1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "jump-target-inl.h"
#include "register-allocator-inl.h"
namespace v8 {
namespace internal {
bool JumpTarget::compiling_deferred_code_ = false;
void JumpTarget::Jump(Result* arg) {
ASSERT(cgen()->has_valid_frame());
cgen()->frame()->Push(arg);
DoJump();
}
void JumpTarget::Branch(Condition cc, Result* arg, Hint hint) {
ASSERT(cgen()->has_valid_frame());
// We want to check that non-frame registers at the call site stay in
// the same registers on the fall-through branch.
#ifdef DEBUG
Result::Type arg_type = arg->type();
Register arg_reg = arg->is_register() ? arg->reg() : no_reg;
#endif
cgen()->frame()->Push(arg);
DoBranch(cc, hint);
*arg = cgen()->frame()->Pop();
ASSERT(arg->type() == arg_type);
ASSERT(!arg->is_register() || arg->reg().is(arg_reg));
}
void JumpTarget::Branch(Condition cc, Result* arg0, Result* arg1, Hint hint) {
ASSERT(cgen()->has_valid_frame());
// We want to check that non-frame registers at the call site stay in
// the same registers on the fall-through branch.
#ifdef DEBUG
Result::Type arg0_type = arg0->type();
Register arg0_reg = arg0->is_register() ? arg0->reg() : no_reg;
Result::Type arg1_type = arg1->type();
Register arg1_reg = arg1->is_register() ? arg1->reg() : no_reg;
#endif
cgen()->frame()->Push(arg0);
cgen()->frame()->Push(arg1);
DoBranch(cc, hint);
*arg1 = cgen()->frame()->Pop();
*arg0 = cgen()->frame()->Pop();
ASSERT(arg0->type() == arg0_type);
ASSERT(!arg0->is_register() || arg0->reg().is(arg0_reg));
ASSERT(arg1->type() == arg1_type);
ASSERT(!arg1->is_register() || arg1->reg().is(arg1_reg));
}
void BreakTarget::Branch(Condition cc, Result* arg, Hint hint) {
ASSERT(cgen()->has_valid_frame());
int count = cgen()->frame()->height() - expected_height_;
if (count > 0) {
// We negate and branch here rather than using DoBranch's negate
// and branch. This gives us a hook to remove statement state
// from the frame.
JumpTarget fall_through;
// Branch to fall through will not negate, because it is a
// forward-only target.
fall_through.Branch(NegateCondition(cc), NegateHint(hint));
Jump(arg); // May emit merge code here.
fall_through.Bind();
} else {
#ifdef DEBUG
Result::Type arg_type = arg->type();
Register arg_reg = arg->is_register() ? arg->reg() : no_reg;
#endif
cgen()->frame()->Push(arg);
DoBranch(cc, hint);
*arg = cgen()->frame()->Pop();
ASSERT(arg->type() == arg_type);
ASSERT(!arg->is_register() || arg->reg().is(arg_reg));
}
}
void JumpTarget::Bind(Result* arg) {
if (cgen()->has_valid_frame()) {
cgen()->frame()->Push(arg);
}
DoBind();
*arg = cgen()->frame()->Pop();
}
void JumpTarget::Bind(Result* arg0, Result* arg1) {
if (cgen()->has_valid_frame()) {
cgen()->frame()->Push(arg0);
cgen()->frame()->Push(arg1);
}
DoBind();
*arg1 = cgen()->frame()->Pop();
*arg0 = cgen()->frame()->Pop();
}
void JumpTarget::ComputeEntryFrame() {
// Given: a collection of frames reaching by forward CFG edges and
// the directionality of the block. Compute: an entry frame for the
// block.
Counters::compute_entry_frame.Increment();
#ifdef DEBUG
if (compiling_deferred_code_) {
ASSERT(reaching_frames_.length() > 1);
VirtualFrame* frame = reaching_frames_[0];
bool all_identical = true;
for (int i = 1; i < reaching_frames_.length(); i++) {
if (!frame->Equals(reaching_frames_[i])) {
all_identical = false;
break;
}
}
ASSERT(!all_identical || all_identical);
}
#endif
// Choose an initial frame.
