1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
|
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "codegen.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "safepoint-table.h"
namespace v8 {
namespace internal {
int Deoptimizer::table_entry_size_ = 10;
int Deoptimizer::patch_size() {
return Assembler::kCallInstructionLength;
}
static void ZapCodeRange(Address start, Address end) {
#ifdef DEBUG
ASSERT(start <= end);
int size = end - start;
CodePatcher destroyer(start, size);
while (size-- > 0) destroyer.masm()->int3();
#endif
}
void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
Isolate* isolate = code->GetIsolate();
HandleScope scope(isolate);
// Compute the size of relocation information needed for the code
// patching in Deoptimizer::DeoptimizeFunction.
int min_reloc_size = 0;
Address prev_reloc_address = code->instruction_start();
Address code_start_address = code->instruction_start();
SafepointTable table(*code);
for (unsigned i = 0; i < table.length(); ++i) {
Address curr_reloc_address = code_start_address + table.GetPcOffset(i);
ASSERT_GE(curr_reloc_address, prev_reloc_address);
SafepointEntry safepoint_entry = table.GetEntry(i);
int deoptimization_index = safepoint_entry.deoptimization_index();
if (deoptimization_index != Safepoint::kNoDeoptimizationIndex) {
// The gap code is needed to get to the state expected at the
// bailout and we need to skip the call opcode to get to the
// address that needs reloc.
curr_reloc_address += safepoint_entry.gap_code_size() + 1;
int pc_delta = curr_reloc_address - prev_reloc_address;
// We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
// if encodable with small pc delta encoding and up to 6 bytes
// otherwise.
if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
min_reloc_size += 2;
} else {
min_reloc_size += 6;
}
prev_reloc_address = curr_reloc_address;
}
}
// If the relocation information is not big enough we create a new
// relocation info object that is padded with comments to make it
// big enough for lazy doptimization.
int reloc_length = code->relocation_info()->length();
if (min_reloc_size > reloc_length) {
int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
// Padding needed.
int min_padding = min_reloc_size - reloc_length;
// Number of comments needed to take up at least that much space.
int additional_comments =
(min_padding + comment_reloc_size - 1) / comment_reloc_size;
// Actual padding size.
int padding = additional_comments * comment_reloc_size;
// Allocate new relocation info and copy old relocation to the end
// of the new relocation info array because relocation info is
// written and read backwards.
Factory* factory = isolate->factory();
Handle<ByteArray> new_reloc =
factory->NewByteArray(reloc_length + padding, TENURED);
memcpy(new_reloc->GetDataStartAddress() + padding,
code->relocation_info()->GetDataStartAddress(),
reloc_length);
// Create a relocation writer to write the comments in the padding
// space. Use position 0 for everything to ensure short encoding.
RelocInfoWriter reloc_info_writer(
new_reloc->GetDataStartAddress() + padding, 0);
intptr_t comment_string
= reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string);
for (int i = 0; i < additional_comments; ++i) {
#ifdef DEBUG
byte* pos_before = reloc_info_writer.pos();
#endif
reloc_info_writer.Write(&rinfo);
ASSERT(RelocInfo::kMinRelocCommentSize ==
pos_before - reloc_info_writer.pos());
}
// Replace relocation information on the code object.
code->set_relocation_info(*new_reloc);
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
if (!function->IsOptimized()) return;
Isolate* isolate = function->GetIsolate();
HandleScope scope(isolate);
AssertNoAllocation no_allocation;
// Get the optimized code.
Code* code = function->code();
Address code_start_address = code->instruction_start();
// We will overwrite the code's relocation info in-place. Relocation info
// is written backward. The relocation info is the payload of a byte
// array. Later on we will slide this to the start of the byte array and
// create a filler object in the remaining space.
ByteArray* reloc_info = code->relocation_info();
Address reloc_end_address = reloc_info->address() + reloc_info->Size();
RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
// For each return after a safepoint insert a call to the corresponding
// deoptimization entry. Since the call is a relative encoding, write new
// reloc info. We do not need any of the existing reloc info because the
// existing code will not be used again (we zap it in debug builds).
