summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips/assembler-mips.h
blob: d12c0dace486e5481cf848df790089206eba40ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.


#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
#define V8_MIPS_ASSEMBLER_MIPS_H_

#include <stdio.h>
#include "assembler.h"
#include "constants-mips.h"
#include "serialize.h"

namespace v8 {
namespace internal {

// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.


// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.

// Core register.
struct Register {
  static const int kNumRegisters = v8::internal::kNumRegisters;
  static const int kMaxNumAllocatableRegisters = 14;  // v0 through t7.
  static const int kSizeInBytes = 4;

  inline static int NumAllocatableRegisters();

  static int ToAllocationIndex(Register reg) {
    return reg.code() - 2;  // zero_reg and 'at' are skipped.
  }

  static Register FromAllocationIndex(int index) {
    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    return from_code(index + 2);  // zero_reg and 'at' are skipped.
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    const char* const names[] = {
      "v0",
      "v1",
      "a0",
      "a1",
      "a2",
      "a3",
      "t0",
      "t1",
      "t2",
      "t3",
      "t4",
      "t5",
      "t6",
      "t7",
    };
    return names[index];
  }

  static Register from_code(int code) {
    Register r = { code };
    return r;
  }

  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
  bool is(Register reg) const { return code_ == reg.code_; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }

  // Unfortunately we can't make this private in a struct.
  int code_;
};

#define REGISTER(N, C) \
  const int kRegister_ ## N ## _Code = C; \
  const Register N = { C }

REGISTER(no_reg, -1);
// Always zero.
REGISTER(zero_reg, 0);
// at: Reserved for synthetic instructions.
REGISTER(at, 1);
// v0, v1: Used when returning multiple values from subroutines.
REGISTER(v0, 2);
REGISTER(v1, 3);
// a0 - a4: Used to pass non-FP parameters.
REGISTER(a0, 4);
REGISTER(a1, 5);
REGISTER(a2, 6);
REGISTER(a3, 7);
// t0 - t9: Can be used without reservation, act as temporary registers and are
// allowed to be destroyed by subroutines.
REGISTER(t0, 8);
REGISTER(t1, 9);
REGISTER(t2, 10);
REGISTER(t3, 11);
REGISTER(t4, 12);
REGISTER(t5, 13);
REGISTER(t6, 14);
REGISTER(t7, 15);
// s0 - s7: Subroutine register variables. Subroutines that write to these
// registers must restore their values before exiting so that the caller can
// expect the values to be preserved.
REGISTER(s0, 16);
REGISTER(s1, 17);
REGISTER(s2, 18);
REGISTER(s3, 19);
REGISTER(s4, 20);
REGISTER(s5, 21);
REGISTER(s6, 22);
REGISTER(s7, 23);
REGISTER(t8, 24);
REGISTER(t9, 25);
// k0, k1: Reserved for system calls and interrupt handlers.
REGISTER(k0, 26);
REGISTER(k1, 27);
// gp: Reserved.
REGISTER(gp, 28);
// sp: Stack pointer.
REGISTER(sp, 29);
// fp: Frame pointer.
REGISTER(fp, 30);
// ra: Return address pointer.
REGISTER(ra, 31);

#undef REGISTER


int ToNumber(Register reg);

Register ToRegister(int num);

// Coprocessor register.
struct FPURegister {
  static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;

  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
  // number of Double regs (64-bit regs, or FPU-reg-pairs).

  // A few double registers are reserved: one as a scratch register and one to
  // hold 0.0.
  //  f28: 0.0
  //  f30: scratch register.
  static const int kNumReservedRegisters = 2;
  static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
      kNumReservedRegisters;

  inline static int NumRegisters();
  inline static int NumAllocatableRegisters();
  inline static int ToAllocationIndex(FPURegister reg);
  static const char* AllocationIndexToString(int index);

  static FPURegister FromAllocationIndex(int index) {
    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    return from_code(index * 2);
  }

  static FPURegister from_code(int code) {
    FPURegister r = { code };
    return r;
  }

  bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
  bool is(FPURegister creg) const { return code_ == creg.code_; }
  FPURegister low() const {
    // Find low reg of a Double-reg pair, which is the reg itself.
    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
    FPURegister reg;
    reg.code_ = code_;
    ASSERT(reg.is_valid());
    return reg;
  }
  FPURegister high() const {
    // Find high reg of a Doubel-reg pair, which is reg + 1.
    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
    FPURegister reg;
    reg.code_ = code_ + 1;
    ASSERT(reg.is_valid());
    return reg;
  }