VirtualFrame* initial_frame = reaching_frames_[0];
// A list of pointers to frame elements in the entry frame. NULL
// indicates that the element has not yet been determined.
int length = initial_frame->element_count();
ZoneList<FrameElement*> elements(length);
// Initially populate the list of elements based on the initial
// frame.
for (int i = 0; i < length; i++) {
FrameElement element = initial_frame->elements_[i];
// We do not allow copies or constants in bidirectional frames.
if (direction_ == BIDIRECTIONAL) {
if (element.is_constant() || element.is_copy()) {
elements.Add(NULL);
continue;
}
}
elements.Add(&initial_frame->elements_[i]);
}
// Compute elements based on the other reaching frames.
if (reaching_frames_.length() > 1) {
for (int i = 0; i < length; i++) {
FrameElement* element = elements[i];
for (int j = 1; j < reaching_frames_.length(); j++) {
// Element computation is monotonic: new information will not
// change our decision about undetermined or invalid elements.
if (element == NULL || !element->is_valid()) break;
FrameElement* other = &reaching_frames_[j]->elements_[i];
element = element->Combine(other);
if (element != NULL && !element->is_copy()) {
ASSERT(other != NULL);
// We overwrite the number information of one of the incoming frames.
// This is safe because we only use the frame for emitting merge code.
// The number information of incoming frames is not used anymore.
element->set_type_info(TypeInfo::Combine(element->type_info(),
other->type_info()));
}
}
elements[i] = element;
}
}
// Build the new frame. A freshly allocated frame has memory elements
// for the parameters and some platform-dependent elements (e.g.,
// return address). Replace those first.
entry_frame_ = new VirtualFrame();
int index = 0;
for (; index < entry_frame_->element_count(); index++) {
FrameElement* target = elements[index];
// If the element is determined, set it now. Count registers. Mark
// elements as copied exactly when they have a copy. Undetermined
// elements are initially recorded as if in memory.
if (target != NULL) {
entry_frame_->elements_[index] = *target;
InitializeEntryElement(index, target);
}
}
// Then fill in the rest of the frame with new elements.
for (; index < length; index++) {
FrameElement* target = elements[index];
if (target == NULL) {
entry_frame_->elements_.Add(
FrameElement::MemoryElement(TypeInfo::Uninitialized()));
} else {
entry_frame_->elements_.Add(*target);
InitializeEntryElement(index, target);
}
}
// Allocate any still-undetermined frame elements to registers or
// memory, from the top down.
for (int i = length - 1; i >= 0; i--) {
if (elements[i] == NULL) {
// Loop over all the reaching frames to check whether the element
// is synced on all frames and to count the registers it occupies.
bool is_synced = true;
RegisterFile candidate_registers;
int best_count = kMinInt;
int best_reg_num = RegisterAllocator::kInvalidRegister;
TypeInfo info = TypeInfo::Uninitialized();
for (int j = 0; j < reaching_frames_.length(); j++) {
FrameElement element = reaching_frames_[j]->elements_[i];
if (direction_ == BIDIRECTIONAL) {
info = TypeInfo::Unknown();
} else if (!element.is_copy()) {
info = TypeInfo::Combine(info, element.type_info());
} else {
// New elements will not be copies, so get number information from
// backing element in the reaching frame.
info = TypeInfo::Combine(info,
reaching_frames_[j]->elements_[element.index()].type_info());
}
is_synced = is_synced && element.is_synced();
if (element.is_register() && !entry_frame_->is_used(element.reg())) {
// Count the register occurrence and remember it if better
// than the previous best.
int num = RegisterAllocator::ToNumber(element.reg());
candidate_registers.Use(num);
if (candidate_registers.count(num) > best_count) {
best_count = candidate_registers.count(num);
best_reg_num = num;
}
}
}
// We must have a number type information now (not for copied elements).
ASSERT(entry_frame_->elements_[i].is_copy()
|| !info.IsUninitialized());
// If the value is synced on all frames, put it in memory. This
// costs nothing at the merge code but will incur a
// memory-to-register move when the value is needed later.
if (is_synced) {
// Already recorded as a memory element.