SafepointTable table(code);
Address prev_address = code_start_address;
for (unsigned i = 0; i < table.length(); ++i) {
Address curr_address = code_start_address + table.GetPcOffset(i);
ASSERT_GE(curr_address, prev_address);
ZapCodeRange(prev_address, curr_address);
SafepointEntry safepoint_entry = table.GetEntry(i);
int deoptimization_index = safepoint_entry.deoptimization_index();
if (deoptimization_index != Safepoint::kNoDeoptimizationIndex) {
// The gap code is needed to get to the state expected at the bailout.
curr_address += safepoint_entry.gap_code_size();
CodePatcher patcher(curr_address, patch_size());
Address deopt_entry = GetDeoptimizationEntry(deoptimization_index, LAZY);
patcher.masm()->call(deopt_entry, RelocInfo::NONE);
// We use RUNTIME_ENTRY for deoptimization bailouts.
RelocInfo rinfo(curr_address + 1, // 1 after the call opcode.
RelocInfo::RUNTIME_ENTRY,
reinterpret_cast<intptr_t>(deopt_entry));
reloc_info_writer.Write(&rinfo);
ASSERT_GE(reloc_info_writer.pos(),
reloc_info->address() + ByteArray::kHeaderSize);
curr_address += patch_size();
}
prev_address = curr_address;
}
ZapCodeRange(prev_address,
code_start_address + code->safepoint_table_offset());
// Move the relocation info to the beginning of the byte array.
int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
memmove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
// The relocation info is in place, update the size.
reloc_info->set_length(new_reloc_size);
// Handle the junk part after the new relocation info. We will create
// a non-live object in the extra space at the end of the former reloc info.
Address junk_address = reloc_info->address() + reloc_info->Size();
ASSERT(junk_address <= reloc_end_address);
isolate->heap()->CreateFillerObjectAt(junk_address,
reloc_end_address - junk_address);
// Add the deoptimizing code to the list.
DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code);
DeoptimizerData* data = isolate->deoptimizer_data();
node->set_next(data->deoptimizing_code_list_);
data->deoptimizing_code_list_ = node;
// Set the code for the function to non-optimized version.
function->ReplaceCode(function->shared()->code());
if (FLAG_trace_deopt) {
PrintF("[forced deoptimization: ");
function->PrintName();
PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function));
#ifdef DEBUG
if (FLAG_print_code) {
code->PrintLn();
}
#endif
}
}
void Deoptimizer::PatchStackCheckCodeAt(Address pc_after,
Code* check_code,
Code* replacement_code) {
Address call_target_address = pc_after - kIntSize;
ASSERT(check_code->entry() ==
Assembler::target_address_at(call_target_address));
// The stack check code matches the pattern:
//
// cmp esp, <limit>
// jae ok
// call <stack guard>
// test eax, <loop nesting depth>
// ok: ...
//
// We will patch away the branch so the code is:
//
// cmp esp, <limit> ;; Not changed
// nop
// nop
// call <on-stack replacment>
// test eax, <loop nesting depth>
// ok:
ASSERT(*(call_target_address - 3) == 0x73 && // jae
*(call_target_address - 2) == 0x07 && // offset
*(call_target_address - 1) == 0xe8); // call
*(call_target_address - 3) = 0x90; // nop
*(call_target_address - 2) = 0x90; // nop
Assembler::set_target_address_at(call_target_address,
replacement_code->entry());
}
void Deoptimizer::RevertStackCheckCodeAt(Address pc_after,
Code* check_code,
Code* replacement_code) {
Address call_target_address = pc_after - kIntSize;
ASSERT(replacement_code->entry() ==
Assembler::target_address_at(call_target_address));
// Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to
// restore the conditional branch.
ASSERT(*(call_target_address - 3) == 0x90 && // nop
*(call_target_address - 2) == 0x90 && // nop
*(call_target_address - 1) == 0xe8); // call
*(call_target_address - 3) = 0x73; // jae
*(call_target_address - 2) = 0x07; // offset
Assembler::set_target_address_at(call_target_address,
check_code->entry());
}
static int LookupBailoutId(DeoptimizationInputData* data, unsigned ast_id) {
ByteArray* translations = data->TranslationByteArray();
int length = data->DeoptCount();
for (int i = 0; i < length; i++) {
if (static_cast<unsigned>(data->AstId(i)->value()) == ast_id) {
TranslationIterator it(translations, data->TranslationIndex(i)->value());
int value = it.Next();
ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
// Read the number of frames.
value = it.Next();
if (value == 1) return i;
}
}
UNREACHABLE();
return -1;
}
void Deoptimizer::DoComputeOsrOutputFrame() {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
optimized_code_->deoptimization_data());
unsigned ast_id = data->OsrAstId()->value();
// TODO(kasperl): This should not be the bailout_id_. It should be
// the ast id. Confusing.
