOp(op_)) {
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    __ Branch(&miss, ne, a0, Operand(at));
    __ GetObjectType(a1, a2, a2);
    __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
    __ jmp(&unordered);
  }

  __ bind(&maybe_undefined2);
  if (Token::IsOrderedRelationalCompareOp(op_)) {
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    __ Branch(&unordered, eq, a1, Operand(at));
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
  ASSERT(state_ == CompareIC::SYMBOLS);
  Label miss;

  // Registers containing left and right operands respectively.
  Register left = a1;
  Register right = a0;
  Register tmp1 = a2;
  Register tmp2 = a3;

  // Check that both operands are heap objects.
  __ JumpIfEitherSmi(left, right, &miss);

  // Check that both operands are symbols.
  __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
  __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kSymbolTag != 0);
  __ And(tmp1, tmp1, Operand(tmp2));
  __ And(tmp1, tmp1, kIsSymbolMask);
  __ Branch(&miss, eq, tmp1, Operand(zero_reg));
  // Make sure a0 is non-zero. At this point input operands are
  // guaranteed to be non-zero.
  ASSERT(right.is(a0));
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ mov(v0, right);
  // Symbols are compared by identity.
  __ Ret(ne, left, Operand(right));
  __ li(v0, Operand(Smi::FromInt(EQUAL)));
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
  ASSERT(state_ == CompareIC::STRINGS);
  Label miss;

  bool equality = Token::IsEqualityOp(op_);

  // Registers containing left and right operands respectively.
  Register left = a1;
  Register right = a0;
  Register tmp1 = a2;
  Register tmp2 = a3;
  Register tmp3 = t0;
  Register tmp4 = t1;
  Register tmp5 = t2;

  // Check that both operands are heap objects.
  __ JumpIfEitherSmi(left, right, &miss);

  // Check that both operands are strings. This leaves the instance
  // types loaded in tmp1 and tmp2.
  __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
  __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kNotStringTag != 0);
  __ Or(tmp3, tmp1, tmp2);
  __ And(tmp5, tmp3, Operand(kIsNotStringMask));
  __ Branch(&miss, ne, tmp5, Operand(zero_reg));

  // Fast check for identical strings.
  Label left_ne_right;
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ Branch(&left_ne_right, ne, left, Operand(right));
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, zero_reg);  // In the delay slot.
  __ bind(&left_ne_right);

  // Handle not identical strings.

  // Check that both strings are symbols. If they are, we're done
  // because we already know they are not identical.
  if (equality) {
    ASSERT(GetCondition() == eq);
    STATIC_ASSERT(kSymbolTag != 0);
    __ And(tmp3, tmp1, Operand(tmp2));
    __ And(tmp5, tmp3, Operand(kIsSymbolMask));
    Label is_symbol;
    __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg));
    // Make sure a0 is non-zero. At this point input operands are
    // guaranteed to be non-zero.
    ASSERT(right.is(a0));
    __ Ret(USE_DELAY_SLOT);
    __ mov(v0, a0);  // In the delay slot.
    __ bind(&is_symbol);
  }

  // Check that both strings are sequential ASCII.
  Label runtime;
  __ JumpIfBothInstanceTypesAreNotSequentialAscii(
      tmp1, tmp2, tmp3, tmp4, &runtime);

  // Compare flat ASCII strings. Returns when done.
  if (equality) {
    StringCompareStub::GenerateFlatAsciiStringEquals(
        masm, left, right, tmp1, tmp2, tmp3);
  } else {
    StringCompareStub::GenerateCompareFlatAsciiStrings(
        masm, left, right, tmp1, tmp2, tmp3, tmp4);
  }

  // Handle more complex cases in runtime.
  __ bind(&runtime);
  __ Push(left, right);
  if (equality) {
    __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
  } else {
    __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
  ASSERT(state_ == CompareIC::OBJECTS);
  Label miss;
  __ And(a2, a1, Operand(a0));
  __ JumpIfSmi(a2, &miss);

  __ GetObjectType(a0, a2, a2);
  __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
  __ GetObjectType(a1, a2, a2);
  __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));

  ASSERT(GetCondition() == eq);
  __ Ret(USE_DELAY_SLOT);
  __ subu(v0, a0, a1);