  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }
  void setcode(int f) {
    code_ = f;
    ASSERT(is_valid());
  }
  // Unfortunately we can't make this private in a struct.
  int code_;
};

// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)

// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister DoubleRegister;
typedef FPURegister FloatRegister;

const FPURegister no_freg = { -1 };

const FPURegister f0 = { 0 };  // Return value in hard float mode.
const FPURegister f1 = { 1 };
const FPURegister f2 = { 2 };
const FPURegister f3 = { 3 };
const FPURegister f4 = { 4 };
const FPURegister f5 = { 5 };
const FPURegister f6 = { 6 };
const FPURegister f7 = { 7 };
const FPURegister f8 = { 8 };
const FPURegister f9 = { 9 };
const FPURegister f10 = { 10 };
const FPURegister f11 = { 11 };
const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
const FPURegister f13 = { 13 };
const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
const FPURegister f15 = { 15 };
const FPURegister f16 = { 16 };
const FPURegister f17 = { 17 };
const FPURegister f18 = { 18 };
const FPURegister f19 = { 19 };
const FPURegister f20 = { 20 };
const FPURegister f21 = { 21 };
const FPURegister f22 = { 22 };
const FPURegister f23 = { 23 };
const FPURegister f24 = { 24 };
const FPURegister f25 = { 25 };
const FPURegister f26 = { 26 };
const FPURegister f27 = { 27 };
const FPURegister f28 = { 28 };
const FPURegister f29 = { 29 };
const FPURegister f30 = { 30 };
const FPURegister f31 = { 31 };

// Register aliases.
// cp is assumed to be a callee saved register.
// Defined using #define instead of "static const Register&" because Clang
// complains otherwise when a compilation unit that includes this header
// doesn't use the variables.
#define kRootRegister s6
#define cp s7
#define kLithiumScratchReg s3
#define kLithiumScratchReg2 s4
#define kLithiumScratchDouble f30
#define kDoubleRegZero f28

// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
  bool is_valid() const { return code_ == kFCSRRegister; }
  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }
  void setcode(int f) {
    code_ = f;
    ASSERT(is_valid());
  }
  // Unfortunately we can't make this private in a struct.
  int code_;
};

const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
const FPUControlRegister FCSR = { kFCSRRegister };


// -----------------------------------------------------------------------------
// Machine instruction Operands.

// Class Operand represents a shifter operand in data processing instructions.
class Operand BASE_EMBEDDED {
 public:
  // Immediate.
  INLINE(explicit Operand(int32_t immediate,
         RelocInfo::Mode rmode = RelocInfo::NONE32));
  INLINE(explicit Operand(const ExternalReference& f));
  INLINE(explicit Operand(const char* s));
  INLINE(explicit Operand(Object** opp));
  INLINE(explicit Operand(Context** cpp));
  explicit Operand(Handle<Object> handle);
  INLINE(explicit Operand(Smi* value));

  // Register.
  INLINE(explicit Operand(Register rm));

  // Return true if this is a register operand.
  INLINE(bool is_reg() const);

  Register rm() const { return rm_; }

 private:
  Register rm_;
  int32_t imm32_;  // Valid if rm_ == no_reg.
  RelocInfo::Mode rmode_;

  friend class Assembler;
  friend class MacroAssembler;
};


// On MIPS we have only one adressing mode with base_reg + offset.
// Class MemOperand represents a memory operand in load and store instructions.
class MemOperand : public Operand {
 public:
  explicit MemOperand(Register rn, int32_t offset = 0);
  int32_t offset() const { return offset_; }

  bool OffsetIsInt16Encodable() const {
    return is_int16(offset_);
  }

 private:
  int32_t offset_;

  friend class Assembler;
};


// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a CpuFeatureScope before use.
class CpuFeatures : public AllStatic {
 public:
  // Detect features of the target CPU. Set safe defaults if the serializer
  // is enabled (snapshots must be portable).
  static void Probe();

  // Check whether a feature is supported by the target CPU.
  static bool IsSupported(CpuFeature f) {
    ASSERT(initialized_);
    return (supported_ & (1u << f)) != 0;
  }

  static bool IsFoundByRuntimeProbingOnly(CpuFeature f) {
    ASSERT(initialized_);
    return (found_by_runtime_probing_only_ &
            (static_cast<uint64_t>(1) << f)) != 0;
  }

  static bool IsSafeForSnapshot(CpuFeature f) {
    return (IsSupported(f) &&
            (!Serializer::enabled() || !IsFoundByRuntimeProbingOnly(f)));
  }

 private:
#ifdef DEBUG
  static bool initialized_;
#endif
  static unsigned supported_;
  static unsigned found_by_runtime_probing_only_;

  friend class ExternalReference;
  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
};


class Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
  Assembler(Isolate* isolate, void* buffer, int buffer_size);
  virtual ~Assembler() { }

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  void GetCode(CodeDesc* desc);

  // Label operations & relative jumps (PPUM Appendix D).
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.
  void bind(Label* L);  // Binds an unbound label L to current code position.
  // Determines if Label is bound and near enough so that branch instruction
  // can be used to reach it, instead of jump instruction.
  bool is_near(Label* L);

  // Returns the branch offset to the given label from the current code
  // position. Links the label to the current position if it is still unbound.
  // Manages the jump elimination optimization if the second parameter is true.
  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
    int32_t o = branch_offset(L, jump_elimination_allowed);
    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
    return o >> 2;
  }
  uint32_t jump_address(Label* L);

  // Puts a labels target address at the given position.
  // The high 8 bits are set to zero.
  void label_at_put(Label* L, int at_offset);

  // Read/Modify the code target address in the branch/call instruction at pc.
  static Address target_address_at(Address pc);
  static void set_target_address_at(Address pc, Address target);

  // Return the code target address at a call site from the return address
  // of that call in the instruction stream.
  inline static Address target_address_from_return_address(Address pc);

  static void JumpLabelToJumpRegister(Address pc);

  static void QuietNaN(HeapObject* nan);

  // This sets the branch destination (which gets loaded at the call address).
  // This is for calls and branches within generated code.  The serializer
  // has already deserialized the lui/ori instructions etc.
  inline static void deserialization_set_special_target_at(
      Address instruction_payload, Address target) {
    set_target_address_at(
        instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
        target);
  }

  // This sets the branch destination.
  // This is for calls and branches to runtime code.
  inline static void set_external_target_at(Address instruction_payload,
                                            Address target) {
    set_target_address_at(instruction_payload, target);
  }

  // Size of an instruction.
  static const int kInstrSize = sizeof(Instr);

  // Difference between address of current opcode and target address offset.
  static const int kBranchPCOffset = 4;

  // Here we are patching the address in the LUI/ORI instruction pair.
  // These values are used in the serialization process and must be zero for
  // MIPS platform, as Code, Embedded Object or External-reference pointers
  // are split across two consecutive instructions and don't exist separately
  // in the code, so the serializer should not step forwards in memory after
  // a target is resolved and written.
  static const int kSpecialTargetSize = 0;

  // Number of consecutive instructions used to store 32bit constant.
  // Before jump-optimizations, this constant was used in
  // RelocInfo::target_address_address() function to tell serializer address of
  // the instruction that follows LUI/ORI instruction pair. Now, with new jump
  // optimization, where jump-through-register instruction that usually
  // follows LUI/ORI pair is substituted with J/JAL, this constant equals
  // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
  static const int kInstructionsFor32BitConstant = 3;

  // Distance between the instruction referring to the address of the call
  // target and the return address.
  static const int kCallTargetAddressOffset = 4 * kInstrSize;

  // Distance between start of patched return sequence and the emitted address
  // to jump to.
  static const int kPatchReturnSequenceAddressOffset = 0;

  // Distance between start of patched debug break slot and the emitted address
  // to jump to.
  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;

  // Difference between address of current opcode and value read from pc
  // register.
  static const int kPcLoadDelta = 4;

  static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;

  // Number of instructions used for the JS return sequence. The constant is
  // used by the debugger to patch the JS return sequence.
  static const int kJSReturnSequenceInstructions = 7;
  static const int kDebugBreakSlotInstructions = 4;
  static const int kDebugBreakSlotLength =
      kDebugBreakSlotInstructions * kInstrSize;


  // ---------------------------------------------------------------------------
  // Code generation.