ASSERT(bailout_id_ == ast_id);
int bailout_id = LookupBailoutId(data, ast_id);
unsigned translation_index = data->TranslationIndex(bailout_id)->value();
ByteArray* translations = data->TranslationByteArray();
TranslationIterator iterator(translations, translation_index);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
ASSERT(Translation::BEGIN == opcode);
USE(opcode);
int count = iterator.Next();
ASSERT(count == 1);
USE(count);
opcode = static_cast<Translation::Opcode>(iterator.Next());
USE(opcode);
ASSERT(Translation::FRAME == opcode);
unsigned node_id = iterator.Next();
USE(node_id);
ASSERT(node_id == ast_id);
JSFunction* function = JSFunction::cast(ComputeLiteral(iterator.Next()));
USE(function);
ASSERT(function == function_);
unsigned height = iterator.Next();
unsigned height_in_bytes = height * kPointerSize;
USE(height_in_bytes);
unsigned fixed_size = ComputeFixedSize(function_);
unsigned input_frame_size = input_->GetFrameSize();
ASSERT(fixed_size + height_in_bytes == input_frame_size);
unsigned stack_slot_size = optimized_code_->stack_slots() * kPointerSize;
unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
unsigned outgoing_size = outgoing_height * kPointerSize;
unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call.
if (FLAG_trace_osr) {
PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
reinterpret_cast<intptr_t>(function_));
function_->PrintName();
PrintF(" => node=%u, frame=%d->%d]\n",
ast_id,
input_frame_size,
output_frame_size);
}
// There's only one output frame in the OSR case.
output_count_ = 1;
output_ = new FrameDescription*[1];
output_[0] = new(output_frame_size) FrameDescription(
output_frame_size, function_);
// Clear the incoming parameters in the optimized frame to avoid
// confusing the garbage collector.
unsigned output_offset = output_frame_size - kPointerSize;
int parameter_count = function_->shared()->formal_parameter_count() + 1;
for (int i = 0; i < parameter_count; ++i) {
output_[0]->SetFrameSlot(output_offset, 0);
output_offset -= kPointerSize;
}
// Translate the incoming parameters. This may overwrite some of the
// incoming argument slots we've just cleared.
int input_offset = input_frame_size - kPointerSize;
bool ok = true;
int limit = input_offset - (parameter_count * kPointerSize);
while (ok && input_offset > limit) {
ok = DoOsrTranslateCommand(&iterator, &input_offset);
}
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Set them up explicitly.
for (int i = StandardFrameConstants::kCallerPCOffset;
ok && i >= StandardFrameConstants::kMarkerOffset;
i -= kPointerSize) {
uint32_t input_value = input_->GetFrameSlot(input_offset);
if (FLAG_trace_osr) {
const char* name = "UNKNOWN";
switch (i) {
case StandardFrameConstants::kCallerPCOffset:
name = "caller's pc";
break;
case StandardFrameConstants::kCallerFPOffset:
name = "fp";
break;
case StandardFrameConstants::kContextOffset:
name = "context";
break;
case StandardFrameConstants::kMarkerOffset:
name = "function";
break;
}
PrintF(" [esp + %d] <- 0x%08x ; [esp + %d] (fixed part - %s)\n",
output_offset,
input_value,
input_offset,
name);
}
output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
input_offset -= kPointerSize;
output_offset -= kPointerSize;
}
// Translate the rest of the frame.
while (ok && input_offset >= 0) {
ok = DoOsrTranslateCommand(&iterator, &input_offset);
}
// If translation of any command failed, continue using the input frame.
if (!ok) {
delete output_[0];
output_[0] = input_;
output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
} else {
// Setup the frame pointer and the context pointer.