  __ bind(&miss);
  GenerateMiss(masm);
}


void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
  Label miss;
  __ And(a2, a1, a0);
  __ JumpIfSmi(a2, &miss);
  __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
  __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
  __ Branch(&miss, ne, a2, Operand(known_map_));
  __ Branch(&miss, ne, a3, Operand(known_map_));

  __ Ret(USE_DELAY_SLOT);
  __ subu(v0, a0, a1);

  __ bind(&miss);
  GenerateMiss(masm);
}

void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
  {
    // Call the runtime system in a fresh internal frame.
    ExternalReference miss =
        ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ Push(a1, a0);
    __ push(ra);
    __ Push(a1, a0);
    __ li(t0, Operand(Smi::FromInt(op_)));
    __ addiu(sp, sp, -kPointerSize);
    __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
    __ sw(t0, MemOperand(sp));  // In the delay slot.
    // Compute the entry point of the rewritten stub.
    __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
    // Restore registers.
    __ Pop(a1, a0, ra);
  }
  __ Jump(a2);
}


void DirectCEntryStub::Generate(MacroAssembler* masm) {
  // No need to pop or drop anything, LeaveExitFrame will restore the old
  // stack, thus dropping the allocated space for the return value.
  // The saved ra is after the reserved stack space for the 4 args.
  __ lw(t9, MemOperand(sp, kCArgsSlotsSize));

  if (FLAG_debug_code && FLAG_enable_slow_asserts) {
    // In case of an error the return address may point to a memory area
    // filled with kZapValue by the GC.
    // Dereference the address and check for this.
    __ lw(t0, MemOperand(t9));
    __ Assert(ne, "Received invalid return address.", t0,
        Operand(reinterpret_cast<uint32_t>(kZapValue)));
  }
  __ Jump(t9);
}


void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
                                    ExternalReference function) {
  __ li(t9, Operand(function));
  this->GenerateCall(masm, t9);
}


void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
                                    Register target) {
  __ Move(t9, target);
  __ AssertStackIsAligned();
  // Allocate space for arg slots.
  __ Subu(sp, sp, kCArgsSlotsSize);

  // Block the trampoline pool through the whole function to make sure the
  // number of generated instructions is constant.
  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);

  // We need to get the current 'pc' value, which is not available on MIPS.
  Label find_ra;
  masm->bal(&find_ra);  // ra = pc + 8.
  masm->nop();  // Branch delay slot nop.
  masm->bind(&find_ra);

  const int kNumInstructionsToJump = 6;
  masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize);
  // Push return address (accessible to GC through exit frame pc).
  // This spot for ra was reserved in EnterExitFrame.
  masm->sw(ra, MemOperand(sp, kCArgsSlotsSize));
  masm->li(ra,
           Operand(reinterpret_cast<intptr_t>(GetCode().location()),
                   RelocInfo::CODE_TARGET),
           CONSTANT_SIZE);
  // Call the function.
  masm->Jump(t9);
  // Make sure the stored 'ra' points to this position.
  ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra));
}


void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
                                                        Label* miss,
                                                        Label* done,
                                                        Register receiver,
                                                        Register properties,
                                                        Handle<String> name,
                                                        Register scratch0) {
  // If names of slots in range from 1 to kProbes - 1 for the hash value are
  // not equal to the name and kProbes-th slot is not used (its name is the
  // undefined value), it guarantees the hash table doesn't contain the
  // property. It's true even if some slots represent deleted properties
  // (their names are the hole value).
  for (int i = 0; i < kInlinedProbes; i++) {
    // scratch0 points to properties hash.
    // Compute the masked index: (hash + i + i * i) & mask.
    Register index = scratch0;
    // Capacity is smi 2^n.
    __ lw(index, FieldMemOperand(properties, kCapacityOffset));
    __ Subu(index, index, Operand(1));
    __ And(index, index, Operand(
        Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));

    // Scale the index by multiplying by the entry size.
    ASSERT(StringDictionary::kEntrySize == 3);
    __ sll(at, index, 1);
    __ Addu(index, index, at);