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    NON_MARKING_NOP = 0,
    DEBUG_BREAK_NOP,
    // IC markers.
    PROPERTY_ACCESS_INLINED,
    PROPERTY_ACCESS_INLINED_CONTEXT,
    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    // Helper values.
    LAST_CODE_MARKER,
    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
    // Code aging
    CODE_AGE_MARKER_NOP = 6
  };

  // Type == 0 is the default non-marking nop. For mips this is a
  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
  // marking, to avoid conflict with ssnop and ehb instructions.
  void nop(unsigned int type = 0) {
    ASSERT(type < 32);
    Register nop_rt_reg = (type == 0) ? zero_reg : at;
    sll(zero_reg, nop_rt_reg, type, true);
  }


  // --------Branch-and-jump-instructions----------
  // We don't use likely variant of instructions.
  void b(int16_t offset);
  void b(Label* L) { b(branch_offset(L, false)>>2); }
  void bal(int16_t offset);
  void bal(Label* L) { bal(branch_offset(L, false)>>2); }

  void beq(Register rs, Register rt, int16_t offset);
  void beq(Register rs, Register rt, Label* L) {
    beq(rs, rt, branch_offset(L, false) >> 2);
  }
  void bgez(Register rs, int16_t offset);
  void bgezal(Register rs, int16_t offset);
  void bgtz(Register rs, int16_t offset);
  void blez(Register rs, int16_t offset);
  void bltz(Register rs, int16_t offset);
  void bltzal(Register rs, int16_t offset);
  void bne(Register rs, Register rt, int16_t offset);
  void bne(Register rs, Register rt, Label* L) {
    bne(rs, rt, branch_offset(L, false)>>2);
  }

  // Never use the int16_t b(l)cond version with a branch offset
  // instead of using the Label* version.

  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
  void j(int32_t target);
  void jal(int32_t target);
  void jalr(Register rs, Register rd = ra);
  void jr(Register target);
  void j_or_jr(int32_t target, Register rs);
  void jal_or_jalr(int32_t target, Register rs);


  //-------Data-processing-instructions---------

  // Arithmetic.
  void addu(Register rd, Register rs, Register rt);
  void subu(Register rd, Register rs, Register rt);
  void mult(Register rs, Register rt);
  void multu(Register rs, Register rt);
  void div(Register rs, Register rt);
  void divu(Register rs, Register rt);
  void mul(Register rd, Register rs, Register rt);

  void addiu(Register rd, Register rs, int32_t j);

  // Logical.
  void and_(Register rd, Register rs, Register rt);
  void or_(Register rd, Register rs, Register rt);
  void xor_(Register rd, Register rs, Register rt);
  void nor(Register rd, Register rs, Register rt);

  void andi(Register rd, Register rs, int32_t j);
  void ori(Register rd, Register rs, int32_t j);
  void xori(Register rd, Register rs, int32_t j);
  void lui(Register rd, int32_t j);

  // Shifts.
  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
  // and may cause problems in normal code. coming_from_nop makes sure this
  // doesn't happen.
  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
  void sllv(Register rd, Register rt, Register rs);
  void srl(Register rd, Register rt, uint16_t sa);
  void srlv(Register rd, Register rt, Register rs);
  void sra(Register rt, Register rd, uint16_t sa);
  void srav(Register rt, Register rd, Register rs);
  void rotr(Register rd, Register rt, uint16_t sa);
  void rotrv(Register rd, Register rt, Register rs);