// Set combined number info.
entry_frame_->elements_[i].set_type_info(info);
continue;
}
// Try to put it in a register. If there was no best choice
// consider any free register.
if (best_reg_num == RegisterAllocator::kInvalidRegister) {
for (int j = 0; j < RegisterAllocator::kNumRegisters; j++) {
if (!entry_frame_->is_used(j)) {
best_reg_num = j;
break;
}
}
}
if (best_reg_num != RegisterAllocator::kInvalidRegister) {
// If there was a register choice, use it. Preserve the copied
// flag on the element.
bool is_copied = entry_frame_->elements_[i].is_copied();
Register reg = RegisterAllocator::ToRegister(best_reg_num);
entry_frame_->elements_[i] =
FrameElement::RegisterElement(reg, FrameElement::NOT_SYNCED,
TypeInfo::Uninitialized());
if (is_copied) entry_frame_->elements_[i].set_copied();
entry_frame_->set_register_location(reg, i);
}
// Set combined number info.
entry_frame_->elements_[i].set_type_info(info);
}
}
// If we have incoming backward edges assert we forget all number information.
#ifdef DEBUG
if (direction_ == BIDIRECTIONAL) {
for (int i = 0; i < length; ++i) {
if (!entry_frame_->elements_[i].is_copy()) {
ASSERT(entry_frame_->elements_[i].type_info().IsUnknown());
}
}
}
#endif
// The stack pointer is at the highest synced element or the base of
// the expression stack.
int stack_pointer = length - 1;
while (stack_pointer >= entry_frame_->expression_base_index() &&
!entry_frame_->elements_[stack_pointer].is_synced()) {
stack_pointer--;
}
entry_frame_->stack_pointer_ = stack_pointer;
}
FrameRegisterState::FrameRegisterState(VirtualFrame* frame) {
// Copy the register locations from the code generator's frame.
// These are the registers that will be spilled on entry to the
// deferred code and restored on exit.
int sp_offset = frame->fp_relative(frame->stack_pointer_);
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int loc = frame->register_location(i);
if (loc == VirtualFrame::kIllegalIndex) {
registers_[i] = kIgnore;
} else if (frame->elements_[loc].is_synced()) {
// Needs to be restored on exit but not saved on entry.
registers_[i] = frame->fp_relative(loc) | kSyncedFlag;
} else {
int offset = frame->fp_relative(loc);
registers_[i] = (offset < sp_offset) ? kPush : offset;
}
}
}
void JumpTarget::Unuse() {
reaching_frames_.Clear();
merge_labels_.Clear();
entry_frame_ = NULL;
entry_label_.Unuse();
}
void JumpTarget::AddReachingFrame(VirtualFrame* frame) {
ASSERT(reaching_frames_.length() == merge_labels_.length());
ASSERT(entry_frame_ == NULL);
Label fresh;
merge_labels_.Add(fresh);
reaching_frames_.Add(frame);
}
// -------------------------------------------------------------------------
// BreakTarget implementation.
void BreakTarget::set_direction(Directionality direction) {
JumpTarget::set_direction(direction);
ASSERT(cgen()->has_valid_frame());
expected_height_ = cgen()->frame()->height();
}
void BreakTarget::CopyTo(BreakTarget* destination) {
ASSERT(destination != NULL);
destination->direction_ = direction_;
destination->reaching_frames_.Rewind(0);
destination->reaching_frames_.AddAll(reaching_frames_);
destination->merge_labels_.Rewind(0);
destination->merge_labels_.AddAll(merge_labels_);
destination->entry_frame_ = entry_frame_;
destination->entry_label_ = entry_label_;
destination->expected_height_ = expected_height_;
}
void BreakTarget::Branch(Condition cc, Hint hint) {
ASSERT(cgen()->has_valid_frame());
int count = cgen()->frame()->height() - expected_height_;
if (count > 0) {
// We negate and branch here rather than using DoBranch's negate
// and branch. This gives us a hook to remove statement state
// from the frame.
JumpTarget fall_through;
// Branch to fall through will not negate, because it is a
// forward-only target.
fall_through.Branch(NegateCondition(cc), NegateHint(hint));
Jump(); // May emit merge code here.
fall_through.Bind();
} else {
DoBranch(cc, hint);
}
}
DeferredCode::DeferredCode()
: masm_(CodeGeneratorScope::Current()->masm()),
statement_position_(masm_->positions_recorder()->
current_statement_position()),
position_(masm_->positions_recorder()->current_position()),
frame_state_(CodeGeneratorScope::Current()->frame()) {
ASSERT(statement_position_ != RelocInfo::kNoPosition);
ASSERT(position_ != RelocInfo::kNoPosition);
CodeGeneratorScope::Current()->AddDeferred(this);
#ifdef DEBUG
comment_ = "";
#endif
}
} } // namespace v8::internal
|