    Register entity_name = scratch0;
    // Having undefined at this place means the name is not contained.
    ASSERT_EQ(kSmiTagSize, 1);
    Register tmp = properties;
    __ sll(scratch0, index, 1);
    __ Addu(tmp, properties, scratch0);
    __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));

    ASSERT(!tmp.is(entity_name));
    __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
    __ Branch(done, eq, entity_name, Operand(tmp));

    if (i != kInlinedProbes - 1) {
      // Load the hole ready for use below:
      __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);

      // Stop if found the property.
      __ Branch(miss, eq, entity_name, Operand(Handle<String>(name)));

      Label the_hole;
      __ Branch(&the_hole, eq, entity_name, Operand(tmp));

      // Check if the entry name is not a symbol.
      __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
      __ lbu(entity_name,
             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
      __ And(scratch0, entity_name, Operand(kIsSymbolMask));
      __ Branch(miss, eq, scratch0, Operand(zero_reg));

      __ bind(&the_hole);

      // Restore the properties.
      __ lw(properties,
            FieldMemOperand(receiver, JSObject::kPropertiesOffset));
    }
  }

  const int spill_mask =
      (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
       a2.bit() | a1.bit() | a0.bit() | v0.bit());

  __ MultiPush(spill_mask);
  __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  __ li(a1, Operand(Handle<String>(name)));
  StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
  __ CallStub(&stub);
  __ mov(at, v0);
  __ MultiPop(spill_mask);

  __ Branch(done, eq, at, Operand(zero_reg));
  __ Branch(miss, ne, at, Operand(zero_reg));
}


// Probe the string dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found. Jump to
// the |miss| label otherwise.
// If lookup was successful |scratch2| will be equal to elements + 4 * index.
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
                                                        Label* miss,
                                                        Label* done,
                                                        Register elements,
                                                        Register name,
                                                        Register scratch1,
                                                        Register scratch2) {
  ASSERT(!elements.is(scratch1));
  ASSERT(!elements.is(scratch2));
  ASSERT(!name.is(scratch1));
  ASSERT(!name.is(scratch2));

  // Assert that name contains a string.
  if (FLAG_debug_code) __ AbortIfNotString(name);

  // Compute the capacity mask.
  __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
  __ sra(scratch1, scratch1, kSmiTagSize);  // convert smi to int
  __ Subu(scratch1, scratch1, Operand(1));

  // Generate an unrolled loop that performs a few probes before
  // giving up. Measurements done on Gmail indicate that 2 probes
  // cover ~93% of loads from dictionaries.
  for (int i = 0; i < kInlinedProbes; i++) {
    // Compute the masked index: (hash + i + i * i) & mask.
    __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
    if (i > 0) {
      // Add the probe offset (i + i * i) left shifted to avoid right shifting
      // the hash in a separate instruction. The value hash + i + i * i is right
      // shifted in the following and instruction.
      ASSERT(StringDictionary::GetProbeOffset(i) <
             1 << (32 - String::kHashFieldOffset));
      __ Addu(scratch2, scratch2, Operand(
           StringDictionary::GetProbeOffset(i) << String::kHashShift));
    }
    __ srl(scratch2, scratch2, String::kHashShift);
    __ And(scratch2, scratch1, scratch2);

    // Scale the index by multiplying by the element size.
    ASSERT(StringDictionary::kEntrySize == 3);
    // scratch2 = scratch2 * 3.

    __ sll(at, scratch2, 1);
    __ Addu(scratch2, scratch2, at);

    // Check if the key is identical to the name.
    __ sll(at, scratch2, 2);
    __ Addu(scratch2, elements, at);
    __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
    __ Branch(done, eq, name, Operand(at));
  }

  const int spill_mask =
      (ra.bit() | t2.bit() | t1.bit() | t0.bit() |
       a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
      ~(scratch1.bit() | scratch2.bit());

  __ MultiPush(spill_mask);
  if (name.is(a0)) {
    ASSERT(!elements.is(a1));
    __ Move(a1, name);
    __ Move(a0, elements);
  } else {
    __ Move(a0, elements);
    __ Move(a1, name);
  }
  StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
  __ CallStub(&stub);
  __ mov(scratch2, a2);
  __ mov(at, v0);
  __ MultiPop(spill_mask);

  __ Branch(done, ne, at, Operand(zero_reg));
  __ Branch(miss, eq, at, Operand(zero_reg));
}


void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
  // we cannot call anything that could cause a GC from this stub.
  // Registers:
  //  result: StringDictionary to probe
  //  a1: key
  //  : StringDictionary to probe.
  //  index_: will hold an index of entry if lookup is successful.
  //          might alias with result_.
  // Returns:
  //  result_ is zero if lookup failed, non zero otherwise.