  //------------Memory-instructions-------------

  void lb(Register rd, const MemOperand& rs);
  void lbu(Register rd, const MemOperand& rs);
  void lh(Register rd, const MemOperand& rs);
  void lhu(Register rd, const MemOperand& rs);
  void lw(Register rd, const MemOperand& rs);
  void lwl(Register rd, const MemOperand& rs);
  void lwr(Register rd, const MemOperand& rs);
  void sb(Register rd, const MemOperand& rs);
  void sh(Register rd, const MemOperand& rs);
  void sw(Register rd, const MemOperand& rs);
  void swl(Register rd, const MemOperand& rs);
  void swr(Register rd, const MemOperand& rs);


  //-------------Misc-instructions--------------

  // Break / Trap instructions.
  void break_(uint32_t code, bool break_as_stop = false);
  void stop(const char* msg, uint32_t code = kMaxStopCode);
  void tge(Register rs, Register rt, uint16_t code);
  void tgeu(Register rs, Register rt, uint16_t code);
  void tlt(Register rs, Register rt, uint16_t code);
  void tltu(Register rs, Register rt, uint16_t code);
  void teq(Register rs, Register rt, uint16_t code);
  void tne(Register rs, Register rt, uint16_t code);

  // Move from HI/LO register.
  void mfhi(Register rd);
  void mflo(Register rd);

  // Set on less than.
  void slt(Register rd, Register rs, Register rt);
  void sltu(Register rd, Register rs, Register rt);
  void slti(Register rd, Register rs, int32_t j);
  void sltiu(Register rd, Register rs, int32_t j);

  // Conditional move.
  void movz(Register rd, Register rs, Register rt);
  void movn(Register rd, Register rs, Register rt);
  void movt(Register rd, Register rs, uint16_t cc = 0);
  void movf(Register rd, Register rs, uint16_t cc = 0);

  // Bit twiddling.
  void clz(Register rd, Register rs);
  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);

  //--------Coprocessor-instructions----------------

  // Load, store, and move.
  void lwc1(FPURegister fd, const MemOperand& src);
  void ldc1(FPURegister fd, const MemOperand& src);

  void swc1(FPURegister fs, const MemOperand& dst);
  void sdc1(FPURegister fs, const MemOperand& dst);

  void mtc1(Register rt, FPURegister fs);
  void mfc1(Register rt, FPURegister fs);

  void ctc1(Register rt, FPUControlRegister fs);
  void cfc1(Register rt, FPUControlRegister fs);

  // Arithmetic.
  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void abs_d(FPURegister fd, FPURegister fs);
  void mov_d(FPURegister fd, FPURegister fs);
  void neg_d(FPURegister fd, FPURegister fs);
  void sqrt_d(FPURegister fd, FPURegister fs);

  // Conversion.
  void cvt_w_s(FPURegister fd, FPURegister fs);
  void cvt_w_d(FPURegister fd, FPURegister fs);
  void trunc_w_s(FPURegister fd, FPURegister fs);
  void trunc_w_d(FPURegister fd, FPURegister fs);
  void round_w_s(FPURegister fd, FPURegister fs);
  void round_w_d(FPURegister fd, FPURegister fs);
  void floor_w_s(FPURegister fd, FPURegister fs);
  void floor_w_d(FPURegister fd, FPURegister fs);
  void ceil_w_s(FPURegister fd, FPURegister fs);
  void ceil_w_d(FPURegister fd, FPURegister fs);

  void cvt_l_s(FPURegister fd, FPURegister fs);
  void cvt_l_d(FPURegister fd, FPURegister fs);
  void trunc_l_s(FPURegister fd, FPURegister fs);
  void trunc_l_d(FPURegister fd, FPURegister fs);
  void round_l_s(FPURegister fd, FPURegister fs);
  void round_l_d(FPURegister fd, FPURegister fs);
  void floor_l_s(FPURegister fd, FPURegister fs);
  void floor_l_d(FPURegister fd, FPURegister fs);
  void ceil_l_s(FPURegister fd, FPURegister fs);
  void ceil_l_d(FPURegister fd, FPURegister fs);

  void cvt_s_w(FPURegister fd, FPURegister fs);
  void cvt_s_l(FPURegister fd, FPURegister fs);
  void cvt_s_d(FPURegister fd, FPURegister fs);

  void cvt_d_w(FPURegister fd, FPURegister fs);
  void cvt_d_l(FPURegister fd, FPURegister fs);
  void cvt_d_s(FPURegister fd, FPURegister fs);