output_[0]->SetRegister(ebp.code(), input_->GetRegister(ebp.code()));
output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code()));
unsigned pc_offset = data->OsrPcOffset()->value();
uint32_t pc = reinterpret_cast<uint32_t>(
optimized_code_->entry() + pc_offset);
output_[0]->SetPc(pc);
}
Code* continuation =
function->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR);
output_[0]->SetContinuation(
reinterpret_cast<uint32_t>(continuation->entry()));
if (FLAG_trace_osr) {
PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
ok ? "finished" : "aborted",
reinterpret_cast<intptr_t>(function));
function->PrintName();
PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
}
}
void Deoptimizer::DoComputeFrame(TranslationIterator* iterator,
int frame_index) {
// Read the ast node id, function, and frame height for this output frame.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
USE(opcode);
ASSERT(Translation::FRAME == opcode);
int node_id = iterator->Next();
JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (FLAG_trace_deopt) {
PrintF(" translating ");
function->PrintName();
PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes);
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by JavaScriptFrameConstants.
unsigned fixed_frame_size = ComputeFixedSize(function);
unsigned input_frame_size = input_->GetFrameSize();
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
ASSERT(frame_index >= 0 && frame_index < output_count_);
ASSERT(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address for the bottommost output frame can be computed from
// the input frame pointer and the output frame's height. For all
// subsequent output frames, it can be computed from the previous one's
// top address and the current frame's size.
uint32_t top_address;
if (is_bottommost) {
// 2 = context and function in the frame.
top_address =
input_->GetRegister(ebp.code()) - (2 * kPointerSize) - height_in_bytes;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = function->shared()->formal_parameter_count() + 1;
unsigned output_offset = output_frame_size;
unsigned input_offset = input_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
input_offset -= (parameter_count * kPointerSize);
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Synthesize their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
intptr_t value;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetFrameSlot(output_offset, value);
if (FLAG_trace_deopt) {
PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
top_address + output_offset, output_offset, value);
}
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetFrameSlot(output_offset, value);
intptr_t fp_value = top_address + output_offset;
ASSERT(!is_bottommost || input_->GetRegister(ebp.code()) == fp_value);
output_frame->SetFp(fp_value);
if (is_topmost) output_frame->SetRegister(ebp.code(), fp_value);
if (FLAG_trace_deopt) {
PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
fp_value, output_offset, value);
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = reinterpret_cast<uint32_t>(function->context());
}
output_frame->SetFrameSlot(output_offset, value);
if (is_topmost) output_frame->SetRegister(esi.code(), value);
if (FLAG_trace_deopt) {
PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n",
top_address + output_offset, output_offset, value);
}
// The function was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
value = reinterpret_cast<uint32_t>(function);
// The function for the bottommost output frame should also agree with the
// input frame.
ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
output_frame->SetFrameSlot(output_offset, value);
if (FLAG_trace_deopt) {
PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n",
top_address + output_offset, output_offset, value);
}
// Translate the rest of the frame.
for (unsigned i = 0; i < height; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
ASSERT(0 == output_offset);
// Compute this frame's PC, state, and continuation.
Code* non_optimized_code = function->shared()->code();
FixedArray* raw_data = non_optimized_code->deoptimization_data();
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
Address start = non_optimized_code->instruction_start();
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
uint32_t pc_value = reinterpret_cast<uint32_t>(start + pc_offset);
output_frame->SetPc(pc_value);
FullCodeGenerator::State state =
FullCodeGenerator::StateField::decode(pc_and_state);
output_frame->SetState(Smi::FromInt(state));
// Set the continuation for the topmost frame.
if (is_topmost) {
Builtins* builtins = isolate_->builtins();
Code* continuation = (bailout_type_ == EAGER)
? builtins->builtin(Builtins::kNotifyDeoptimized)
: builtins->builtin(Builtins::kNotifyLazyDeoptimized);
output_frame->SetContinuation(
reinterpret_cast<uint32_t>(continuation->entry()));
}
if (output_count_ - 1 == frame_index) iterator->Done();
}
#define __ masm()->
void Deoptimizer::EntryGenerator::Generate() {
GeneratePrologue();
CpuFeatures::Scope scope(SSE2);
Isolate* isolate = masm()->isolate();
// Save all general purpose registers before messing with them.
const int kNumberOfRegisters = Register::kNumRegisters;
const int kDoubleRegsSize = kDoubleSize *
XMMRegister::kNumAllocatableRegisters;
__ sub(Operand(esp), Immediate(kDoubleRegsSize));
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
int offset = i * kDoubleSize;
__ movdbl(Operand(esp, offset), xmm_reg);
}
__ pushad();
const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
kDoubleRegsSize;
// Get the bailout id from the stack.
__ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
// Get the address of the location in the code object if possible
// and compute the fp-to-sp delta in register edx.
if (type() == EAGER) {
__ Set(ecx, Immediate(0));
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
} else {
__ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
}
__ sub(edx, Operand(ebp));
__ neg(edx);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(6, eax);
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(Operand(esp, 0 * kPointerSize), eax); // Function.
__ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type.
__ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id.
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0.
__ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta.
__ mov(Operand(esp, 5 * kPointerSize),
Immediate(ExternalReference::isolate_address()));
__ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6);
// Preserve deoptimizer object in register eax and get the input
// frame descriptor pointer.
__ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
// Fill in the input registers.
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
__ pop(Operand(ebx, offset));
}
// Fill in the double input registers.
int double_regs_offset = FrameDescription::double_registers_offset();
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
int dst_offset = i * kDoubleSize + double_regs_offset;
int src_offset = i * kDoubleSize;
__ movdbl(xmm0, Operand(esp, src_offset));
__ movdbl(Operand(ebx, dst_offset), xmm0);
}
// Remove the bailout id and the double registers from the stack.
if (type() == EAGER) {
__ add(Operand(esp), Immediate(kDoubleRegsSize + kPointerSize));
} else {
__ add(Operand(esp), Immediate(kDoubleRegsSize + 2 * kPointerSize));
}
// Compute a pointer to the unwinding limit in register ecx; that is
// the first stack slot not part of the input frame.
__ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
__ add(ecx, Operand(esp));
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
Label pop_loop;
__ bind(&pop_loop);
__ pop(Operand(edx, 0));
__ add(Operand(edx), Immediate(sizeof(uint32_t)));
__ cmp(ecx, Operand(esp));
__ j(not_equal, &pop_loop);
// Compute the output frame in the deoptimizer.
__ push(eax);
__ PrepareCallCFunction(1, ebx);
__ mov(Operand(esp, 0 * kPointerSize), eax);
__ CallCFunction(
ExternalReference::compute_output_frames_function(isolate), 1);
__ pop(eax);
// Replace the current frame with the output frames.
Label outer_push_loop, inner_push_loop;
// Outer loop state: eax = current FrameDescription**, edx = one past the
// last FrameDescription**.
__ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
__ mov(eax, Operand(eax, Deoptimizer::output_offset()));
__ lea(edx, Operand(eax, edx, times_4, 0));
__ bind(&outer_push_loop);
// Inner loop state: ebx = current FrameDescription*, ecx = loop index.
__ mov(ebx, Operand(eax, 0));
__ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
__ bind(&inner_push_loop);
__ sub(Operand(ecx), Immediate(sizeof(uint32_t)));
__ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
__ test(ecx, Operand(ecx));
__ j(not_zero, &inner_push_loop);
__ add(Operand(eax), Immediate(kPointerSize));
__ cmp(eax, Operand(edx));
__ j(below, &outer_push_loop);
// In case of OSR, we have to restore the XMM registers.
if (type() == OSR) {
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
int src_offset = i * kDoubleSize + double_regs_offset;
__ movdbl(xmm_reg, Operand(ebx, src_offset));
}
}
// Push state, pc, and continuation from the last output frame.
if (type() != OSR) {
__ push(Operand(ebx, FrameDescription::state_offset()));
}
__ push(Operand(ebx, FrameDescription::pc_offset()));
__ push(Operand(ebx, FrameDescription::continuation_offset()));
// Push the registers from the last output frame.
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
__ push(Operand(ebx, offset));
}
// Restore the registers from the stack.
__ popad();
// Return to the continuation point.
__ ret(0);
}
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
// Create a sequence of deoptimization entries.
Label done;
for (int i = 0; i < count(); i++) {
int start = masm()->pc_offset();
USE(start);
__ push_imm32(i);
__ jmp(&done);
ASSERT(masm()->pc_offset() - start == table_entry_size_);
}
__ bind(&done);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32
|