  Register result = v0;
  Register dictionary = a0;
  Register key = a1;
  Register index = a2;
  Register mask = a3;
  Register hash = t0;
  Register undefined = t1;
  Register entry_key = t2;

  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;

  __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
  __ sra(mask, mask, kSmiTagSize);
  __ Subu(mask, mask, Operand(1));

  __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset));

  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);

  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
    // Compute the masked index: (hash + i + i * i) & mask.
    // Capacity is smi 2^n.
    if (i > 0) {
      // Add the probe offset (i + i * i) left shifted to avoid right shifting
      // the hash in a separate instruction. The value hash + i + i * i is right
      // shifted in the following and instruction.
      ASSERT(StringDictionary::GetProbeOffset(i) <
             1 << (32 - String::kHashFieldOffset));
      __ Addu(index, hash, Operand(
           StringDictionary::GetProbeOffset(i) << String::kHashShift));
    } else {
      __ mov(index, hash);
    }
    __ srl(index, index, String::kHashShift);
    __ And(index, mask, index);

    // Scale the index by multiplying by the entry size.
    ASSERT(StringDictionary::kEntrySize == 3);
    // index *= 3.
    __ mov(at, index);
    __ sll(index, index, 1);
    __ Addu(index, index, at);


    ASSERT_EQ(kSmiTagSize, 1);
    __ sll(index, index, 2);
    __ Addu(index, index, dictionary);
    __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));

    // Having undefined at this place means the name is not contained.
    __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));

    // Stop if found the property.
    __ Branch(&in_dictionary, eq, entry_key, Operand(key));

    if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
      // Check if the entry name is not a symbol.
      __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
      __ lbu(entry_key,
             FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
      __ And(result, entry_key, Operand(kIsSymbolMask));
      __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg));
    }
  }

  __ bind(&maybe_in_dictionary);
  // If we are doing negative lookup then probing failure should be
  // treated as a lookup success. For positive lookup probing failure
  // should be treated as lookup failure.
  if (mode_ == POSITIVE_LOOKUP) {
    __ Ret(USE_DELAY_SLOT);
    __ mov(result, zero_reg);
  }

  __ bind(&in_dictionary);
  __ Ret(USE_DELAY_SLOT);
  __ li(result, 1);

  __ bind(&not_in_dictionary);
  __ Ret(USE_DELAY_SLOT);
  __ mov(result, zero_reg);
}


struct AheadOfTimeWriteBarrierStubList {
  Register object, value, address;
  RememberedSetAction action;
};

#define REG(Name) { kRegister_ ## Name ## _Code }

static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
  // Used in RegExpExecStub.
  { REG(s2), REG(s0), REG(t3), EMIT_REMEMBERED_SET },
  { REG(s2), REG(a2), REG(t3), EMIT_REMEMBERED_SET },
  // Used in CompileArrayPushCall.
  // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
  // Also used in KeyedStoreIC::GenerateGeneric.
  { REG(a3), REG(t0), REG(t1), EMIT_REMEMBERED_SET },
  // Used in CompileStoreGlobal.
  { REG(t0), REG(a1), REG(a2), OMIT_REMEMBERED_SET },
  // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
  { REG(a1), REG(a2), REG(a3), EMIT_REMEMBERED_SET },
  { REG(a3), REG(a2), REG(a1), EMIT_REMEMBERED_SET },
  // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
  { REG(a2), REG(a1), REG(a3), EMIT_REMEMBERED_SET },
  { REG(a3), REG(a1), REG(a2), EMIT_REMEMBERED_SET },
  // KeyedStoreStubCompiler::GenerateStoreFastElement.
  { REG(a3), REG(a2), REG(t0), EMIT_REMEMBERED_SET },
  { REG(a2), REG(a3), REG(t0), EMIT_REMEMBERED_SET },
  // ElementsTransitionGenerator::GenerateSmiOnlyToObject
  // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
  // and ElementsTransitionGenerator::GenerateDoubleToObject
  { REG(a2), REG(a3), REG(t5), EMIT_REMEMBERED_SET },
  { REG(a2), REG(a3), REG(t5), OMIT_REMEMBERED_SET },
  // ElementsTransitionGenerator::GenerateDoubleToObject
  { REG(t2), REG(a2), REG(a0), EMIT_REMEMBERED_SET },
  { REG(a2), REG(t2), REG(t5), EMIT_REMEMBERED_SET },
  // StoreArrayLiteralElementStub::Generate
  { REG(t1), REG(a0), REG(t2), EMIT_REMEMBERED_SET },
  // Null termination.
  { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
};