  // Conditions and branches.
  void c(FPUCondition cond, SecondaryField fmt,
         FPURegister ft, FPURegister fs, uint16_t cc = 0);

  void bc1f(int16_t offset, uint16_t cc = 0);
  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
  void bc1t(int16_t offset, uint16_t cc = 0);
  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
  void fcmp(FPURegister src1, const double src2, FPUCondition cond);

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Check the number of instructions generated from label to here.
  int InstructionsGeneratedSince(Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
  }

  // Class for scoping postponing the trampoline pool generation.
  class BlockTrampolinePoolScope {
   public:
    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockTrampolinePool();
    }
    ~BlockTrampolinePoolScope() {
      assem_->EndBlockTrampolinePool();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
  };

  // Class for postponing the assembly buffer growth. Typically used for
  // sequences of instructions that must be emitted as a unit, before
  // buffer growth (and relocation) can occur.
  // This blocking scope is not nestable.
  class BlockGrowBufferScope {
   public:
    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockGrowBuffer();
    }
    ~BlockGrowBufferScope() {
      assem_->EndBlockGrowBuffer();
    }

    private:
     Assembler* assem_;

     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
  };

  // Debugging.

  // Mark address of the ExitJSFrame code.
  void RecordJSReturn();

  // Mark address of a debug break slot.
  void RecordDebugBreakSlot();

  // Record the AST id of the CallIC being compiled, so that it can be placed
  // in the relocation information.
  void SetRecordedAstId(TypeFeedbackId ast_id) {
    ASSERT(recorded_ast_id_.IsNone());
    recorded_ast_id_ = ast_id;
  }

  TypeFeedbackId RecordedAstId() {
    ASSERT(!recorded_ast_id_.IsNone());
    return recorded_ast_id_;
  }

  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }

  // Record a comment relocation entry that can be used by a disassembler.
  // Use --code-comments to enable.
  void RecordComment(const char* msg);

  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);

  // Writes a single byte or word of data in the code stream.  Used for
  // inline tables, e.g., jump-tables.
  void db(uint8_t data);
  void dd(uint32_t data);

  PositionsRecorder* positions_recorder() { return &positions_recorder_; }

  // Postpone the generation of the trampoline pool for the specified number of
  // instructions.
  void BlockTrampolinePoolFor(int instructions);

  // Check if there is less than kGap bytes available in the buffer.
  // If this is the case, we need to grow the buffer before emitting
  // an instruction or relocation information.
  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }

  // Get the number of bytes available in the buffer.
  inline int available_space() const { return reloc_info_writer.pos() - pc_; }

  // Read/patch instructions.
  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
  static void instr_at_put(byte* pc, Instr instr) {
    *reinterpret_cast<Instr*>(pc) = instr;
  }
  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
  void instr_at_put(int pos, Instr instr) {
    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
  }

  // Check if an instruction is a branch of some kind.
  static bool IsBranch(Instr instr);
  static bool IsBeq(Instr instr);
  static bool IsBne(Instr instr);

  static bool IsJump(Instr instr);
  static bool IsJ(Instr instr);
  static bool IsLui(Instr instr);
  static bool IsOri(Instr instr);

  static bool IsJal(Instr instr);
  static bool IsJr(Instr instr);
  static bool IsJalr(Instr instr);

  static bool IsNop(Instr instr, unsigned int type);
  static bool IsPop(Instr instr);
  static bool IsPush(Instr instr);
  static bool IsLwRegFpOffset(Instr instr);
  static bool IsSwRegFpOffset(Instr instr);
  static bool IsLwRegFpNegOffset(Instr instr);
  static bool IsSwRegFpNegOffset(Instr instr);

  static Register GetRtReg(Instr instr);
  static Register GetRsReg(Instr instr);
  static Register GetRdReg(Instr instr);

  static uint32_t GetRt(Instr instr);
  static uint32_t GetRtField(Instr instr);
  static uint32_t GetRs(Instr instr);
  static uint32_t GetRsField(Instr instr);
  static uint32_t GetRd(Instr instr);
  static uint32_t GetRdField(Instr instr);
  static uint32_t GetSa(Instr instr);
  static uint32_t GetSaField(Instr instr);
  static uint32_t GetOpcodeField(Instr instr);
  static uint32_t GetFunction(Instr instr);
  static uint32_t GetFunctionField(Instr instr);
  static uint32_t GetImmediate16(Instr instr);
  static uint32_t GetLabelConst(Instr instr);

  static int32_t GetBranchOffset(Instr instr);
  static bool IsLw(Instr instr);
  static int16_t GetLwOffset(Instr instr);
  static Instr SetLwOffset(Instr instr, int16_t offset);

  static bool IsSw(Instr instr);
  static Instr SetSwOffset(Instr instr, int16_t offset);
  static bool IsAddImmediate(Instr instr);
  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);

  static bool IsAndImmediate(Instr instr);
  static bool IsEmittedConstant(Instr instr);

  void CheckTrampolinePool();

 protected:
  // Relocation for a type-recording IC has the AST id added to it.  This
  // member variable is a way to pass the information from the call site to
  // the relocation info.
  TypeFeedbackId recorded_ast_id_;

  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }

  // Decode branch instruction at pos and return branch target pos.
  int target_at(int32_t pos);

  // Patch branch instruction at pos to branch to given branch target pos.
  void target_at_put(int32_t pos, int32_t target_pos);

  // Say if we need to relocate with this mode.
  bool MustUseReg(RelocInfo::Mode rmode);

  // Record reloc info for current pc_.
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  // Block the emission of the trampoline pool before pc_offset.
  void BlockTrampolinePoolBefore(int pc_offset) {
    if (no_trampoline_pool_before_ < pc_offset)
      no_trampoline_pool_before_ = pc_offset;
  }

  void StartBlockTrampolinePool() {
    trampoline_pool_blocked_nesting_++;
  }

  void EndBlockTrampolinePool() {
    trampoline_pool_blocked_nesting_--;
  }

  bool is_trampoline_pool_blocked() const {
    return trampoline_pool_blocked_nesting_ > 0;
  }

  bool has_exception() const {
    return internal_trampoline_exception_;
  }

  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);

  bool is_trampoline_emitted() const {
    return trampoline_emitted_;
  }

  // Temporarily block automatic assembly buffer growth.
  void StartBlockGrowBuffer() {
    ASSERT(!block_buffer_growth_);
    block_buffer_growth_ = true;
  }

  void EndBlockGrowBuffer() {
    ASSERT(block_buffer_growth_);
    block_buffer_growth_ = false;
  }

  bool is_buffer_growth_blocked() const {
    return block_buffer_growth_;
  }

 private:
  // Buffer size and constant pool distance are checked together at regular
  // intervals of kBufferCheckInterval emitted bytes.
  static const int kBufferCheckInterval = 1*KB/2;

  // Code generation.
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries.
  static const int kGap = 32;


  // Repeated checking whether the trampoline pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated.
  static const int kCheckConstIntervalInst = 32;
  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;

  int next_buffer_check_;  // pc offset of next buffer check.

  // Emission of the trampoline pool may be blocked in some code sequences.
  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_trampoline_pool_before_;  // Block emission before this pc offset.

  // Keep track of the last emitted pool to guarantee a maximal distance.
  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.

  // Automatic growth of the assembly buffer may be blocked for some sequences.
  bool block_buffer_growth_;  // Block growth when true.

  // Relocation information generation.
  // Each relocation is encoded as a variable size value.
  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;

  // The bound position, before this we cannot do instruction elimination.
  int last_bound_pos_;

  // Code emission.
  inline void CheckBuffer();
  void GrowBuffer();
  inline void emit(Instr x);
  inline void CheckTrampolinePoolQuick();

  // Instruction generation.
  // We have 3 different kind of encoding layout on MIPS.
  // However due to many different types of objects encoded in the same fields
  // we have quite a few aliases for each mode.
  // Using the same structure to refer to Register and FPURegister would spare a
  // few aliases, but mixing both does not look clean to me.
  // Anyway we could surely implement this differently.