#undef REG


bool RecordWriteStub::IsPregenerated() {
  for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
       !entry->object.is(no_reg);
       entry++) {
    if (object_.is(entry->object) &&
        value_.is(entry->value) &&
        address_.is(entry->address) &&
        remembered_set_action_ == entry->action &&
        save_fp_regs_mode_ == kDontSaveFPRegs) {
      return true;
    }
  }
  return false;
}


bool StoreBufferOverflowStub::IsPregenerated() {
  return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
}


void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
  StoreBufferOverflowStub stub1(kDontSaveFPRegs);
  stub1.GetCode()->set_is_pregenerated(true);
}


void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
  for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
       !entry->object.is(no_reg);
       entry++) {
    RecordWriteStub stub(entry->object,
                         entry->value,
                         entry->address,
                         entry->action,
                         kDontSaveFPRegs);
    stub.GetCode()->set_is_pregenerated(true);
  }
}


// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed.  The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
  Label skip_to_incremental_noncompacting;
  Label skip_to_incremental_compacting;

  // The first two branch+nop instructions are generated with labels so as to
  // get the offset fixed up correctly by the bind(Label*) call.  We patch it
  // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
  // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
  // incremental heap marking.
  // See RecordWriteStub::Patch for details.
  __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
  __ nop();
  __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
  __ nop();

  if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
    __ RememberedSetHelper(object_,
                           address_,
                           value_,
                           save_fp_regs_mode_,
                           MacroAssembler::kReturnAtEnd);
  }
  __ Ret();

  __ bind(&skip_to_incremental_noncompacting);
  GenerateIncremental(masm, INCREMENTAL);

  __ bind(&skip_to_incremental_compacting);
  GenerateIncremental(masm, INCREMENTAL_COMPACTION);

  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
  // Will be checked in IncrementalMarking::ActivateGeneratedStub.

  PatchBranchIntoNop(masm, 0);
  PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
}


void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
  regs_.Save(masm);

  if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
    Label dont_need_remembered_set;

    __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
                           regs_.scratch0(),
                           &dont_need_remembered_set);

    __ CheckPageFlag(regs_.object(),
                     regs_.scratch0(),
                     1 << MemoryChunk::SCAN_ON_SCAVENGE,
                     ne,
                     &dont_need_remembered_set);

    // First notify the incremental marker if necessary, then update the
    // remembered set.
    CheckNeedsToInformIncrementalMarker(
        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
    InformIncrementalMarker(masm, mode);
    regs_.Restore(masm);
    __ RememberedSetHelper(object_,
                           address_,
                           value_,
                           save_fp_regs_mode_,
                           MacroAssembler::kReturnAtEnd);

    __ bind(&dont_need_remembered_set);
  }

  CheckNeedsToInformIncrementalMarker(
      masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
  InformIncrementalMarker(masm, mode);
  regs_.Restore(masm);
  __ Ret();
}


void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
  int argument_count = 3;
  __ PrepareCallCFunction(argument_count, regs_.scratch0());
  Register address =
      a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
  ASSERT(!address.is(regs_.object()));
  ASSERT(!address.is(a0));
  __ Move(address, regs_.address());
  __ Move(a0, regs_.object());
  if (mode == INCREMENTAL_COMPACTION) {
    __ Move(a1, address);
  } else {
    ASSERT(mode == INCREMENTAL);
    __ lw(a1, MemOperand(address, 0));
  }
  __ li(a2, Operand(ExternalReference::isolate_address()));