  void GenInstrRegister(Opcode opcode,
                        Register rs,
                        Register rt,
                        Register rd,
                        uint16_t sa = 0,
                        SecondaryField func = NULLSF);

  void GenInstrRegister(Opcode opcode,
                        Register rs,
                        Register rt,
                        uint16_t msb,
                        uint16_t lsb,
                        SecondaryField func);

  void GenInstrRegister(Opcode opcode,
                        SecondaryField fmt,
                        FPURegister ft,
                        FPURegister fs,
                        FPURegister fd,
                        SecondaryField func = NULLSF);

  void GenInstrRegister(Opcode opcode,
                        FPURegister fr,
                        FPURegister ft,
                        FPURegister fs,
                        FPURegister fd,
                        SecondaryField func = NULLSF);

  void GenInstrRegister(Opcode opcode,
                        SecondaryField fmt,
                        Register rt,
                        FPURegister fs,
                        FPURegister fd,
                        SecondaryField func = NULLSF);

  void GenInstrRegister(Opcode opcode,
                        SecondaryField fmt,
                        Register rt,
                        FPUControlRegister fs,
                        SecondaryField func = NULLSF);


  void GenInstrImmediate(Opcode opcode,
                         Register rs,
                         Register rt,
                         int32_t  j);
  void GenInstrImmediate(Opcode opcode,
                         Register rs,
                         SecondaryField SF,
                         int32_t  j);
  void GenInstrImmediate(Opcode opcode,
                         Register r1,
                         FPURegister r2,
                         int32_t  j);


  void GenInstrJump(Opcode opcode,
                     uint32_t address);

  // Helpers.
  void LoadRegPlusOffsetToAt(const MemOperand& src);

  // Labels.
  void print(Label* L);
  void bind_to(Label* L, int pos);
  void next(Label* L);

  // One trampoline consists of:
  // - space for trampoline slots,
  // - space for labels.
  //
  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
  // Space for trampoline slots preceeds space for labels. Each label is of one
  // instruction size, so total amount for labels is equal to
  // label_count *  kInstrSize.
  class Trampoline {
   public:
    Trampoline() {
      start_ = 0;
      next_slot_ = 0;
      free_slot_count_ = 0;
      end_ = 0;
    }
    Trampoline(int start, int slot_count) {
      start_ = start;
      next_slot_ = start;
      free_slot_count_ = slot_count;
      end_ = start + slot_count * kTrampolineSlotsSize;
    }
    int start() {
      return start_;
    }
    int end() {
      return end_;
    }
    int take_slot() {
      int trampoline_slot = kInvalidSlotPos;
      if (free_slot_count_ <= 0) {
        // We have run out of space on trampolines.
        // Make sure we fail in debug mode, so we become aware of each case
        // when this happens.
        ASSERT(0);
        // Internal exception will be caught.
      } else {
        trampoline_slot = next_slot_;
        free_slot_count_--;
        next_slot_ += kTrampolineSlotsSize;
      }
      return trampoline_slot;
    }

   private:
    int start_;
    int end_;
    int next_slot_;
    int free_slot_count_;
  };

  int32_t get_trampoline_entry(int32_t pos);
  int unbound_labels_count_;
  // If trampoline is emitted, generated code is becoming large. As this is
  // already a slow case which can possibly break our code generation for the
  // extreme case, we use this information to trigger different mode of
  // branch instruction generation, where we use jump instructions rather
  // than regular branch instructions.
  bool trampoline_emitted_;
  static const int kTrampolineSlotsSize = 4 * kInstrSize;
  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
  static const int kInvalidSlotPos = -1;

  Trampoline trampoline_;
  bool internal_trampoline_exception_;

  friend class RegExpMacroAssemblerMIPS;
  friend class RelocInfo;
  friend class CodePatcher;
  friend class BlockTrampolinePoolScope;

  PositionsRecorder positions_recorder_;
  friend class PositionsRecorder;
  friend class EnsureSpace;
};


class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) {
    assembler->CheckBuffer();
  }
};

} }  // namespace v8::internal

#endif  // V8_ARM_ASSEMBLER_MIPS_H_