  AllowExternalCallThatCantCauseGC scope(masm);
  if (mode == INCREMENTAL_COMPACTION) {
    __ CallCFunction(
        ExternalReference::incremental_evacuation_record_write_function(
            masm->isolate()),
        argument_count);
  } else {
    ASSERT(mode == INCREMENTAL);
    __ CallCFunction(
        ExternalReference::incremental_marking_record_write_function(
            masm->isolate()),
        argument_count);
  }
  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
}


void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
    MacroAssembler* masm,
    OnNoNeedToInformIncrementalMarker on_no_need,
    Mode mode) {
  Label on_black;
  Label need_incremental;
  Label need_incremental_pop_scratch;

  // Let's look at the color of the object:  If it is not black we don't have
  // to inform the incremental marker.
  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);

  regs_.Restore(masm);
  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
    __ RememberedSetHelper(object_,
                           address_,
                           value_,
                           save_fp_regs_mode_,
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ Ret();
  }

  __ bind(&on_black);

  // Get the value from the slot.
  __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));

  if (mode == INCREMENTAL_COMPACTION) {
    Label ensure_not_white;

    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
                     regs_.scratch1(),  // Scratch.
                     MemoryChunk::kEvacuationCandidateMask,
                     eq,
                     &ensure_not_white);

    __ CheckPageFlag(regs_.object(),
                     regs_.scratch1(),  // Scratch.
                     MemoryChunk::kSkipEvacuationSlotsRecordingMask,
                     eq,
                     &need_incremental);

    __ bind(&ensure_not_white);
  }

  // We need extra registers for this, so we push the object and the address
  // register temporarily.
  __ Push(regs_.object(), regs_.address());
  __ EnsureNotWhite(regs_.scratch0(),  // The value.
                    regs_.scratch1(),  // Scratch.
                    regs_.object(),  // Scratch.
                    regs_.address(),  // Scratch.
                    &need_incremental_pop_scratch);
  __ Pop(regs_.object(), regs_.address());

  regs_.Restore(masm);
  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
    __ RememberedSetHelper(object_,
                           address_,
                           value_,
                           save_fp_regs_mode_,
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ Ret();
  }

  __ bind(&need_incremental_pop_scratch);
  __ Pop(regs_.object(), regs_.address());

  __ bind(&need_incremental);

  // Fall through when we need to inform the incremental marker.
}


void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0    : element value to store
  //  -- a1    : array literal
  //  -- a2    : map of array literal
  //  -- a3    : element index as smi
  //  -- t0    : array literal index in function as smi
  // -----------------------------------

  Label element_done;
  Label double_elements;
  Label smi_element;
  Label slow_elements;
  Label fast_elements;

  __ CheckFastElements(a2, t1, &double_elements);
  // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
  __ JumpIfSmi(a0, &smi_element);
  __ CheckFastSmiOnlyElements(a2, t1, &fast_elements);

  // Store into the array literal requires a elements transition. Call into
  // the runtime.
  __ bind(&slow_elements);
  // call.
  __ Push(a1, a3, a0);
  __ lw(t1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  __ lw(t1, FieldMemOperand(t1, JSFunction::kLiteralsOffset));
  __ Push(t1, t0);
  __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);

  // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
  __ bind(&fast_elements);
  __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
  __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(t2, t1, t2);
  __ Addu(t2, t2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ sw(a0, MemOperand(t2, 0));
  // Update the write barrier for the array store.
  __ RecordWrite(t1, t2, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);

  // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
  // FAST_ELEMENTS, and value is Smi.
  __ bind(&smi_element);
  __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
  __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(t2, t1, t2);
  __ sw(a0, FieldMemOperand(t2, FixedArray::kHeaderSize));
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);

  // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
  __ bind(&double_elements);
  __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
  __ StoreNumberToDoubleElements(a0, a3, a1, t1, t2, t3, t5, a2,
                                 &slow_elements);
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);
}


#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_MIPS